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Abstract

A careful study of the points of the Subtour Elimination Poly-
tope could lead to a better approximation algorithm for the Travelling
Salesman Problem or at least a better understanding of how good a
lower bound on the optimal value of the Travelling Salesman Problem
we obtain by optimizing over the Subtour Elimination Polytope. In
this paper, we look at the structure of the tight cut constraints of an
extreme point of the Subtour Elimination Polytope. We introduce the
idea of a Laminar Basis Tree to compactly store these tight cuts. Al-
though a given extreme point may have many different cobases, we can
limit our attention to those whose Laminar Basis Trees have special
properties.

Let Kn = (V, E) be the complete graph on n vertices. The Subtour
Elimination Polytope (henceforth abbreviated to SEP) is the subset of RE

which obeys the following constraints.

x(δ(v)) = 2 for all v ∈ V (1)

x(δ(S)) ≥ 2 for all ∅ ⊂ S ⊂ V (2)

xe ≥ 0 for all e ∈ E (3)
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The contraints of the form (1) above are called the vertex equalities. The
constraints of the form (2) are called the cut constraints and (3) are called
the zero-edge inequalities or the nonnegativity constraints.

Given a point x of the SEP, a constraint is said to be tight if it holds with
equality for x. If a constraint of the form (2) given by x(δ(S)) ≥ 2 is tight
then we call δ(S) a tight cut and S a tight set. We also call an edge e ∈ E a
1-edge if xe = 1. We define Ex = {e ∈ E | xe > 0} and we then define the
support graph of x to be the subgraph Gx = (V, Ex).

Lemma 1. Let G be a connected graph with n vertices and m edges. The rank
of the tight edge inequalities and the vertex equalities is 1

2
n(n−1)−m+n−1

if G is bipartite and 1
2
n(n− 1)−m + n otherwise.

Proof. We would like to build up a linearly independent set of constraints
for G. The set of edge inequalities is linearly independent since the edge
inequalities each correspond to a distinct edge variable. When we add all
the vertex equalities to the edge inequalities corresponding to the edges that
are in G, we can then use the edge inequalities to eliminate all the variables
corresponding to edges that are in G. Thus the problem can be reduced to
that of finding the rank of the vertex equalities in G.

Suppose that the set of vertex equalities of G is linearly dependent. Then
there is a non-zero linear combination of the vertex equalities which sums
to zero. Now if uv is an edge of G then the edge variable, xuv, appears
in exactly two vertex equalities - namely the equalities corresponding to u
and v. Hence if the coefficient of the vertex equality corresponding to u
is non-zero then so is that corresponding to v. Furthermore, the coefficent
corresponding to v is just the negative of that of u. Thus all the neighbours
of a vertex with a non-zero coefficient must also have a non-zero coefficient
and since G is connected, this means that all the coefficients are non-zero.
Since every vertex equality must be present in order for our set to be linearly
dependent, we know that the rank of the vertex equalities in G must be
exactly n− 1. Furthermore, by the same reasoning, the coefficients all have
the same absolute value. As well, the neighbours of any vertex with a positive
coefficient are all have negative coefficients and vice versa. Hence the set of
vertices of G with positive coefficients is an independent set and the set of
vertices of G with negative coefficients is an independent set. Therefore, G
is bipartite.
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Conversely, if G is bipartite with bipartition (V1, V2) then∑
v∈V1

x(δ(v))−
∑
v∈V2

x(δ(v)) = 0

and thus the set of vertex equalities of G is linearly dependent and, as noted
above, has rank n− 1.

Therefore G is not bipartite if and only if the tight edge equalities along
with the vertex equalities have full rank, namely 1

2
n(n−1)−m+n. Otherwise

the rank of this set of constraints is 1
2
n(n− 1)−m + n− 1.

Corollary 2. If G is a connected graph with a cobasis consisting entirely of
vertex equalities then either G is a tree or G is a 1-tree with an odd cycle.

Proof. If G is bipartite then by Lemma 1 the rank of the vertex equalities is
exactly n− 1. However, the vertex equalities form a cobasis for G so G has
n − 1 edges. Furthermore, G is connected and so G must be a tree. If G is
not bipartite then by Lemma 1 the rank of the vertex equalities is exactly
n. Again, G must have n edges and must be a 1-tree since G is connected.
However, since G is not bipartite, the unique cycle of G must be an odd
cycle.

Let x be an extreme point of the SEP-polytope on n vertices. Let Gx be
the support graph of x and let m be the number of edges of Gx. Consider
building a cobasis for x starting with the set of the tight edge inequalities
and the vertex equalities. Lemma 1 tells us that this set has full rank if Gx

is not bipartite. Thus we can extend this set to a cobasis for x by adding
precisely m − n tight cut inequalities. If G is bipartite then we can remove
any vertex equality from our set and build up a cobasis from there by adding
precisely m− n + 1 tight cut inequalities.

By a result similar to the one found in [1] we may assume that the vertex
sets inducing the tight cut constraints that we are adding to form the cobasis
form a Laminar set. The maximum size of a Laminar set on n elements is
2n − 1. However any such Laminar set contains all the singletons, the set
consisting of all n elements, and the complement of a maximal proper subset.
These sets cannot induce cut sets in our cobasis. Hence the maximum number
of cuts which are in our cobasis is n−3. This type of counting argument was
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used in [2] when examining the extreme points of the Asymmetric Subtour
Elimination Problem polytope.

There is a way of compactly storing the Laminar set of tight cuts in our
cobasis by means of a labelled tree which we will call the Laminar Basis
Tree or LBT for short. The LBT has one node for each tight cut in our
Laminar set plus one extra root node. The node corresponding to a set S
in our Laminar set will be labelled with the set of vertices of Gx which are
in S but not in any proper subset of S in the Laminar set. The root node
will be labelled with the set of all vertices of Gx that are in no set in the
Laminar set. Two nodes will be adjacent if for the corresponding sets, one is
the minimal set which contains the other. The root node will be adjacent to
all the sets which are not contained in any other. As an example, Figure 1
shows a Laminar set and Figure 2 shows the corresponding Laminar Basis
Tree.
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Figure 1: A Laminar Set

B

D E F

C

A

I

H J K

G

M

L

N

Figure 2: The LBT

Notice now, that if we take a maximal subset in our Laminar set and
replace it with its complement, we get another Laminar set which is also a
cobasis (along with the tight edge inequalities and the vertex equalities) for
x. This occurs because our new Laminar set induces the exact same cuts
as the old one. In fact, the constraints in the cobasis are exactly the same.
For example, if we take the Laminar set in Figure 1 and we replace A with
A we get the Laminar set shown in Figure 3 whereas Figure 4 shows the
corresponding Laminar Basis Tree.

Compare the Laminar Basis Trees in Figure 2 and Figure 4. They are
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Figure 3: A new Laminar Set
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Figure 4: The new LBT

identical, the only difference being which node is the root. By repeating this
process of replacing a maximal subset in the Laminar set with its comple-
ment, we can make any node the root in the corresponding Laminar Basis
Tree. However, these changes to the Laminar set do not actually change the
constraints in the cobasis. Hence, for a given cobasis, we can construct an
LBT which we will consider to be unrooted. We now proceed with some
properties of LBT’s.

Proposition 3. Let T be a Laminar Basis Tree for a support graph with n
vertices and let n1 and n2 denote the numbers of nodes of T of degree 1 and
2 respectively. Then

1. T has at most n− 2 nodes,

2. the total number of labels on the nodes of T is n,

3. every node of T of degree 1 must contain at least two labels,

4. every node of T of degree 2 must contain at least one label, and

5. 2n1 + n2 ≤ n.
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Proof. As noted above, the number of tight cuts in our Laminar set contained
in the cobasis is at most n − 2. Since the number of nodes in the LBT is
the same as the number of subsets in the corresponding Laminar set, T has
at most n − 2 nodes. Secondly, since every label corresponds to a distinct
vertex in the support graph, there are exactly n labels. Thirdly, any node
of T of degree 1 is a subset in the corresponding Laminar set and hence,
corresponds to a cut constraint. Any subset inducing a cut constraint must
have at least two vertices and thus the corresponding node must have at least
two labels. Fourthly, any node of T of degree 2 (we may assume that this
node is not the root, since we can easily change the root as described above)
corresponds to a subset in the laminar set which contains a single maximal
proper subset. Since these subsets are different, there must be at least one
label on the node. Lastly, since each node of T of degree 1 must have at least
two labels, each node of degree 2 must have at least one label, and the total
number of labels is n we have that 2n1 + n2 ≤ n.

Proposition 4. Let x be an SEP extreme point with support graph Gx and
let S be the set of labels corresponding to some node, v, of a Laminar Basis
Tree, T , for some cobasis of x. Then each component of Gx[S] is either a
tree or a 1-tree with an odd cycle. Futhermore Gx[S] has at most degT (v)
components.

Proof. No tight cut in our cobasis contains an edge of Gx[S]. Consider reduc-
ing the right hand sides of the vertex equalities for the vertices of S by the
total flow, in x, on edges of δ(S) incident to each vertex. Hence, the x-values
assigned to the edges of a component of Gx[S] are completely determined by
the tight edge inequalities of Gx[S] and these new vertex equalities of Gx[S].
Thus, by a similar argument as in Corollary 2, the component must be a tree
or a 1-tree with an odd cycle.

Now let W denote the tight set of x corresponding to the node v in the
tree. Let t denote the number of tight sets in the cobasis properly contained
in W . Let c denote the number of components in Gx[S]. Since W is a tight
set and so are its t proper tight sets from the cobasis, the amount of flow
entering the components of Gx[S] is at most 2t + 2. However, since x is an
SEP extreme point, each component of Gx[S] needs at least 2 units of flow
entering it and there is no edge between any two such components. Hence
2c ≤ 2t + 2 or c ≤ t + 1. However, degT (v) = t + 1 so the result holds.
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Proposition 5. Let x be an SEP extreme point with support graph Gx. Then
for any tight set, S, Gx[S] is connected. If Gx[S] is not 2-vertex-connected
then for any cut vertex, v, of Gx[S], Gx[S]− v has exactly two components,
V1 and V2. Furthermore, V1 and V2 are tight sets and NGx(v) ⊆ V1 ∪ V2.

Proof. Suppose Gx[S] is not connected. Let V1, V2, . . . , Vk be the components
of Gx where k ≥ 2. Then

x(δ(S)) = x(δ(V1)) + x(δ(V2)) + . . . + x(δ(Vk))

≥ 2k

≥ 4

which contradicts the fact that S is a tight set of x. Therefore, Gx[S] must
be connected.

Now suppose Gx[S] has a cut vertex, v, and let V1, V2, . . . , Vk be the
components of Gx[S]−v where k ≥ 2. Then the amount of flow in x between
v and V1 ∪ V2 ∪ . . . ∪ Vk is the total amount of flow in x leaving each of
V1, V2, . . . , Vk minus the amount of flow leaving S. Thus

x(δ(v)) ≥ x(δ(V1)) + x(δ(V2)) + . . . + x(δ(Vk))− x(δ(S))

≥ 2k − 2

However, x(δ(v)) = 2 and k ≥ 2 so it must be that k = 2 and V1 and V2

are tight sets. Furthermore, we have that x(δ(v)) = x(δ(V1)) + x(δ(V2)) so
NGx(v) ⊆ V1 ∪ V2.

Theorem 6. Let x be an SEP extreme point with support graph Gx. For any
subset, S corresponding to a leaf node of an Laminar Basis Tree of x, Gx[S]
is

1. a 1-path of odd length,

2. an odd cycle, or

3. a lollipop graph containing an odd cycle as shown in Figure 5.
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1−path
1−path

Figure 5: A lollipop graph with an odd cycle

Proof. By Proposition 4 we know that every component of Gx[S] is either
a tree or a 1-tree with an odd cycle. However, S is also a tight set so by
Proposition 5, Gx[S] has exactly one component. If Gx[S] is a tree then
it cannot have a vertex of degree 3 or more since then the removal of this
vertex would create at least 3 components, contradicting Proposition 5. Thus
Gx[S] must be a path. Furthermore, every internal vertex of this path is a cut
vertex so it’s neighbours in Gx must also be in S. Hence, every edge of the
path has an x-value of 1. If Gx[S] is an even path with vertices v1, v2, . . . , vk

where k is odd then

x(δ(S)) =
k∑

i = 1
i odd

x(δ(vi))−
k−1∑

i = 2
i even

x(δ(vi)).

Thus the cut constraint induced by S is linearly dependent with the vertex
equalities and so they cannot be in a cobasis together. This contradicts the
fact that S is a tight set in our LBT. Therefore, Gx[S] must be an odd path.

Now suppose that Gx[S] is a 1-tree with an odd cycle. By removing the
edges of this unique cycle, we obtain a forest on the vertices of S. By the
same reasoning as above, each of the trees in the forest must be a path such
that the x-values of all the edges on the path are 1. Hence, the endpoint of
each path which is not on the cycle must contribute exactly one unit of flow
to x(δ(S)). Since S is a tight set, there can be at most two such paths. If
there are exactly two paths then there is no flow between a vertex on the
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cycle and S. Let u and v denote the two vertices on the odd cycle of Gx[S]
which have degree 3. Every other vertex on the cycle has degree 2 in Gx and
hence is incident to precisely two edges with x-values of 1. Since the cycle
in Gx[S] is odd, there must be at least one such vertex. Furthermore, v is
adjacent to such a vertex, call it w, and so xvw = 1. But v is also incident
to an edge on the two paths described above which has an x-value of 1. But
x(δ(v)) = 2 so v has degee 2 in Gx[S] which is a contradiction. Therefore,
by removing the edges of the cycle, we get at most one path. Hence, Gx[S]
is either an odd cycle or a lollipop graph with an odd cycle. If Gx[S] is a
lollipop graph, let v be its unique vertex of degree 3. By the same reasoning
as above, every other vertex of the cycle is incident to exactly two edges
with x-values of 1 and so Gx must be exactly a lollipop graph as depicted in
Figure 5.

Corollary 7. Let x be an SEP extreme point with support graph Gx. There
is a cobasis for x such that for any subset, S, corresponding to a leaf node of
the Laminar Basis Tree of x, Gx[S] is either a single edge or an odd cycle.

Proof. If Gx[S] is the lollipop graph shown in Figure 5 then let v be the
unique vertex of degree 3. Let V1 and V2 be the components of Gx[S] − v.
Then

x(δ(S)) = x(δ(V1)) + x(δ(V2))− x(δ(v)).

Hence, we can replace S in the cobasis with V1 and V2. Only one of these
sets is needed in the cobasis and Gx[V1] and Gx[V2] are paths. As noted in
Theorem 6, the path that is added to the cobasis in place of S must be an
odd path. Furthermore, since S is a minimal set in our Laminar set and both
V1 and V2 are properly contained in S, replacing S with either V1 or V2 will
result in another Laminar cobasis. We continue in this way until, for any
subset, S, corresponding to a leaf node of the current LBT, Gx[S] is either
an odd cycle or an odd path.

If Gx[S] is an odd path with vertices v1, v2, . . . , vk then notice that

x(δ(S)) = x(δ({v1, v2}))−
k−1∑

i = 3
i odd

x(δ(vi)) +
k∑

i = 4
i even

x(δ(vi)).
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Thus we can replace S with {v1, v2} in our cobasis and obtain a new Laminar
Basis. We continue in this way until, for any subset, S, corresponding to a
leaf node of the current LBT, Gx[S] is either an odd cycle or a single edge.

For any graph H let κ(H) denote the number of components of H.

Theorem 8. Let x be an SEP extreme point with support graph Gx. There
is a cobasis for x such that all the tight cut constraints in the cobasis form a
Laminar set and for each cut constraint x(δ(S)) = 2 in the cobasis, Gx[S] is
1-tough.

Proof. Let B be the laminar set of tight sets in our cobasis for x. If Gx[S] is
not 1-tough for every S ∈ B then choose S ∈ B where S is a tight set such
that Gx[S] is not 1-tough and S is of minimum cardinality with respect to
this property. Hence, let T ⊂ S be such that |T | < κ(Gx[S] − T ) and let
V1, . . . , Vk be the components of Gx[S]− T . Notice that since κ(Gx[S]− T )
is integer,

|T |+ 1 ≤ κ(Gx[S]− T ).

Now,

x(δ(T )) + x(δ(S)) =
k∑

i=1

x(δ(Vi)) + 2x(T, S)

but S is a tight set so

x(δ(T )) + 2 =
k∑

i=1

x(δ(Vi)) + 2x(T, S).

In addition, x(δ(Vi)) ≥ 2 for all 1 ≤ i ≤ k and hence

x(δ(T )) + 2 ≥ 2k + 2x(T, S).

However, x(δ(T )) ≤ 2|T | so

2|T |+ 2 ≥ 2k + 2x(T, S).

But k is the number of components of Gx[S]−T and thus k = κ(Gx[S]−T ),
hence

|T |+ 1 ≥ κ(Gx[S]− T ) + x(T, S).

However, from above, |T |+ 1 ≤ κ(Gx[S]− T ) and so we must have that
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• |T |+ 1 = κ(Gx[S]− T ),

• x(T, S) = 0,

• x(δ(T )) = 2|T | and hence T is an independent set of Gx, and

• Vi is a tight set for each 1 ≤ i ≤ k.

Thus,

x(δ(S)) =
k∑

i=1

x(δ(Vi))−
∑
v∈T

x(δ(v))

where V1, . . . , Vk are tight sets. Hence we can extend B\{S} to a cobasis of
x by adding one of the tight sets among V1, . . . , Vk to obtain a new cobasis.

Suppose, for a contradiction, that there exists some R ∈ B such that
R ⊂ S and R crosses some Vi where 1 ≤ i ≤ k. Assumer, without loss
of generality, that R crosses V1. Then R must intersect T since otherwise,
R ⊂ S\T and R contains vertices from at least two different components of
Gx[S\T ]. Thus Gx[R] is not connected, contradicting the fact that R is a
tight set.

From [1] we have that if U and W are tight sets which cross then U −W
and W−U are also tight sets where x(U−W, U∩W ) = x(W−U,U∩W ) = 1.
Hence if R crosses l components of Gx[S] − T then x(δ(R)) ≥ l. However,
since R is a tight set, it must be that l ≤ 2.

Case 1: l = 2

Suppose, without loss of generality, that R also crosses V2 and let r be the
number of components of Gx[S]−T which intersect R. From the above note,
we see that if l = 2 then x(R, V1−R) = 1 and x(R, V2−R) = 1. Furthermore,
from [1] we get that x(V1 −R,R− V1) = 0 and x(V2 −R,R− V2) = 0. Thus
the edges of δ(R) are edges whose endpoints are either both in V1 or both in
V2. Since V1 −R and V2 −R are tight sets, we deduce that

x(δ(R ∩ T )) = 2(r − 2) + 2

2|R ∩ T | = 2r − 2

|R ∩ T | = r − 1.
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But Gx[R]− (R ∩ T ) has r components, and by the minimality of S, Gx[R]
must be 1-tough so |R ∩ T | ≥ r which is a contradiction. This completes
Case 1.

Case 2: l = 1

Suppose, without loss of generality, that R intersects V1, . . . , Vr. Then

x(δ(R ∩ T )) = x(R ∩ T, V1) +
r∑

i=2

x(R ∩ T, Vi) +
k∑

i=r+1

x(R ∩ T, Vi)

= 1
r∑

i=2

(x(δ(Vi))− x(Vi, S)− x(Vi, T −R)) +
k∑

i=r+1

x(R ∩ T, Vi)

= 1
r∑

i=2

(2− x(Vi, S)− x(Vi, T −R)) +
k∑

i=r+1

x(R ∩ T, Vi)

= 1 + 2(r − 1)−
r∑

i=2

x(Vi, S)−
r∑

i=2

x(Vi, T −R)) +
k∑

i=r+1

x(R ∩ T, Vi).

But

x(δ(R)) = x(R ∩ V1, V1 −R) +
r∑

i=2

x(Vi, S)

+
r∑

i=2

x(Vi, T −R)) +
k∑

i=r+1

x(R ∩ T, Vi)

2 = 1 +
r∑

i=2

x(Vi, S) +
r∑

i=2

x(Vi, T −R))

+
k∑

i=r+1

x(R ∩ T, Vi)

−
r∑

i=2

x(Vi, S)−
r∑

i=2

x(Vi, T −R)) = −1 +
k∑

i=r+1

x(R ∩ T, Vi)

Hence,

x(δ(R ∩ T )) = 1 + 2(r − 1)− 1 +
k∑

i=r+1

x(R ∩ T, Vi) +
k∑

i=r+1

x(R ∩ T, Vi)
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= 2r − 2 + 2
k∑

i=r+1

x(R ∩ T, Vi)

2|R ∩ T | = 2r − 2 + 2
k∑

i=r+1

x(R ∩ T, Vi)

|R ∩ T | = r − 1 +
k∑

i=r+1

x(R ∩ T, Vi)

However, by the minimality of S, Gx[R] is 1-tough. But Gx[R]− (R∩T ) has
r components so |R ∩ T | ≥ r. Thus,

k∑
i=r+1

x(R ∩ T, Vi) ≥ 1.

But,

x(δ(R)) ≥ x(R ∩ V1, V1 −R) +
k∑

i=r+1

x(R ∩ T, Vi)

2 ≥ 1 +
k∑

i=r+1

x(R ∩ T, Vi)

k∑
i=r+1

x(R ∩ T, Vi) ≤ 1.

Therefore,
k∑

i=r+1

x(R ∩ T, Vi) = 1.

As a result,
∑r

i=2 x(Vi, S) = 0 and
∑r

i=2 x(Vi, T −R)) = 0. Thus,

x(δ(R)) = x(δ(V1 −R)) +
∑

v∈R∩T

x(δ(v))−
r∑

i=1

x(δ(Vi)).

Therefore, we know that (B\{S, R}) ∪ {V1 − R, V1, . . . , Vk} contains a
cobasis for x. This completes Case 2.
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We will proceed in this way, replacing each R ∈ B where R ⊂ S and R
crosses Vi for some 1 ≤ i ≤ k with Vi −R. Once we have completed all these
replacements, we may have two tight sets of our set of tight sets which cross.
However these two tight sets must be contained in some Vi where 1 ≤ i ≤ k.
We can use the uncrossing theorem from [1] to obtain a new set of tight sets
where these tight sets no longer cross.

Notice that if R does not cross any Vi and R is not a subset of some Vi then
it is never changed and remains in the current set of tight sets. Furthermore,
since all the replaced sets are contained in some Vi, R does not cross any of
those sets either. Thus we have a Laminar set of tight sets. All that is left
to do is remove some of the tight sets to obtain a cobasis. We will remove S
and choose to remove only tight sets that are subsets of S to obtain a new
cobasis B′.

If the minimum cardinality tight set of B′ which induces a subgraph which
is not 1-tough is smaller than |S| then we know that this tight set is a subset
of S. We will repeat this entire process. Eventually we will arrive at a
Laminar Basis which has fewer tight sets which induce subgraphs which are
not 1-tough than B. By again repeating, we will arrive at a cobasis of x which
is Laminar and for which the tight sets all induce 1-tough subgraphs.
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