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Abstract
In this paper we study the NP-hard problem of finding a minimum size 2-edge-connected spanning subgraph (henceforth 2EC)
in cubic and subcubic multigraphs. We present a new 5

4 -approximation algorithm for 2EC for subcubic bridgeless multigraphs,
improving upon the current best approximation ratio of 5

4 + ε. Our algorithm involves an elegant new method based on circulations
which we feel has potential to be more broadly applied. We also study the closely related integrality gap problem, i.e. the worst case
ratio between the integer linear program for 2EC and its linear programming relaxation, both theoretically and computationally.
We show this gap is at most 5

4 for subcubic bridgeless multigraphs, and is at most 9
8 for all subcubic bridgeless graphs with up to

16 nodes. Moreover, we present a family of graphs that demonstrate the integrality gap for 2EC is at least 8
7 , even when restricted

to subcubic bridgeless graphs. This represents an improvement over the previous best known bound of 9
8 .
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1. Introduction

Given an unweighted bridgeless multigraph G = (V, E), |V | = n, the minimum size 2-edge-connected spanning
subgraph problem (henceforth 2EC(G)) consists of finding a 2-edge-connected spanning subgraph H of G with the
minimum number of edges. Note that a 2-edge-connected (or bridgeless) graph G = (V, E) is one that remains
connected after the removal of any edge. In a solution for 2EC(G), multiple copies of an edge e ∈ E are not allowed
(and also not necessary).

The problem 2EC(G) is one of the most extensively studied problems in network design. It relates to the optimal
design of a network that can survive the loss of a link, and thus has many real world applications. However, it is
known to be NP-hard and also MAX SNP-hard even for subcubic graphs [1], where a graph is cubic if every node has
degree 3, and subcubic if every node has degree at most 3. Thus research has focused on finding good approximation
algorithms. Unfortunately, finding improved approximation algorithms seems to be difficult for the more general
weighted version of 2EC(G) where, as with the closely related travelling salesman problem (TSP), the best known
approximation ratio for metric weights has remained at 3

2 [2] without any improvement for over 30 years.
Given the difficulty of this problem, people have turned to the study of approximation algorithms for special cases,

which has proven to be a more successful approach for 2EC(G) than studying its more general weighted form. In such
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S.Boyd et al. / Discrete Applied Mathematics 00 (2014) 1–13 2

studies, not only improved results were obtained but also new innovative methods which may lead to more general
results.

In this paper we focus on the simplest form of 2EC(G) that still remains NP-hard, i.e. 2EC(G) for subcubic
graphs. In Section 2 we describe the framework for a new innovative method for designing approximation algorithms
for 2EC(G) based on circulations and the concept of obliged edges, i.e. edges that must be included in the final
solution. Similar types of circulations were used in [3] in the approximation of graph TSP, however the goal was quite
different in that context. In fact, to the best of our knowledge, circulations have not previously been used in the way
we describe to approximate 2EC(G). In Section 3 we develops a new heuristic method for the problem 2EC(G) for
bridgeless cubic graphs with obliged edges. In Section 4 we demonstrate the usefulness of this method by using it to
develop a new 5

4 -approximation algorithm for 2EC(G) on bridgeless subcubic multigraphs. This algorithm improves
upon the previous best approximation ratio of 5

4 + ε given by Csaba, Karpinski and Krysta [1] for 2EC(G) on such
graphs. We feel this algorithm not only provides a modest improvement in the approximation ratio, but also, and
perhaps more importantly, provides an improvement in the simplicity and elegance of the method and proof.

A related approach for finding approximated 2EC(G) solutions is to study the integrality gap α2EC(G), which is
the worst case ratio between the optimal value for 2EC(G) and the optimal value for its linear programming (hence-
forth LP) relaxation (see [2] for background). As a critical topic throughout this paper, we study α2EC(G) intensively.
There are two main reasons this is useful. First, the integrality gap itself serves as an indicator of the quality of the
lower bound given by the LP relaxation. This is important for methods, such as branch and bound and approxima-
tion, that depend on good lower bounds for their success. Secondly, an algorithmic proof for α2EC(G) = k yields a
k-approximation algorithm for 2EC(G) [2]. In this paper, we give an upper bound on the value of α2EC(G) on bridge-
less cubic graphs with an algorithmic proof, while lower bounds on the integrality gap of 2EC(G) are investigated
through computational studies. In Section 4, we show that the integrality gap of 2EC(G) is strictly less than 5

4 for
bridgeless subcubic multigraphs, improving on the previous best known bound of 5

4 +ε [1]. In Section 5 we describe a
computational study we conducted by designing a program that calculates α2EC(G) exactly for all simple graphs G ∈ G,
where G contains all test cases in three categories: (1) General bridgeless graphs for 3 ≤ n ≤ 10; (2) Cubic bridgeless
graphs for 6 ≤ n ≤ 16; (3) Subcubic bridgeless graphs for 3 ≤ n ≤ 16. Using the knowledge gained through the data
analysis for the computational study, we obtain a family of subcubic bridgeless graphs G which shows α2EC(G) ≥ 8

7
asymptotically, providing an improvement upon the previous best lower bound of 9

8 [4].

1.1. Literature review on 2EC(G)
Constant factor approximation algorithms for 2EC(G) have been intensely studied. In 1994, Khuller and Vishkin

[5] found a 3
2 -approximation, which was improved by Cheriyan, Sebő and Szigeti [6] to 17

12 . The ratio was later
improved to 4

3 in 2000 by Vempala and Vetta [7]. One year later, Krysta and Kumar [8] improved the approximation
ratio to 4

3 − ε where ε = 1
1344 . Recently, Sebő and Vygen [4] designed a simpler and more elegant 4

3 -approximation
algorithm for 2EC(G).

In the meantime, research on 2EC(G) has also been conducted for special classes of graphs, especially on cubic
and subcubic bridgeless graphs, on which 2EC(G) still remains NP-hard [1] . In 2001, along with their ( 4

3 − ε)-
approximation algorithm for 2EC(G) on general graphs, Krysta and Kumar [8] also presented an approximation
algorithm for 2EC(G) on cubic graphs with the approximation ratio of 21

16 + ε. One year later, Csaba, Karpinski and
Krysta [1] designed a ( 5

4 + ε)-approximation algorithm for 2EC(G) on subcubic bridgeless graphs. In 2004, Huh [9]
presented an algorithm yielding a 5

4 -approximation on cubic 3-edge-connected graphs. A more recent improvement
came from Boyd, Iwata and Takazawa [10] with a 6

5 -approximation algorithm for 2EC(G) on cubic 3-edge-connected
graphs.

Concerning the integrality gap α2EC(G) of 2EC(G), Csaba, Karpinski and Krysta [1] proved that for maximum
degree 3 graphs, the integrality gap of the LP relaxation for 2EC(G) is at most 5

4 + ε for any fixed ε > 0. It was
also stated in [1] that the best known lower bound on α2EC(G) is 10

9 for maximum degree 3 graphs (and thus subcubic
graphs). In 2013, Boyd, Iwata and Takazawa [10] showed α2EC(G) ≤ 6

5 for 3-edge-connected cubic graphs. Around
the same time, Sebő and Vygen [4] proved that 9

8 ≤ α
2EC(G) ≤ 4

3 in general.
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1.2. Notation and background

For the purpose of this paper, any graph G = (V, E) is considered to be a multigraph without loops. We use n to
denote |V |, and sometimes use V(G) to denote V and E(G) to denote E. For any S ⊂ V , δ(S ) is the set of edges with
one end in S and the other end not in S , and for any F ⊆ E, the notation x(F) is used to denote

∑
e∈F xe.

Denoted by ILP(G), the integer linear program of 2EC(G) for a graph G = (V, E) is given as follows:

Minimize
∑

e∈E xe (1)
subject to x(δ(S )) ≥ 2 for all ∅ ⊂ S ⊂ V, (2)

0 ≤ xe ≤ 1 for all e ∈ E, (3)
xe integer for all e ∈ E. (4)

.
By relaxing the integrality constraints (4) of ILP(G), the LP relaxation of ILP(G), denoted by LP(G), is obtained. We
use the notation OPT (G) and OPTLP(G) to denote the optimal objective value for ILP(G) and LP(G) respectively.

1.3. Problem 2EC(G) with obliged edges

In order to enhance the clarity and usefulness of our results for 2EC(G), we will consider a more general form of
the problem which includes a specification of a subset of edges that are obliged to be in the final 2EC(G) solution.
More specifically, given an unweighted bridgeless multigraph G = (V, E) and set Ω ⊆ E of obliged edges, the problem
2EC with obliged edges (henceforth 2EC(G, Ω)) consists of finding a 2-edge-connected spanning subgraph H = (V, J)
of G with the minimum number of edges, and such that Ω ⊆ J. Note that 2EC(G) = 2EC(G, Ω) when Ω = ∅. We
obtain the ILP for 2EC(G, Ω) by adding the following constraints to ILP(G):

xe = 1 for all e ∈ Ω.

We denote this ILP by ILP(G, Ω) and denote its corresponding LP relaxation by LP(G, Ω). We use the notation
OPT (G, Ω) and OPTLP(G, Ω) to denote the optimal objective values of ILP(G, Ω) and LP(G, Ω) respectively.

2. Using circulations to obtain 2-edge-connected spanning subgraphs with obliged edges

In this section we outline a new method for finding solutions for the more general problem 2EC(G, Ω) which
is based on circulations and depth first search (DFS) trees. In later sections we use these ideas to obtain a 5

4 -
approximation for 2EC(G) for subcubic bridgeless graphs. Note that similar ideas were used in [3] for approximation
for graph TSP, but not in the same way or for the same purpose as they are used here. To the best of our knowledge,
these ideas represent a new framework for 2EC(G) approximation.

Given a digraph D = (V, A), f ∈ RA is called a circulation for D if f (δin(v)) = f (δout(v)) for all v ∈ V . For an arc
e ∈ A, fe is called the flow of e. Given arc demands d ∈ RA and arc capacities u ∈ RA, a circulation is called feasible
if de ≤ fe ≤ ue for all e ∈ A. The support graph of a circulation f is the subgraph D f = (V, A f ), where A f is the set of
arcs a ∈ A for which fa > 0. Finally, given arc costs c ∈ RA, the minimum cost circulation problem is as follows:

minimize c f

subject to f (δin(v)) = f (δout(v)) for all v ∈ V,

de ≤ fe ≤ ue for all e ∈ A.

The following is well known for circulations ([11], see also [12]).

Theorem 1. Given a minimum cost circulation problem for which d and u are integer-valued and for which there
exists a feasible circulation f , there exists an optimal circulation f ∗ which is integer-valued and can be found in
polynomial time.
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Given a 2-edge-connected multigraph G = (V, E) and a set of obliged edges Ω ⊆ E, we now define a minimum
cost circulation problem P(G, Ω) based on G and Ω. To begin, give G an orientation by growing a spanning tree from
an arbitrary root r ∈ V using DFS. Call the edges in the tree tree edges and the rest of the edges in E back edges. Let
the directed graph D = (V, A) be the orientation of G obtained in the usual way using the DFS tree, i.e. by directing all
the tree edges away from r and all the back edges towards r. Let A = T ∪ B where T is the set of directed tree edges
and B is the set of directed back edges. Note that the arc set T forms a spanning arborescence of D, and that the edges
uv of G are in one to one correspondence with the arcs (u, v) of D, a fact that we exploit by referring to these edges
and arcs interchangeably.

Define the minimum cost circulation problem P(G, Ω) as follows:

de =

1 for e ∈ T ∪ Ω
0 otherwise,

ce =

1 for e ∈ B
0 otherwise,

ue =

1 for e ∈ B
∞ otherwise.

Let f be any feasible circulation for P(G, Ω). By Theorem 1, there exists an integer feasible circulation f ∗ of
cost at most c f . The support graph D f ∗ = (V, A f ∗ ) of f ∗ will consist of the edges of T plus the edges of e ∈ B with
f ∗e = 1. Thus |A f ∗ | ≤ (n − 1) + c f . Moreover, the edges in G corresponding to A f ∗ include the edges in Ω and form a
2-edge-connected spanning subgraph H = (V, J) of G. To see this, consider any cut δ(S ) in G. Clearly δ(S ) contains
at least one edge of T . If it contains two edges of T , then both of these edges are in J as well. If it contains only one
edge h of T , then the demand of one for h ensures that at least one edge e ∈ B ∩ δ(S ) has f ∗e = 1, so δ(S ) contains at
least 2 edges in J, namely h and e.

Given the circulation problem P(G, Ω) and a lower bound β for OPTLP(G, Ω), the above suggests the following
scheme for finding a k-approximation for 2EC(G, Ω):

(1) Show there exists a feasible (perhaps fractional) circulation f for P(G, Ω) such that (n − 1) + c f ≤ kβ.

(2) Find an optimal integer circulation f ∗ for P(G, Ω). The support graph of f ∗ provides a 2-edge-connected
spanning subgraph H = (V, J) of G with Ω ⊆ J and |J| = (n − 1) + c f ∗ ≤ (n − 1) + c f ≤ kβ. Since β ≤
OPTLP(G, Ω) , OPTLP(G, Ω) ≤ OPT (G, Ω) and f ∗ can be found in polynomial time, we have a k-approximation
algorithm for 2EC(G, Ω).

The above ideas are illustrated in Figure 1. In Figure 1a) a graph G = (V, E) and edge set Ω are shown, with the
edges in Ω denoted in bold. In Figure 1b) a corresponding digraph D = (V, A) obtained by DFS is shown, along with
the edges in T (denoted by solid lines) and the edges in B (denoted by dashed lines). In Figure 1c) the values on the
arcs represent a feasible circulation f for the circulation problem P(G, Ω). Note that for this circulation, c f = 4. In
Figure 1d) an optimal integer circulation f ∗ is shown for which c f ∗ = 3. Finally, in Figure 1e), the 2-edge-connected
subgraph H = (V, J) obtained from f ∗ is shown, where |J| = (n − 1) + c f ∗ = 9+3 = 13.

Next we provide a very useful lower bound for OPTLP(G, Ω) to be used in the above framework.

Lemma 1. Let graph G = (V, E) be a 2-edge-connected multigraph, and let F represent the set of edges in G which
are in 2-edge cuts. Then we have the following lower bound for OPTLP(G, Ω) :

OPTLP(G, Ω) ≥
1
2

∑
v∈V

max(2, |δ(v) ∩ (F ∪ Ω)|).

Proof. Let x′ be any feasible solution for LP(G, Ω). For any edge in F ∪ Ω we must have x′e = 1, thus for any node
v ∈ V, x′(δ(v)) ≥ max(2, |δ(v) ∩ (F ∪ Ω)|). Since

∑
e∈E x′e = 1

2
∑

v∈V x′(δ(v)), the result follows.

3. An algorithm for 2EC(G, Ω) for cubic bridgeless graphs

In this section we use the ideas presented in the previous section to provide a heuristic algorithm for 2EC(G, Ω) for
cubic bridgeless multigraphs and also provide a performance guarantee for the solutions provided by the algorithm.
In the next section we will show how to use this algorithm to obtain a 5

4 -approximation algorithm for 2EC(G) for
subcubic bridgeless multigraphs. We begin with some preliminaries.
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(a) G = (V,E) (b)      Graph D = (V,A) with edge sets T and B.

(c)       Feasible circulation f
             for P(G,    ), cf = 4.

(d)       Optimal integer circulation
             f* for P(G,    ), cf* = 3.

(e)     Final 2-edge-connected
           subgraph H=(V,J), |J|=(n-1)+cf*.
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Figure 1. Illustration of the steps used to find the 2-edge-connected subgraph H = (V, J).
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Given a graph G = (V, E), a cut δ(S ) for S ⊂ V is called proper if 2 ≤ |S | ≤ n− 2. For S ⊂ V , let S = V \ S . Given
S ⊆ V , let G[S ] be the graph with node set S and edge set {uv ∈ E : u ∈ S , v ∈ S }.

For the remainder of this section let G = (V, E) be a cubic bridgeless multigraph, let Ω ⊆ E and, as before, let F
be the set of edges in E which are in 2-edge cuts. Let V∗(G) = {v ∈ V : |δ(v) ∩ (F ∪ Ω)| = 3}. By Lemma 1 we have

OPTLP(G, Ω) ≥ n +
|V∗(G)|

2
.

We now construct the minimum cost circulation problem P(G, Ω) as described in Section 2, using the same no-
tation. Recall T is the set of tree edges formed by the DFS and B is the set of back edges. For each edge e ∈ T ,
let δTe ⊂ B be the set of back edges in the unique cut in D for which e is the only tree edge in the cut. Each edge
b in δTe forms a unique directed cycle Cb in T ∪ {b} which contains tree edge e. Let f ′ ∈ RA be the circulation for
P(G, Ω) obtained by setting the flow to 1

2 around each cycle Cb for b ∈ B \ (F ∪Ω) and to 1 around each cycle Cb for
b ∈ B ∩ (F ∪ Ω), and then summing these cycle flows. More specifically, f ′ is defined as follows:

f ′a =


1
2 for a ∈ B \ (F ∪ Ω),
1 for a ∈ B ∩ (F ∪ Ω),∑

( f ′b : b ∈ δTa ) for a ∈ T.

Note that the feasible circulation f shown in Figure 1c) gives an illustration of the circulation f ′ described above.

Lemma 2. The circulation f ′ is a feasible circulation for P(G, Ω) and has cost c f ′ = n
4 +

|B∩(F∪Ω)|
2 + 1

2 .

Proof. Since every tree edge e not in F must be in the cycle Ce for at least 2 back edges, f ′ is clearly a feasible
circulation for P(G, Ω). Moreover, since ca = 0 for a ∈ T and ca = 1 for a ∈ B, c f ′ = 1

2 |B \ (F ∪Ω)| + |B∩ (F ∪Ω)| =
|B|
2 +

|B∩(F∪Ω)|
2 . Since |E| = 3n

2 for a cubic graph, we have |B| = |E|− |T | = 3n
2 − (n−1) = n

2 +1 and the result follows.

We now describe our recursive heuristic algorithm for 2EC(G, Ω), which is based on the ideas from Section 2
along with a careful specification of how we grow the DFS tree.

Algorithm 2EC(G,Ω):
Input: A cubic bridgeless multigraph G = (V, E) and obliged edge set Ω ⊆ E.
Output: A 2-edge-connected spanning subgraph H = (V, J) of G with Ω ⊆ J.

Case (a): {Base Case} G is 3-edge-connected (i.e. F = ∅).

1. Grow a DFS tree T in G. We grow the DFS tree according to the following two rules:

Rule 1 Start growing T from a node r < V∗(G), if possible.
Rule 2 If we have a choice for the next edge to add to the tree, we always add one in Ω, if
possible.

2. Construct the minimum cost circulation problem P(G, Ω) using the DFS tree T above, and find the
optimal solution f ∗ for P(G, Ω) which is integer-valued. Let J be the edges in G corresponding to
the edges of the support graph of f ∗. Return graph H = (V, J).

Case (b): {Recursive Step} There is a 2-edge cut δ(S ) = {e, e′} in G.
Let e = uv and e′ = u′v′, with u ∈ S , u′ ∈ S , v ∈ S and v′ ∈ S . Since G is cubic and bridgeless,
it follows that |S | ≥ 2 and |S | ≥ 2, and thus δ(S ) is a proper cut. We split the problem into two new
smaller problems 2EC(G1, Ω1) and 2EC(G2, Ω2) defined as follows. Let G1 = (S , E1) be the graph
obtained by taking G[S ]∪ {uu′}, and let Ω1 = (Ω∩ E1)∪ {uu′}. Similarly, let G2 = (S , E2) be the graph
obtained by taking G[S ]∪ {vv′}, and let Ω2 = (Ω∩E2)∪ {vv′}. Apply Algorithm 2EC(G, Ω) recursively
to G1 and G2 to obtain graphs H1 = (S , J1) and H2 = (S , J2) respectively. Combine these graphs into a
graph H = (V, J) by removing the edges uu′ and vv′ and adding back the edges e and e′. Return graph
H = (V, J).
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Theorem 2. The graph H = (V, J) from Algorithm 2EC(G, Ω) is a 2-edge-connected spanning subgraph of G such
that Ω ⊆ J and |J| ≤ 5

4 n +
|V∗(G)|

8 +
|Ω|
4 −

1
2 .

Proof.
Case (a): {Base Case} G is 3-edge-connected (i.e. F = ∅).
Since G is cubic and T is a DFS tree, each node v ∈ V, v , r has at most one edge in B directed into it. Moreover,
since G is also 3-edge-connected, r has exactly two edges in B directed into it.

Now consider e = (u, v) ∈ B∩Ω. If v , r, or if v = r and r < V∗(G), then e is the unique arc in B∩Ω directed into
v, and there is a unique arc h ∈ T directed out of v. By Rule 2 we must have h ∈ Ω. From this we can conclude that if
r < V∗(G), every arc in B ∩ Ω can be paired with a unique arc in T ∩ Ω, and thus

|B ∩ Ω| ≤
|Ω|

2
. (5)

If r ∈ V∗(G), then there are 2 arcs in B ∩ Ω incident with r and one arc in T ∩ Ω incident with r, hence every arc in
B ∩ Ω except one can be paired with a unique arc in T ∩ Ω. Thus

|B ∩ Ω| ≤
(|Ω| − 1)

2
+ 1 =

|Ω|

2
+

1
2
. (6)

We also know by Rule 1 that if r ∈ V∗(G), then V∗(G) = V . Since |V | ≥ 2 for G, it follows that if r ∈ V∗(G) then

1
2
≤
|V∗(G)|

4
. (7)

Combining (5), (6) and (7), we obtain, for all cases,

|B ∩ Ω| ≤
|Ω|

2
+
|V∗(G)|

4
. (8)

Now consider our final solution H = (V, J). We know |J| = (n− 1) + c f ∗. Thus by Theorem 1 and Lemma 2 it follows
that

|J| ≤ (n − 1) +
n
4

+
|B ∩ Ω|

2
+

1
2

=
5n
4

+
|B ∩ Ω|

2
−

1
2
.

Applying (8), we obtain

|J| ≤
5n
4

+
|Ω|

4
+
|V∗(G)|

8
−

1
2
,

as required. This completes the proof of Case (a).

Case (b): { Recursive Step }: There is a proper 2-edge cut δ(S ) = {e, e′}.
Consider the two new graphs G1 = (S , E1) with obliged edges Ω1 and G2 = (S , E2) with obliged edges Ω2. As G is
cubic and bridgeless, it follows that |S | ≥ 2, |S | ≥ 2, and the nodes u, v, u′ and v′ are all distinct. Moreover, G1 and G2
are also cubic bridgeless graphs with fewer nodes than G, thus we can apply Algorithm 2EC(G, Ω) recursively to them
to obtain 2-edge connected spanning subgraphs H1 = (S , J1) and H2 = (S , J2) respectively such thatΩ1 ⊆ J1, Ω2 ⊆ J2,
and

|J1| ≤
5|S |

4
+
|V∗(G1)|

8
+
|Ω1|

4
−

1
2

and |J2| ≤
5|S |

4
+
|V∗(G2)|

8
+
|Ω2|

4
−

1
2
.

Now consider the subgraph H = (V, J) for G we obtain by removing uu′ ∈ Ω1 from H1, vv′ ∈ Ω2 from H2, and adding
the edges e and e′. Graph H is a 2-edge connected spanning subgraph of G. Moreover, n = |S | + |S |, |J| = |J1| + |J2|,
|V∗(G)| = |V∗(G1)| + |V∗(G2)| and |Ω1| + |Ω2| ≤ |Ω| + 2. Hence

|J| = |J1| + |J2| ≤
5
4

n +
|V∗(G)|

8
+
|Ω|

4
−

1
2
,

as required.
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4. A 5
4 -approximation algorithm for 2EC(G) for subcubic bridgeless graphs

In this section we use the results presented in the previous section to provide a 5
4 -approximation algorithm for

2EC(G) for subcubic bridgeless multigraphs and also show that α2EC(G) < 5
4 for such graphs.

For the remainder of this section, let G = (V, E), |V | = n, be a subcubic bridgeless 2-edge-connected multigraph,
and as before let F be the set of edges in E which are in 2-edge cuts. Note that Ω = ∅ here. By Lemma 1 we have

OPTLP(G) ≥ n +
|V∗(G)|

2
, (9)

where V∗(G) ⊆ V is the set of nodes in G incident with three edges in F.
We now describe our approximation algorithm for 2EC(G), which is based on the results from Section 3 along

with the replacement of paths in G by obliged edges. Note that we assume that we have at least one node of degree
three in G, as otherwise the problem is trivial.

Algorithm Approx 5 4:
Input: A bridgeless subcubic multigraph G = (V, E).
Output: A 2-edge-connected spaning subgraph H = (V, J) of G.

1. Graph G can be viewed as a cubic graph G′ = (V ′, E′) with some edges subdivided into paths of length 2 or more.
Let P be the set of such paths, let P′ ⊆ E′ be the edges in G′ corresponding to such paths, and let F′ be the set of
edges in G′ in 2-edge cuts. We then consider the problem 2EC(G′, Ω′) for graph G′ = (V ′, E′) with Ω′ = P′.

2. Apply Algorithm 2EC(G, Ω′) to graph G′ and obliged edge set Ω′. Let the resulting 2-edge-connected subgraph
be H′ = (V ′, J′). Note that P′ ⊆ J′.

3. Obtain the subgraph H = (V, J) for G from H′ by replacing each edge e ∈ P′ in H′ by its corresponding path in P.

4. Output H = (V, J).

Theorem 3. The graph H = (V, J) from Algorithm Approx 5 4 is a 2-edge-connected spanning subgraph of G such
that |J| ≤ 5

4 OPTLP(G) − 1
2 .

Proof. Clearly H is 2-edge-connected subgraph of G. By Theorem 2,

|J′| ≤
5|V ′|

4
+
|V∗(G′)|

8
+
|Ω′|

4
−

1
2
. (10)

Let V2 ⊂ V be the set of nodes in G of degree 2. We have |J| = |J′| + |V2|, n = |V ′| + |V2| and V∗(G′) = V∗(G).
Substituting these into (10) gives

|J| ≤ |V2| +
5
4

(n − |V2|) +
|V∗(G)|

8
+
|Ω′|

4
−

1
2

=
5
4

n +
|V∗(G)|

8
−

1
2

+
|Ω′| − |V2|

4
.

(11)

Noting that |V2| ≥ |Ω
′|, (11) gives

|J| ≤
5
4

n +
|V∗(G)|

8
−

1
2

≤
5
4

(n +
|V∗|
2

) −
1
2
.

Applying (9), the result |J| ≤ 5
4 OPTLP(G) − 1

2 now follows.

The next two corollaries follow immediately from Theorem 3.
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Corollary 1. Algorithm 5 4 is a 5
4 -approximation algorithm for 2EC(G) for subcubic bridgeless multigraphs.

Corollary 2. The integrality gap α2EC(G) is less than 5
4 for subcubic bridgeless multigraphs.

5. Computational Study on the Integrality Gap of 2EC(G)

In this section we report on a computational study where we investigate the worst-case ratio between ILP(G) and
LP(G) for graphs with a small number of nodes, thus obtaining a lower bound on α2EC(G) for those types of graphs.
Here we give a brief summary of the methods used and results obtained. For more details, see [13].

5.1. Methodology
It is known that the computational complexity for solving ILP(G) is NP-hard. However, it is practically possible

to solve ILP(G) in reasonable time for graphs G of small size. Therefore the graphs in this experimental study were
limited to the following three sets:

• General simple graphs G =
⋃10

k=3 Gk, where Gk denotes the set of all non-isomorphic 2-edge-connected simple
graphs with k nodes;

• Cubic simple graphs C =
⋃16

k=6 Ck, where Ck denotes the set of all non-isomorphic 2-edge-connected cubic
simple graphs with k nodes; and

• Subcubic simple graphs S =
⋃16

k=3 Sk, where Sk denotes the set of all non-isomorphic 2-edge-connected subcubic
simple graphs with k nodes.

We let G denote the complete set of all graphs studied in this experiment, i.e. G = G ∪ C ∪ S. With the objective of
learning more about the lower bound for the integrality gap α2EC(G) of the LP relaxation for 2EC(G), we calculated
the ratio, denoted by α(G), between the optimal objective value OPT (G) and OPTLP(G) for all graphs G ∈ G. Note
that the maximum ratio α(G) among all G ∈ G provides a lower bound for the value of α2EC(G) for graphs of that type.

By using the nauty package (Version 2.4), developed by Brendan D. McKay [14], we were able to obtain all non-
isomorphic connected graphs of a certain category (i.e. general, cubic, subcubic), and then eliminate all the graphs
with bridges. We then formulated ILP(G) and LP(G) for each graph in our set. Finally, we used GurobiTM Optimizer
(Version 5.0) to obtain solutions to ILP(G) and LP(G) for each G. The program designed for our experiments was
developed using the C programming language, on a 64-bit system running Mircosoft R©Windows 7 Professional, with
a Lenovo R©Thinkpad X201 laptop equipped with Intel R©CoreTMi5 M480 @ 2.67GHz, and 4.00 GB installed memory
(RAM).

5.2. Analysis of Results
Facing a large amount of data, it became difficult for us to analyze all results with the limited resources available.

For example, the number of all non-isomorphic 2-edge-connected graphs on 10 nodes is 9,804,368, and it took the
program approximately 11 days to finish the experiment process for all graphs G ∈ G10. In order to learn more about
the lower bound for the value of α2EC(G) in general and the upper bound for particular classes and sizes of graphs, more
attention was given to the data that resulted in a higher ratio between OPT (G) and OPTLP(G). Figure 2 demonstrates
the trend in the changes of the maximum ratios between OPT (G) and OPTLP(G) for G ∈ Gk, G ∈ Ck and G ∈ Sk.
Table 1 gives a summary of the maximum value of the ratio between OPT (G) and OPTLP(G) for graphs in each of
the three categories, along with the size (i.e. number of nodes) in the graph that gave the maximum value.

Let α(Gk), α(Ck) and α(Sk) denote the maximum ratios between OPT (G) and OPTLP(G) for G ∈ Gk, G ∈ Ck

and G ∈ Sk respectively. It is noted from Figure 2 that our result on α(S16) reached the highest value overall, i.e. 9
8 .

Note that this was the previous best known lower bound on the integrality gap of the LP relaxation for 2EC(G) [4],
although in [4] this bound was reached asymptotically by an infinite family of graphs. In addition, it is noted that for
each value of k (3 ≤ k ≤ 10), the set of graphs with k nodes that gave the worst ratio among all graphs with the same
size always included subcubic graphs. This supports the idea that subcubic graphs are most likely to give α2EC(G) in
general.
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Figure 2. Data analysis of experimental results.

Table 1. Summary of the experimental study.

Graph Category Max α(G) Corresponding |V(G)|
Gk (3 ≤ k ≤ 10) 10/9 9
Ck (6 ≤ k ≤ 16) 11/10 10
Sk (3 ≤ k ≤ 16) 9/8 16

:

:

(a) 9-pattern gadget .

(b) Graph G9 .

(c) Graph G3  .
N

Figure 3. Illustrations for the family GN
t .
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6. New Lower Bounds for the Integrality Gap for 2EC(G)

In this section we discuss a family of subcubic graphs which asymptotically give a ratio of 8
7 for OPT (G) and

OPTLP(G), thus improving on the previous best known lower bound for α2EC(G) of 9
8 [4]. In our computational study,

we were able to find a pattern which gives relatively high ratio between OPT (G) and OPTLP(G). Inspired by this
finding, we designed the following family of graphs by continuously replacing all degree 2 nodes with the 9-pattern
gadget shown in Figure 3(a), starting from G9 (shown in Figure 3(b)). The family of graphs generated from the above
operation is referred to as F N . Executing the replacement for t times gives us the graph GN

t ∈ F
N(t ≥ 0). Figure 3(c)

shows the graph GN
3 ∈ F

N , which was obtained by repeating the replacement three times.

Theorem 4. For the family of graphs F N , the following hold :

lim
t→∞

OPT (GN
t )

|V(GN
t )|

=
8
7
, and

lim
t→∞

OPT (GN
t )

OPTLP(GN
t )

=
8
7
.

Proof. For the convenience of calculation, we refer to every shaded triangle shown in Figure 3 as a virtual node, and
use virtual(GN

t ) to denote the set of virtual nodes for any graph GN
t ∈ FN . If we think of each virtual node as a normal

node, it is easy to see that any graph GN
t ∈ F

N can be viewed as a tree of height (t + 1), denoted by Tt+1, mirrored
along its leaves. All internal nodes of Tt+1 are virtual nodes in GN

t , while all its leaves are the nodes of degree 2 in
GN

t , which we denote by d2(GN
t ). Note that Tt+1 consists of three identical binary trees BT t of height t connected to

one root node.
It is well known that for any binary tree, the number of nodes at depth d is 2d. Thus letting leaves(BT t) and

internal(BT t) represent the number of leaves and internal nodes in BT t, we have

|leaves(BT t)| = 2t, (12)

and

|internal(BT t)| = 1 + 21 + · · · + 2t−1

=

t−1∑
i=0

2i

= 2t − 1.

(13)

In addition, since every internal node has two children, the total number of edges in BT t is

|E(BT t)| = 1 × 2 + 21 × 2 + · · · + 2t−1 × 2

= 2 ×
t−1∑
i=0

2i

= 2t+1 − 2.

(14)

Using (13) the number of all virtual nodes in a graph GN
t ∈ F

N , which is double the number of all internal nodes
in Tt+1, is

|virtual(GN
t )| = 2 × (3 × |internal(BT t)| + 1)

= 2 × [3 × (2t − 1) + 1]
= 6 × 2t − 4.

(15)

Also, using (12) the number of degree two nodes in GN
t , which is equal to the number of leaves in Tt+1, is given by

|d2(GN
t )| = 3 × |leaves(BT t)|

= 3 × 2t.
(16)
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Thus by (15) and (16), it follows that the total number of nodes in GN
t is

|V(GN
t )| = 3 × |virtual(GN

t )| + |d2(GN
t )|

= 21 × 2t − 12.

On the other hand, since all edges in GN
t not in a virtual node triangle belong to a 2-edge cut, any feasible ILP or

LP solution x must have xe = 1 for such edges. The total number of such edges E′, which is twice of the number of
edges in Tt+1, is

|E′| = 2 × (3 × |E(BT t)| + 3)
= 12 × 2t − 6.

(17)

Note that every edge in E′ contributes 1 to both OPT (GN
t ) and OPTLP(GN

t ).
Returning back to the original graph, we need to consider the values of variables on the edges belonging to the

virtual node. Shown in Figure 4 are possible feasible solutions for ILP(GN
t ) and LP(GN

t ) for such edges. Hence by

1

1/2

1

1

1
1

1

1/2

1

1
1/2

Figure 4. Feasible solutions to ILP(GN
t ) (left) and LP(GN

t ) (right) on a virtual node.

(15) and (17) we have the following:

OPT (GN
t ) ≤ |E′| + 2|virtual(GN

t )|
= (12 × 2t − 6) + 2 × (6 × 2t − 4)

= 24 × 2k − 14,

(18)

OPTLP(GN
t ) ≤ |E′| +

3
2
|virtual(GN

t )|

= (12 × 2t − 6) +
3
2
× (6 × 2t − 4)

= 12 × 2t − 6 + 9 × 2t − 6
= 21 × 2t − 12.

(19)

Note that (17) and (19) imply that OPTLP(GN
t ) = |V(GN

t )|, since OPTLP(GN
t ) must be at least |V(GN

t )|. Thus equality
holds in (19). Equality holds in (18) as well, as at least two edges of any virtual node triangle must be used in
OPT (GN

t ).
From the above it follows that

lim
t→∞

OPT (GN
t )

|V(GN
t )|

= lim
t→∞

OPT (GN
t )

OPTLP(GN
t )

= lim
t→∞

24 × 2t − 14
21 × 2t − 12

=
8
7
,

as required.

From the above discussion, Corollary 3 naturally follows from Theorem 4.

Corollary 3. The integrality gap α2EC(G) for 2EC(G) is at least 8
7 , even when restricted to subcubic bridgeless graphs.
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