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1.  Introduction and Background 
 

What is Combinatorial Optimization? 

 

 

 

                                         Optimization Problems 
                                       

                            Given a set of variables, x1, x2, ..., xn 

                            Given a set of constraints the variables must satisfy 

                            Given an objective function containing these variables              

                            which must be optimized  

           

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Type 1: 

Variables are continuous 

(in this case, there is an infinite 

set of possible solutions) 

Type 2: 

Variables are discrete, i.e. each 

variable can have only certain 

values, such as 0 or 1. 

(in this case there is a finite set 

of feasible solutions--with each 

of these solutions there is an 

associated cost.  Find the one of 

min/max value). 

Combinatorial optimization problems are discrete optimization problems.  

The problems are often modelled by a weighted graph, and the constraints 

and variables then represent something in the graph.   

 

Example of a graph G: 
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Some Examples of Combinatorial Optimization Problems 

 
1.  Optimal drilling of circuit boards  

     (TRAVELLING SALESMAN PROBLEM) 

 

Given a circuit board and a set of holes to be drilled by a laser drill which is 

moved mechanically from hole to hole. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We wish to decide an order to drill these holes which requires the laser drill 

to be moved the least distance. 

 

This problem can be modelled using a complete weighted graph G: 
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The circuit board drilling problem is an application of the what is called the 

travelling salesman problem (TSP):  Given a complete weighted graph G, 

find a cycle which visits all the nodes exactly once and ends up 

where it started, and has minimum weight. 

 

 

 

 

 

2.  Optimal assignment of T.A.'s and courses 

     (MAXIMUM BIPARTITE MATCHING)  

 

Given a set of courses and a set of possible TAs, connect a TA to the courses 

which he/she is willing to TA.  Find a matching of TAs to courses which 

maximizes the number of courses that have a TA assigned. 

 

Example: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This is an application of maximum bipartite matching:  Given a bipartite 

graph with partition X, Y of the nodes, find the largest set of edges which do 

not share an end node. 
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3.  Construction of reliable communication networks 

     (MINIMUM WEIGHT K-EDGE CONNECTED SUBGRAPH  

       PROBLEM) 

 

A communication network consists of centers and links.  You can talk about 

the reliability of the network in terms of the number of links that it can 

withstand losing (and still have communication). 

 

Examples: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In designing a network with a certain reliability, you are given the cost of 

building each link.  Now figure out which links to choose so that the 

specified reliability is met, and the network has least cost to build. 
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This is an application of the minimum weight k-edge connected subgraph 

problem:  Given a weighted graph G, find the subgraph of minimum weight  

which is k-edge connected.  

 

 

 

 

 

 

Example: 
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4.  Logic circuit plotter 

(MINIMUM WEIGHT MATCHING PROBLEM, CHINESE POSTMAN 

PROBLEM) 

 

A plotter is used to draw proposed logic circuits.  It operates by moving a 

pen back and forth and, at the same time, rolling a sheet of paper (which is 

on a roller) forwards and backwards underneath the pen. 

 

Problem:  Minimize the time to draw the circuit. 

 

 

"pen-down" time                 +              "pen-up" time 

(actual drawing)                                  (pen is not in contact with paper, but is  

                                                             moving from the end of one line to  

                                                             where it will start the next line)    

 

(Note:  Pen must end up where it started) 

 

 

   

Example: 

 

             

 

 

 

 

 

 

 

 

 

We can represent this as a graph by placing a node where 2 or more lines 

meet or cross, or a line ends. 

 

Can this circuit be drawn with no pen-up motion? 
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Theorem (Euler):  The figure can be traced with no pen-up motion if and  

                              only if it is connected and all nodes have even degree. 

 

 

 

To minimize pen-up motion (this is similar to the Chinese Postman 

Problem):  Find a new set of lines we can add to the figure which turn every 

odd node into an even node, such that the total traversal time of the new 

lines is as small as possible.  These new lines will "pair up" the odd nodes). 

 

Let t(p,q) be the time required for the pen to move from p to q. 

 

 

 

 

 

 

 

 

Create a new complete weighted graph consisting of the odd nodes, using 

t(p,q) as the weights. 

 

 

 

 

 

 

 

 

 

 

Now solve the minimum weight perfect matching problem:  Find a set of n/2 

node-disjoint edges such that the sum of the weights on the edges is 

minimized. 
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The result for our problem: 

 

 

 

 

 

 

 

 

 

 

 

 

 

How will we draw the figure? 

 

 

 

 

 

BACKGROUND INFORMATION 

 

1.  GRAPH THEORY 

 

A graph G = (V,E) is defined as a finite set of nodes (also sometimes called 

vertices) V which are interconnected by a finite set of edges E.  We usually 

use m to denote |E| and n to denote |V|.  A graph is a very useful tool which 

can be used to model many different problems. 

 

 

 

 

 

 

 

 

Each edge e in E corresponds to two nodes in V, called the ends of e.  An 

edge e in E with ends u and v can be denoted by uv.  Two nodes u and v are 

said to be adjacent if uv is in E, and e is said to be incident with u and v. 

 

 

 



 9

A graph is simple if it has no loops or parallel edges.  A graph is complete if 

it is simple and has all possible edges uv, for all nodes u, v in V, u ≠ v.  The 

complete graph on n nodes is denoted by Kn. 

 

 

 

 

 

 

The neighbours of a node v are all the nodes in V which are adjacent to v in 

G, and the degree of a node v is the number of neighbours of v, and is often 

denoted by d(v).  A graph with all node degree k is called k-regular. 

 

 

 

 

 

 

 

Important Fact 1:   Σ (d(v) : v∈V) = 2*|E|                         

Proof: 

 

 

 

 

 

 

 

Important Fact 2: The number of nodes with odd degree is even in any graph. 

Proof: 

 

 

 

 

 

 

 

Important Fact 3:  The number of edges in  Kn is: 

Proof: 

 

 

 



 10 

A weighted graph is one in which every edge is assigned a number called its 

weight or cost. 

 

A subgraph of a graph G = (V, E) is a graph G' = (V', E') such that V' is a 

subset of V, and E' is a subset of E such that both ends of every edge in E' 

are in V'.  A subgraph is called spanning if V' = V. 

 

 

 

 

 

 

 

 

 

A path from node v0 to node vk in a graph is a sequence of edges  

v0v1, v1v2, …, vk-1vk, where v0,v1,…,vk are all distinct.  Such a path can also 

be represented by v0, v1, v2, …, vk.  A single node is a path of length 0.  A 

cycle in a graph is like a path except v0 = vk. (i.e. we can represent a cycle by 

a node sequence v0, v1, v2, …, vk, where the nodes are distinct except that v0 

= vk and there is an edge vivi+1 for i = 0, 1, 2,...,k-1, and an edge vkv0 in G).  

The length of a path or cycle is the number of edges contained in it. 

 

 

 

 

 

A graph is k-edge connected if there are k edge-disjoint paths between every 

pair of nodes.  A 1-edge connected graph is simply called connected.  A 

component of a graph is a maximal connected subgraph.   
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A cut in a graph is defined by a set of nodes Q⊆V and is the set of edges 

with one end in Q, one end not in Q (this set of edges is denoted by δ(Q)). 

Note that removing the edges of a cut from G disconnects that component. 

 

 

 

 

 

 

 

 

 

Important Fact:  A graph is k-edge connected if and only if the size of a  

                          smallest cut in G is k. 

 

 

 

 

 

 

 

 

 

A graph is k-node connected if there are k paths between every pair of nodes 

such that these paths are internally node-disjoint.  A k-node cut is a set of 

nodes such that removing these nodes from the graph (along with their 

incident edges) disconnects the graph. 

 

Important Fact:  G is k-node connected if and only if the size of a smallest  

                           node cut is greater than or equal to k. 

 

 

 

 

 

A graph is called acyclic if it contains no cycles.  A forest is an acyclic 

graph.  A tree is a connected forest.  The nodes of degree 1 in a tree are 

called the leaves. 
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A graph is called bipartite if there is a partition of the nodes into two sets X, 

Y such that all edges have one end in X and one end in Y. A complete 

bipartite graph is one for which all possible edges between X and Y are 

included, and is denoted by Ka,b, where a=|X| and b=|Y|.   

 

 

 

 

 

 

 

Important Fact:  A bipartite graph contains no odd length cycle. 

 

A directed graph, or digraph, is a graph in which all of the edges have been 

given a direction.  In a digraph, an edge is represented by an ordered pair  

<u, v> where the edge (also called an arc) is directed from u to v.  Node u is 

called the tail of the arc, and v is called the head.  The indegree of a node v  

(denoted by d
in

(v)) is the number of edges directed into v, and the outdegree 

of v (denoted by d
out

(v)) is the number of edges directed out of v. 

 

 

 

 

 

 

 

 
 

Important Fact:   Σ (d
in

(v) : v∈V) = Σ (d
out

(v) : v∈V) = |E|  

 

A directed graph is called symmetric if d
in

(v) = d
out

(v) for all nodes v.  A 

directed graph is strongly connected if there is a directed path from u to v 

and from v to u for all node pairs u and v. 
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2.  INTEGER AND LINEAR PROGRAMMING PROBLEMS 

 

Given a set of variables x1, x2, ..., xn, a linear programming problem (LP) 

has the form: 

 

Minimize (or maximize)      z = c1x1 + c2x2  + c3x3 + ... +cnxn  

                      Subject to: 

                                          a11x1 + a12x2 + a13x3 + . . . a1nxn ≥ b1 

                                          a21x1 + a22x2 + a23x3 + . . . a2nxn ≤ b2 

 

 

 

                                           am1x1 + am2x2 + am3x3 + . . . amnxn = bm 

 

                                  (may also have xi ≥ 0 for some or all i values) 

Notes: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If there is an added restriction that the variables must have integer values, 

then it is called an integer linear programming problem (ILP), and if the 

variables all must be 0 or 1, then it is called a binary ILP.  There are no 

known efficient methods for solving ILPs exactly in general (although 

sometimes there are methods that can be applied for particular ILPs).  Later 

we will look at some strategies for solving difficult combinatorial 

optimization problems using both LP and ILP models. 

 

 

 

 

 

 

: 

. 
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Modelling Example:  An Integer Linear Programming Formulation        

                                     (ILP) For the Perfect Matching Problem 

 

General Perfect Matching Problem: 

Given  a complete weighted graph G = (V,E) on n nodes where n is even, 

find a minimum weight (cost) perfect matching in G (a perfect matching is a 

set of n/2 edges such that every node in V is an endpoint of exactly 1 of 

these edges). 

 

Example: 

 

 

 

 

 

 

 

 

 

 

We can represent any perfect matching M by a 0-1 vector x ∈∈∈∈ R
E  

as follows: 

 

        1  if edge e is in M 

         xe  =       

                         0 otherwise 

 

 

For our example: 

 

 

 

 

For an ILP description: 

 

Matching Degree Constraints:  The idea behind these constraints is that there                

                                                  is exactly one edge in M incident with each  

                                                  node. 
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Form of Constraints: ∑ (xij :  i ∈V, i ≠ j) = 1       for all nodes j in V.   

For our example: 

 

 

 

 

 

 

 

 

 

 

ILP Formulation: 

 

If you solve the ILP, for all x ∈∈∈∈ R
E
, 

 

                     minimize cx 

                     subject to  1)  matching degree constraints, 

                                      2)  xe ∈ {0,1} 

 

then you will have a vector x whose 1's represent an optimal perfect 

matching M for our problem. 

 

Linear Programming (LP) Formulation for Perfect Matchings: 

 

If we relax the restriction of x being a 0-1 vector in the ILP formulation and 

instead allow the values of x to lie anywhere between 0 and 1 (i.e. 0≤ xe ≤1), 

we may get fractional optimal solutions to the corresponding LP. 

 

Example: 
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However, it turns out that for the perfect matching problem, there is another 

set of constraints we can add to our LP which will ensure that there IS a 0-1 

optimal solution. 

 

Odd Cut Constraints:  Suppose we have a subset S of the nodes such that the  

                                    size of S is odd.  What must be true about any perfect  

                                    matching M of our graph? 

 

 

 

 

 

 

 

 

 

How do we represent this as a set of constraints? 

 

 

 

 

 

 

 

 

 

Final LP representation for perfect matchings: 

If you solve the LP, for all x ∈∈∈∈ R
E
, 

 

                     minimize cx 

                     subject to  1)  matching degree constraints, 

                                      2)  odd cut constraints 

                                      3)  0≤ xe ≤1 for all edges e in E 

 

then there will exist a 0-1 optimal solution x where the 1's correspond to a 

perfect matching. 
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ILP’s Geometrically 

 

For any ILP we have a linear set of constraints defining a feasible region 

(called the LP relaxation feasible region), and we are interested in the 

integer solutions in that region. 

 

This is illustrated in the figure below. 

 
               1st

 Constraint 

 

  

 

 
                               
 

                                           
                                                     2nd

 Constraint  
 

 
                                               Plus nonnegativity 

 
                  objective function 

 

 

Theorem:  For any ILP P, there is a corresponding LP Q such that, for every  

                 objective function there exists an integer optimal solution for Q  

                 (so solving the LP Q solves the ILP P). 

 

 
               1st

 Constraint 

 

  

 

 
                               
 

                                           
                                                     2nd

 Constraint  
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Question:  How easy is it to find the corresponding LP Q for an ILP in  

                 general ? 

 

 

 

 

 

 

 

 

 

 

Another example:  An Integer Linear Programming Formulation (ILP) 

of the Travelling Salesman Problem (TSP) 

 

 

General TSP:  Given a complete weighted graph G = (V,E) on n nodes, find  

                        a cycle which visits every node exactly once, and has                  

                        minimum weight (or cost).  We call the edge set of such a     

                        cycle a tour. 

 

We can represent any tour T by a 0-1 vector x ∈∈∈∈ R
E  

as follows: 

 

        1  if edge e is in T 

         xe  =       

                         0 otherwise 

 

 

Example:  For n = 4 

 

G: 

 

 

 

 

 

 

 

 

 

We can represent T for our example by  
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     x =   

 

 

 

Cost vector c  ∈∈∈∈ R
E
 for our example:  

 

    c =   

 

 

 

 

 

 

So the cost of T is  cx =  

 

 

 

An Integer Linear Programming  (ILP) formulation for the TSP is a set of 

linear constraints which, if satisfied by any 0,1 vector x, imply that x 

represents a tour. 

 

For this ILP formulation we have the following types of constraints: 

 

Degree Constraints:  The idea behind these constraints is that our tour must        

                                  come to and leave every node j exactly once. 

 

 

 

 

 

 

 

 

 

Form of constraints:      ∑ (xij :  i ∈V, i ≠ j) = 2       for all nodes j in V.   
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For our example: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Subtour Elimination Constraints 

 

Note that 0-1 vectors that satisfy all degree constraints may not represent a 

tour, as there may be subtours  present.  The subtour elimination constraints  

make sure that for any node subset S, our solution  comes to S and leaves it 

at least once. 

 

 

 

 

 

 

 

 

Form of constraints:   ∑ (xe :  e has exactly one end in S) ≥ 2  for all S⊂V,        

                                                                                                   |S|≥2, |S|≤n-2. 

For our example: 
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ILP Formulation: 

 

If you solve the ILP, for all x ∈∈∈∈ R
E
, 

 

                     minimize cx 

                     subject to  1)  degree constraints, 

                                      2)   subtour elimination constraints 

                                      3)  xe ∈ {0,1} 

 

then you will have a vector x whose 1's represent an optimal TSP tour for 

our problem. 

 

Problems: 

 

 

 

 

Question: How hard is it to find the necessary constraints to add to the  

                ILP for TSP so that we can drop the integer requirement? 

 

Answer: 

 

 

 

There have been a huge number of families of constraints which have  

all been shown to be necessary for this. 

 

 

For n=8:  The complete corresponding LP for the TSP has been found   

(by computer generation)  and there are_____________  constraints in  

total. 

 

 

 

 

No one knows the complete LP description for n>= 10 at this time. 
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3.  BRIEF BACKGROUND:  ALGORITHM ANALYSIS AND  

     COMPLEXITY THEORY 

 

Algorithm Analysis 

 

When we are analyzing algorithms to predict their run time in this  

course, we will be considering what happens in the worst case.  The  

analysis will be an approximation of the function f(k) (ignoring  

constants) that represents the number of basic operations performed  

by the algorithm when  the size k of the problem gets large.  The  

complexity of the algorithm will be written as Θ(f(k)) or Ο(f(k)). 

 

Notes:   

 

 

 

 

 

 

 

 

 

 

 

 

Complexity of Problems 

 

Classes of problems:  P, NP, NP-complete 

 

Class P:  The class of problems solvable in polynomial time. 

                 i.e. There is an algorithm known for the problem which has  

                       complexity bounded above by a polynomial in k. 
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Class NP (nondeterministic polynomial):  (just the idea) 

(Note:  It deals only with problems in their decision, i.e. yes/no form) 

 

The problems for which, for any input that has a yes answer, there is a  

certificate from which the correctness of this answer can be derived in  

polynomial time. 

 

Example: 

 

 

 

 

 

 

 

 

 

 

 

 

Class NP-complete: (hardest problems in NP) 

 

A problem Q (in decision form) that is in NP is called NP-complete if all  

problems in NP can be reduced to the problem. 

 

 

If a problem is NP-complete, it implies that if one problem can be  

solved in polynomial time, then they all can. 
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Relationship of problem sets P, NP, NP-complete: 

 

P⊆NP, NP-complete ⊆NP 

 

 

 

 

 

 

 

 

A very famous problem is to find the answer to the following   

 question:    Does P = NP?  

 

 

 

 

 

 

Note:  If you could find a polynomial-time algorithm for any one NP- 

           complete problem, then you would have shown that P = NP. 

 

 

 

Status of problems we have looked at so far: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


