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Abstract

Given a complete graph on n vertices with nonnegative edge costs, the 2-edge connected
subgraph problem (2EC) is that of finding a 2-edge connected multi-subgraph of minimum
cost. The linear programming relaxation of this problem (2ECLP ) provides a lower bound
for 2EC, and its study provides a promising direction for finding improved solutions for
2EC. It has been conjectured that the integrality gap α2EC between 2EC and 2ECLP is 4

3
.

Note that this is closely related to the well-known conjecture in combinatorial optimization
that says that the integrality gap αTSP4 of the linear programming relaxation of the metric
Travelling Salesman problem is 4

3
. It can be shown that α2EC ≤ αTSP4, and thus if the

conjecture for α2EC is true it would give support to the conjecture for αTSP4.
Currently not much is known about the integrality gap α2EC, except that it lies between

6

5
and 3

2
. In this paper we strive to find the exact value for α2EC for small values of n. This

is difficult due to the exponential size of the data involved. In this paper we describe how
we were able to overcome such difficulties and obtain the exact integrality gap for all values
of n up to 10, and a tight lower bound for this gap for 11 ≤ n ≤ 14.

1 Introduction

Let c ∈ RE , c 6= 0 be a set of costs assigned to the edges of the complete graph Kn = (V,E) on
n vertices. The 2-edge connected Subgraph Problem (2EC) is that of finding a 2-edge connected
spanning multi-subgraph of Kn which is of minimum cost with respect to c. This problem is an
important network design problem with many applications, including the design of communica-
tion networks that can survive the loss of a link.

It is known that 2EC is NP-hard , even in the metric case, i.e. when the costs c satisfy the
triangle inequalities cij +cjk ≥ cik for all distinct triples i, j, k ∈ V . One method used for finding
reasonably good solutions is to look for a k-approximation algorithm for the problem, i.e. try to
find a heuristic method for 2EC such that the solution found is guaranteed to be of cost at most
k times the optimal solution cost for some constant k ≥ 1. Currently the best k-approximation
algorithms known for the 2EC have k = 2 ([8], [7]), and if the costs c are metric then there is a
3
2 -approximation algorithm known ([5]).

We can formulate 2EC as an integer linear program (ILP). For any edge set F ⊆ E and
x ∈ RE , let x(F ) denote the sum

∑
e∈F xe. For any vertex set W ⊂ V , let δ(W ) denote

{uv ∈ E : u ∈ W,v /∈ W}. Then 2EC can be formulated as an ILP as follows:

∗This research was partially supported by grants from the Natural Sciences and Engineering Research Council

of Canada.

1



minimize cx (1)

subject to: x(δ(S)) ≥ 2 for all ∅ ⊂ S ⊂ V, (2)

xe ≥ 0 for all e ∈ E, (3)

x integer (4)

where xe represents the number of copies of edge e in the 2EC solution. The constraints (2)
are known as the subtour elimination constraints and the constraints (3) are known as the non-

negativity constraints. The linear programming relaxation of 2EC, which we will denote by
2ECLP , is obtained by dropping the integrality condition in the above ILP formulation. We use
opt(2EC) and opt(2ECLP ) to denote the optimal values of 2EC and 2ECLP respectively.

We are interested in the integrality gap for 2ECLP , denoted by α2EC, which is the worst-case
ratio between 2EC and 2ECLP , i.e.

α2EC = max
c ≥ 0
c 6= 0

opt(2EC)

opt(2ECLP )
.

This integrality gap gives one measure of the quality of the lower bound provided by 2ECLP for
2EC. Moreover, a constructive proof of α2EC = k would provide a k-approximation algorithm
for 2EC.

It can be shown that α2EC ≤ 3/2 (see (9) in Section 2). However no examples are known
for which this ratio comes close to this value. In [3], Carr and Ravi study α2EC. They state
the following conjecture, and give a result that gives some support for it:

Conjecture 1 The integrality gap α2EC for 2ECLP is 4
3 .

Note that this conjecture is related to a well-known conjecture in combinatorial optimization
for another closely related problem. Given the complete graph Kn = (V,E) on n vertices with
nonnegative edge costs c ∈ RE , c 6= 0, the Symmetric Travelling Salesman Problem (henceforth
STSP ) is to find a Hamiltonian cycle (or tour) in Kn of minimum cost. When the costs satisfy
the triangle inequality the problem is called the metric STSP .

An ILP formulation for the STSP is obtained from the ILP formulation (1) for 2EC by
setting the subtour elimination constraints (2) to equality for all S ⊂ V consisting of a single
vertex, i.e.

x(δ(v)) = 2 for all v ∈ V. (5)

These constraints are called the degree constraints for the STSP . If we drop the integer re-
quirement in this ILP we obtain the linear programming relaxation of the STSP called the
Subtour Elimination Problem (SEP ). We use opt(TSP ) and opt(SEP ) to denote the optimal
solution values for the STSP and SEP respectively. The associated SEP polytope is the set of
all vectors x satisfying the constraints of the SEP , i.e. is {x ∈ RE : x satisfies (2), (3), (5)}.

We denote the integrality gap for between STSP and SEP in the metric case by αTSP4.
It is known that for the metric STSP , αTSP4 is at most 3

2 (see Shmoys and Williamson [10],
Wolsey [12]), however no example for which this ratio comes close to 3

2 has yet been found. In
fact, a well-known conjecture states the following:
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Conjecture 2 For the metric STSP , the integrality gap αTSP4 for SEP is 4
3 .

It can be shown (see (10) in Section (2)) that α2EC ≤ αTSP4. Thus Conjecture 1 and
Conjecture 2 are closely related, and if Conjecture 1 is indeed true, it would provide some
evidence for the truth of the more famous Conjecture 2, and this is part of our motivation for
studying α2EC.

Note that if Conjecture 2 is true, then it is best possible, as there exists a family of cost
functions for which the asymptotic ratio between opt(TSP ) and opt(SEP ) is 4

3 . However,
Conjecture 1 for α2EC is not known to be best possible. In [3], Carr and Ravi mention the
existence of a family of cost functions for which the integrality gap ratio reaches 6

5 asymptotically.
Currently no example for which the integrality gap ratio is larger than 6

5 is known. Below we
describe a family of cost functions different from that of Ravi and Carr for which the ratio also
reaches 6

5 asymptotically. However this family has the advantage over their family in that the
ratio for the integrality gap is bigger for any particular value of n, and this will be useful for
discussions later in the paper.

Consider the family of cost functions shown in Figure 1, where the numbers shown are the
edge costs, and edges with cost 0 are not shown, and the ”gadget” pattern is repeated k times.
For this family, it can be shown that

opt(2EC)

opt(2ECLP )
=

6k + 1

5k + 1
,

which tends to 6
5 as k → ∞.
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Figure 1: An example for which α2EC = 6
5 .

In this paper we attempt to shed some light on the value of α2EC by examining the problem
of finding the exact integrality gap for fixed values of n when n is small. Let α2ECn, 2ECn and
2ECLP

n represent the α2EC, 2EC and 2ECLP for problems on n vertices (and similiarly for
STSP ). Then we find the value of α2ECn exactly for all values n up to 10, and a tight lower
bound for this gap for 11 ≤ n ≤ 14. These results, which are reported in Section 3, support
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Conjecture 1, and in fact lead us to propose a new conjecture in Section 3. Note that many
models for the problem of finding the exact integrality gap for 2EC are too complex and too
large to be practical to solve. However, in [1], Benoit and Boyd describe a way to overcome this

for finding the exact integrality gap αTSP4
n on problems with n vertices, and we will attempt

to use a simliar method here. In the next section we will show how to reformulate the problem
of finding α2ECn in order to make it possible to use the method described in [1].

2 Reformulating the Integrality Gap

Given a nonnegative cost function c ∈ RE for the complete graph Kn = (V,E) on n vertices,
the metric completion c′ of c is the metric cost function obtained from c by replacing cij by the
cost of a shortest path connecting vertices i and j for every edge ij ∈ E. Then as noted by Carr
and Ravi in [3], without loss of generality we can replace c by its metric completion c′ for 2ECn.
This follows from the fact that if any optimal solution for 2ECn uses an edge ij for which cij

is greater than the cost of of a shortest path connecting vertices i and j, then since we allow
multiple edges in our 2EC solutions, we could simply replace edge ij with the edges of that
shortest path in the solution without increasing the solution value. A similar result holds for
2ECLP . Hence without loss of generality, in our study of α2ECn we can restrict our attention
to only those sets of nonnegative costs that are metric. We use the notation α2EC4 for this
integrality gap when restricted to metric cost functions, i.e.

α2EC4
n = max

c ≥ 0
c is metric

c 6= 0

opt(2ECn)

opt(2ECLP
n )

, (6)

we thus have from the above discussion that

α2ECn = α2EC4
n . (7)

Another very useful result, also mentioned in [3] and shown in [11], is that for metric costs,
there exists an optimal solution for 2ECLP which is also feasible and therefore optimal for SEP .
This also follows from a more general result of Goemans and Bertsimas in [6]. Thus we have

α2EC4
n = max

c ≥ 0
c is metric

c 6= 0

opt(2ECn)

opt(SEPn)
. (8)

Note that this implies

α2EC ≤
3

2
, (9)

since

α2EC = α2EC4 = max
c ≥ 0

c is metric
c 6= 0

opt(2EC)

opt(SEP )
≤ max

c ≥ 0
c is metric

c 6= 0

opt(TSP )

opt(SEP )
= αTSP4 ≤

3

2
. (10)
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The reformulation (8) is extremely useful since the SEP has been well-studied. Benoit and
Boyd [1] generated all of the non-isomorphic extreme points of the SEP polytope on n vertices

for all 3 ≤ n ≤ 10, and were able to find the exact integrality gap for αTSP4
n for n ≤ 10 using

these extreme points. The above reformulation for α2ECn allows us to make use of these results
and to use a similar method to the one outlined in [1] to compute α2ECn for small values of n.

Let c 6= 0 be some nonnegative metric cost vectorand let x an optimal solution of 2ECn,
i.e. cx = opt(2ECn). It is easy to show that if cx = 0 then c = 0, hence cx > 0. If we
divide all the edges costs ce, e ∈ E by cx then the new costs are also metric, and the ratio
opt(2ECn)/opt(SEPn) is still the same. Moreover, the new value of opt(2ECn) will be 1 with

this new cost function. So to find α2EC4
n , it is enough to only consider metric cost functions c

for which opt(2ECn) = 1. Thus

α2EC4
n = max

c ≥ 0
c is metric

opt(2ECn) = 1

1

opt(SEPn)
,

or
1

α2EC4
n

= min
c ≥ 0

c is metric
opt(2ECn) = 1

opt(SEPn).

Now suppose we have an exhaustive list, {x1, . . . , xk}, of the extreme points of the SEP
polytope on n vertices. Then we know that for any cost vextor, c, there exists some 1 ≤ i ≤ k
such that xi is an optimal solution of SEPn. Thus we can compute

opt(SEPn) = min1≤i≤kcxi.

Hence
1

α2EC4
n

= min
1≤i≤k

min
c ≥ 0

c is metric
opt(2ECn) = 1

c is optimal for SEP w.r.t. xi

cxi.

The condition that c is optimal for SEP with respect to a given extreme point xi can be
easily written as a set of linear constraints - namely the complementary slackness constraints.
Similarily, c ≥ 0 and c is metric are linear constraints. Since the xi are given, we almost have
a finite list of linear program whose optimal value is the reciprocal of the integrality gap. We
just need to look a bit closer at the constraint opt(2ECn) = 1. Thus we will explore some of the
structural properties of the optimal solutions to 2ECn.

To begin, let x be a set of nonnegative integer values assigned to the edges of the complete
graph on n vertices. We construct the support multigraph, Gx of x by starting with n vertices
and for each pair of vertices, u and v, Gx contains exactly xuv copies of the edge uv. Notice
too, that given a loopless multigraph G, we can construct a unique set of nonnegative integer
values, call it x, where xe is defined to be the number of copies of the edge e present in G such
that G = Gx.

Lemma 3 For every n ≥ 3 and every nonnegative metric cost vector c there is an optimal

solution of 2ECn whose support multigraph is simple and minimial with respect to the number

of edges.
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Proof Let x be an optimal solution of 2ECn with support multigraph Gx. If Gx is not minimal
with respect to the number of edges then let H ⊂ G such that H is two-edge-connected and is
also minimal with respect to the number of edges. Let y be such that Gy = H so y is a feasible
solution to 2ECn and y ≤ x. Thus, since c is nonnegative, cy ≤ cx. However, x is an optimal
solution to 2ECn so it must be that cy = cx so y is also an optimal solution to 2ECn.

Hence we may suppose that Gx is minimal with respect to the number of edges. Suppose
that Gx is not simple however. Thus Gx has multiple edges and so let e be an edge such that
xe ≥ 2. If, for every cut δ(S) which contains e, we have that x(δ(S)) ≥ 3 then we can remove
one of the copies of e from Gx and remain two-edge-connected. This contradicts the fact that
Gx is edge-minimal. Thus there exists some ∅ ⊂ S ⊂ V such that e ∈ δ(S) and x(δ(S)) = 2.

As a consequence, we have that xe ≤ 2 and hence xe = 2 so δ(S) = {e}. Let e = uv where
u ∈ S and v ∈ S. If we remove the two copies of e from Gx we obtain a graph with exactly
two components, with vertex sets S and S respectively. Furthermore, consider any ∅ ⊂ A ⊂ S.
If u /∈ A then δGx[S](A) = δGx

(A). If u ∈ A then δGx[S](A) = δGx
(A ∪ S). Thus in either

case, if we restrict x in a natural way to Gx[S] then x(δGx[S](A)) ≥ 2 and hence Gx[S] is

two-edge-connected. By symmetry, Gx[S] is also two-edge-connected.
Now, since n ≥ 3, either u must have a neighbour other than v in Gx or v has a neighbour

other than u in Gx. Assume, without loss of generality, that u has a neighbour w 6= v in Gx.
Hence w ∈ S and let y be the nonnegative integer vector such that Gy is obtained by removing
a copy of uv and a copy of uw from Gx and adding the edge vw. Since vw is not an edge of Gx,
vw is a single edge of Gy and hence Gy has fewer parallel edges than Gx. Furthermore, since c
is metric,

cy = cx − cuv − cuw + cvw

≤ cx.

Choose any ∅ ⊂ A ⊂ V . If uv, uw /∈ δGx
(A) then y(δGy

(A)) ≥ x(δGx
(A)). If uv ∈ δGx

(A) and
uw /∈ δGx

(A) then vw ∈ δGy
(A) and hence y(δGy

(A)) = x(δGx
(A)). Similarly, if uw ∈ δGx

(A)
and uv /∈ δGx

(A) then vw ∈ δGy
(A) and hence y(δGy

(A)) = x(δGx
(A)). As a result, in the above

three cases we have that y(δGy
(A)) ≥ 2. The only remaining possibility is that uv, uw ∈ δGx

(A)
and hence vw /∈ δGy

(A). In this case, y(δGy
(A)) = x(δGx

(A)) − 2. Assume that u ∈ A
(since otherwise, we can replace A with A) so v,w /∈ A. Thus ∅ ⊂ A ∩ S ⊂ S and hence
x(δGx[S](A ∩ S)) ≥ 2. However, {uv} ∪ δGx[S](A ∩ S) ⊆ δGx

(A), and hence

y(δGy
(A)) = x(δGx

(A)) − 2

≥ xuv + x(δGx[S](A ∩ S)) − 2

≥ 2 + 2 − 2

= 2.

Therefore, Gy is two-edge-connected and as a result, y is a feasible solution to 2ECn. However,
as noted above, cy ≤ cx so it must be that cy = cx and so y is an optimal solution to 2ECn.

If Gy is not edge-minimal, we have seen above how to generate a new optimal solution which
is. Furthermore, this new edge-minimal solution will not introduce any new parallel edges. If
parallel edges remain, we now have a way of generating a new solution without them. Thus by
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repeated application of the above arguments, we can obtain an optimal solution of 2ECn whose
support multigraph is edge-minimal and simple.

2

Since Lemma 3 tells us that there are always optimal solutions which are simple, the support
multigraph of any such solution is in fact a graph. Thus, we will refer to the support graph of
such solutions. It turns out that we are guaranteed the existence of an even smaller class of
optimal solutions. We describe this in the next lemma.

Lemma 4 For every n ≥ 3 and every nonnegative metric cost vector c there is an optimal

solution of 2ECn whose support graph is simple, minimal with respect to the number of edges,

and two-vertex-connected.

Proof From Lemma 3, we know that 2ECn has optimal solutions whose support multigraphs
are simple. Among all such solutions, let x be one which has a support graph which has the
minimum number of edges. As a consequence, such a support graph is also edge-minimal.

Suppose, for a contradiction, that Gx has a cut-vertex, v. Thus Gx − v has at least two
components so let A,B ⊂ V be the vertex-sets of distinct components of Gx − v. Since Gx is
two-edge-connected, v is adjacent in Gx to some vertex u ∈ A and some vertex w ∈ B. Let y
be the nonnegative integer vector associated with the support graph Gy obtained from Gx by
removing the edges uv and vw and adding the edge uw.

Consider any ∅ ⊂ S ⊂ A. Then δGx[A](S) = δGx
(V \S). However Gx is two-edge-connected

and simple so |δGx
(V \S)| ≥ 2. Thus |δGx[A](S)| ≥ 2 so Gx[A] is two-edge-connected. By

symmetry, Gx[B] is also two-edge-connected.
Now let ∅ ⊂ S ⊂ V . If uv /∈ δGx

(S), or vw /∈ δGx
(S), or uw ∈ δGy

(S) then we have that
y(δGy

(S)) ≥ x(δGx
(S)) ≥ 2. Hence assume that uv, vw ∈ δGx

(S) and uw /∈ δGy
(S). Without

loss of generality, we may assume that v ∈ S and u,w ∈ S. Thus S ∩ A ⊂ A and S ∩B ⊂ B. If
S∩A 6= ∅ then {uv, vw}∪δGx [A](S∩A) ⊆ δGx

(S) and thus x(δGx
(S)) ≥ 4. Similarly, if S∩B 6= ∅

then we also have that x(δGx
(S)) ≥ 4. Lastly if S ∩ (A∪B) = ∅ then δGx

(A)∪ δGx
(B) ⊆ δGx

(S)
where δGx

(A) ∩ δGx
(B) = ∅. Hence x(δGx

(S)) ≥ 4. Now, y(δGy
(S)) = x(δGx

(S)) − 2 ≥ 2.
Therefore, in all cases, Gy is two edge-connected.

However, since Gx[A] and Gx[B] are components of Gx−v, it must be that uw is not an edge
of Gx. Hence Gy is also simple. Furthermore, since c is metric,

cy = cx − cuv − cvw + cuw

≤ cx.

since x is an optimal solution so it must be that cy = cx and so y is an optimal solution of
2ECn. Note though that Gy has strictly fewer edges than Gx. This is a contradiction since Gx

was assumed to have the minimum number of edges among all solutions with simple support
multigraphs. Therefore Gx cannot have any cut-vertices and hence Gx is two-vertex-connected.

2

Now every two-vertex-connected graph is also two-edge-connected, so Lemma 4 shows that
if n ≥ 3 and c is a nonnegative metric cost vector then any minimum cost two-vertex-connected
subgraph of Kn with respect to c has a cost of 2ECn. A theorem by Monma, Munson, and
Pulleyblank [9] further elaborates on the structure of these optimal solutions.
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Theorem 5 For any nonnegative metric cost vector c there exists a minimum cost two-vertex-

connected graph G with respect to c such that

1. every vertex of G has degree two or three,

2. G is minimally two-edge-connected, and

3. deleting any pair of edges in G leaves a bridge in one of the resulting connected components

of G.

Hence we know that for every n ≥ 3 and any nonnegative metric cost vector c, that there
exists an optimal solution to 2ECn whose support multigraph is simple, two-vertex-connected,
and has the properties described in Theorem 5. But the authors of [9] have more to say - namely
that any such optimal solution is either a cycle or contains the graph shown in Figure 2 as a
vertex-induced subgraph.

Figure 2: Graph where dashed lines represent paths containing at least one edge each.

Let Mn denote the set of all spanning subgraphs, M , of Kn for which

• M is two vertex-connected,

• every vertex of M has degree two or three,

• M is minimally two-edge-connected, and

• deleting any pair of edges in M leaves a bridge in one of the resulting connected components
of M

according to the conditions of Theorem 5. For our current definition of α4
n we have the condition

that opt(2ECn) = 1. However, from Theorem 5 we know that there is some M ∈ Mn which is
optimal. Suppose then that we consider the constraint

cM ≥ 1 for all M ∈ Mn.

Clearly this constraint is implied by the former. However, suppose that cM > 1 for all M ∈ Mn.
Since Mn is finite, there must be some M? ∈ Mn such that 1 < cM? ≤ cM for every M ∈ Mn.
Let c′ = 1

cM? c. Since cM? > 1, for each 1 ≤ i ≤ k, c′xi = 1
cM? cxi < cxi. Furthermore,

c′ is nonnegative, metric, and is optimal with respect to xi. This contradicts the minimality
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of cxi. Therefore the constraints cM ≥ 1 for all M ∈ Mn are equivalent to the constraint
opt(2ECn) = 1 in our definition of α2EC4

n . Moreover, we can generate all the graphs in Mn

using methods developed by Boyd and Elliott-Magwood in [2]. Hence we can reformulate our
integrality gap as

1

α2EC4
n

= min
1≤i≤k

min
c ≥ 0

c is metric
cM ≥ 1 for all M ∈ Mn

c is optimal for SEP w.r.t. xi

cxi.

Now the constraints c ≥ 0, c is metric, cM ≥ 1 for all M ∈ Mn, and c is optimal with respect
to xi are all linear constraints. Furthermore, there are finitely many of them. Thus,

min
c ≥ 0

c is metric
cM ≥ 1 for all M ∈ Mn

c is optimal for SEP w.r.t. xi

cxi (11)

is a linear program. Therefore, in order to compute α2EC4
n we simply need to solve k linear

programs, one for each extreme point, xi of SEPn.
Let Tn represent all incidence vectors of tours for STSPn. In [1], Benoit and Boyd solved the

following linear programs very similar to (11) for each extreme point, xi of the SEPn polytope:

min
c ≥ 0

c is metric
cT ≥ 1 for all T ∈ Tn

c is optimal for SEP w.r.t. xi

cxi. (12)

They then used their results to find the exact integrality gap αTSP4
n for 6 ≤ n ≤ 10 (note that

for n ≤ 5, α2ECn = αTSP4
n = 1). Surprisingly, for each value of n, there was a unique extreme

point of the SEP polytope that gave the maximum ratio αTSP4
n .

The data for the optimal solution values for the linear programs (12) was extremely useful
to us in the following way. Since Tn ⊂ Mn and all other constraints for (12) and (11) are the
same, it follows that for each SEP polytope extreme point xi, the optimal solution value, call it
opt2ECi, for (11) is greater than or equal to the optimal solution value, call it optTSPi, for (12).
So instead of solving the linear program (11) for every extreme point xi for the SEPn polytope,

we first solve it for the unique extreme point, say xk, that gave the integrality gap αTSP4
n . We

then only need to solve linear program (11) for extreme points xi for which optTSPi < opt2ECk

when looking for the minimum opt2ECi value, since for all other extreme points xi we have
opt2ECi ≥ optTSPi ≥ opt2ECk. Using these ideas, we only had to solve linear program (11)
for one extreme point for 6 ≤ n ≤ 9, and for two extreme points for n = 10.

3 Results

Using the method described in Section (2), we were able to find the exact value of α2ECn =

α2EC4
n for 6 ≤ n ≤ 10. The results are shown in Table 1. Column 2 contains the value of

α2ECn, which is clearly less than 4/3 for all n ≤ 10, supporting Conjecture 1. In Column 3 we

give the value of αTSP4
n for comparison.
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Table 1: Integrality gap results.

n α2ECn αTSP
4

n

6 10/9 10/9

7 9/8 9/8

8 8/7 8/7

9 7/6 7/6

10 7/6 20/17

It is interesting to note that we have α2ECn = αTSP4
n for 6 ≤ n ≤ 9, and there was the same

unique extreme point of the SEPn polytope that gave the integrality gap for both. However,
for n = 10, α2ECn was the same as for n = 9 and was bigger than αTSP4

n . Moreover, there
were two extreme points that gave this gap of 7

6 .
The extreme points x∗ of the SEP polytope which gave the maximum ratio for each value

of n for 2EC are shown in Figure 3, where x∗
e = 1 for solid edges e, x∗

e = 1
2 for dashed edges e,

and x∗
e = 0 for all the other edges. Note that the costs c which gave α2ECn are shown on the

edges, and for edges not shown the cost cij was the cost of a minimum cost i to j path using
the costs shown.
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Figure 3: Extreme points and costs which give α2ECn.

Although Benoit and Boyd [1] were not able to find all the extreme points for SEPn for
n ≥ 11 , they were able to find all the half-integer extreme points for 11 ≤ n ≤ 14, i.e. all those
extreme points x for which xe is 0, 1 or 1

2 . Note that the linear programs (11) that needed to be
solved for n ≥ 11 had millions of Mn constraints, and were too large to be solved directly using
CPLEX. This difficulty was easily overcome by adapting a cutting plane approach to handle
these constraints. Thus using the same method on the half-integer extreme points of the SEP
polytope, we were able to find the value of α2ECn for 11 ≤ n ≤ 14 when restricted to cost
functions c which are optimized at half-integer vertices. (Note that Carr and Ravi proved in [3]
that α2EC ≤ 4

3 under this restriction.) The results are shown in Table 2. Column 2 contains

10



the value of α2ECn. In Column 3 we give the value of αTSP4
n for the half integer extreme

points, once again for comparison.

Table 2: Integrality gap results for half-integer extreme
points.

n α2ECn αTSP
4

n

11 7/6 19/16

12 7/6 6/5

13 7/6 35/29

14 7/6 17/14

Note that although αTSP4
n continued to grow for the half-integer extreme points, α2ECn

remained stalled at 7
6 up to n = 14. However, we know it grows higher than 7

6 for n = 16,
since for k = 2 for the family of cost functions shown in Figure 1, we have n = 16, and
opt(2EC)/opt(SEP ) has value 13/11 > 7/6.

In Benoit and Boyd [1] there was a distinct pattern for the extreme points that gave αTSP4
n

and formed a family of cost functions for which the integrality gap ratio approached 4
3 asymp-

totically. We tried to find such a pattern for the extreme points that gave α2ECn, but all the
patterns we found led to a gap of at most 6

5 . Thus we would like to conclude this paper by
making the following strengthened conjecture for α2EC:

Conjecture 6 The integrality gap α2EC for 2ECLP is 6
5 .
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