
 0

CSI 5166

APPLICATIONS OF COMBINATORIAL

OPTIMIZATION

Class Notes

Winter 2017

By Dr. Sylvia Boyd

**These notes are not to be used, posted or

distributed without permission of the

author***

 1

1. Introduction and Background

What is Combinatorial Optimization?

 Optimization Problems

 Given a set of variables, x1, x2, ..., xn

 Given a set of constraints the variables must satisfy

 Given an objective function containing these variables

 which must be optimized

Type 1:

Variables are continuous

(in this case, there is an infinite

set of possible solutions)

Type 2:

Variables are discrete, i.e. each

variable can have only certain

values, such as 0 or 1.

(in this case there is a finite set

of feasible solutions--with each

of these solutions there is an

associated cost. Find the one of

min/max value).

Combinatorial optimization problems are discrete optimization problems.

The problems are often modelled by a weighted graph, and the constraints

and variables then represent something in the graph.

Example of a graph G:

 2

Some Examples of Combinatorial Optimization Problems

1. Optimal drilling of circuit boards

 (TRAVELLING SALESMAN PROBLEM)

Given a circuit board and a set of holes to be drilled by a laser drill which is

moved mechanically from hole to hole.

We wish to decide an order to drill these holes which requires the laser drill

to be moved the least distance.

This problem can be modelled using a complete weighted graph G:

 3

The circuit board drilling problem is an application of the what is called the

travelling salesman problem (TSP): Given a complete weighted graph G,

find a cycle which visits all the nodes exactly once and ends up

where it started, and has minimum weight.

2. Optimal assignment of T.A.'s and courses

 (MAXIMUM BIPARTITE MATCHING)

Given a set of courses and a set of possible TAs, connect a TA to the courses

which he/she is willing to TA. Find a matching of TAs to courses which

maximizes the number of courses that have a TA assigned.

Example:

This is an application of maximum bipartite matching: Given a bipartite

graph with partition X, Y of the nodes, find the largest set of edges which do

not share an end node.

 4

3. Construction of reliable communication networks

 (MINIMUM WEIGHT K-EDGE CONNECTED SUBGRAPH

 PROBLEM)

A communication network consists of centers and links. You can talk about

the reliability of the network in terms of the number of links that it can

withstand losing (and still have communication).

Examples:

In designing a network with a certain reliability, you are given the cost of

building each link. Now figure out which links to choose so that the

specified reliability is met, and the network has least cost to build.

 5

This is an application of the minimum weight k-edge connected subgraph

problem: Given a weighted graph G, find the subgraph of minimum weight

which is k-edge connected.

Example:

 6

4. Logic circuit plotter

(MINIMUM WEIGHT MATCHING PROBLEM, CHINESE POSTMAN

PROBLEM)

A plotter is used to draw proposed logic circuits. It operates by moving a

pen back and forth and, at the same time, rolling a sheet of paper (which is

on a roller) forwards and backwards underneath the pen.

Problem: Minimize the time to draw the circuit.

"pen-down" time + "pen-up" time

(actual drawing) (pen is not in contact with paper, but is

 moving from the end of one line to

 where it will start the next line)

(Note: Pen must end up where it started)

Example:

We can represent this as a graph by placing a node where 2 or more lines

meet or cross, or a line ends.

Can this circuit be drawn with no pen-up motion?

 7

Theorem (Euler): The figure can be traced with no pen-up motion if and

 only if it is connected and all nodes have even degree.

To minimize pen-up motion (this is similar to the Chinese Postman

Problem): Find a new set of lines we can add to the figure which turn every

odd node into an even node, such that the total traversal time of the new

lines is as small as possible. These new lines will "pair up" the odd nodes).

Let t(p,q) be the time required for the pen to move from p to q.

Create a new complete weighted graph consisting of the odd nodes, using

t(p,q) as the weights.

Now solve the minimum weight perfect matching problem: Find a set of n/2

node-disjoint edges such that the sum of the weights on the edges is

minimized.

 8

The result for our problem:

How will we draw the figure?

BACKGROUND INFORMATION

1. GRAPH THEORY

A graph G = (V,E) is defined as a finite set of nodes (also sometimes called

vertices) V which are interconnected by a finite set of edges E. We usually

use m to denote |E| and n to denote |V|. A graph is a very useful tool which

can be used to model many different problems.

Each edge e in E corresponds to two nodes in V, called the ends of e. An

edge e in E with ends u and v can be denoted by uv. Two nodes u and v are

said to be adjacent if uv is in E, and e is said to be incident with u and v.

 9

A graph is simple if it has no loops or parallel edges. A graph is complete if

it is simple and has all possible edges uv, for all nodes u, v in V, u ≠ v. The

complete graph on n nodes is denoted by Kn.

The neighbours of a node v are all the nodes in V which are adjacent to v in

G, and the degree of a node v is the number of neighbours of v, and is often

denoted by d(v). A graph with all node degree k is called k-regular.

Important Fact 1: Σ (d(v) : v∈V) = 2*|E|

Proof:

Important Fact 2: The number of nodes with odd degree is even in any graph.

Proof:

Important Fact 3: The number of edges in Kn is:

Proof:

 10

A weighted graph is one in which every edge is assigned a number called its

weight or cost.

A subgraph of a graph G = (V, E) is a graph G' = (V', E') such that V' is a

subset of V, and E' is a subset of E such that both ends of every edge in E'

are in V'. A subgraph is called spanning if V' = V.

A path from node v0 to node vk in a graph is a sequence of edges

v0v1, v1v2, …, vk-1vk, where v0,v1,…,vk are all distinct. Such a path can also

be represented by v0, v1, v2, …, vk. A single node is a path of length 0. A

cycle in a graph is like a path except v0 = vk. (i.e. we can represent a cycle by

a node sequence v0, v1, v2, …, vk, where the nodes are distinct except that v0

= vk and there is an edge vivi+1 for i = 0, 1, 2,...,k-1, and an edge vkv0 in G).

The length of a path or cycle is the number of edges contained in it.

A graph is k-edge connected if there are k edge-disjoint paths between every

pair of nodes. A 1-edge connected graph is simply called connected. A

component of a graph is a maximal connected subgraph.

 11

A cut in a graph is defined by a set of nodes Q⊆V and is the set of edges

with one end in Q, one end not in Q (this set of edges is denoted by δ(Q)).

Note that removing the edges of a cut from G disconnects that component.

Important Fact: A graph is k-edge connected if and only if the size of a

 smallest cut in G is k.

A graph is k-node connected if there are k paths between every pair of nodes

such that these paths are internally node-disjoint. A k-node cut is a set of

nodes such that removing these nodes from the graph (along with their

incident edges) disconnects the graph.

Important Fact: G is k-node connected if and only if the size of a smallest

 node cut is greater than or equal to k.

A graph is called acyclic if it contains no cycles. A forest is an acyclic

graph. A tree is a connected forest. The nodes of degree 1 in a tree are

called the leaves.

 12

A graph is called bipartite if there is a partition of the nodes into two sets X,

Y such that all edges have one end in X and one end in Y. A complete

bipartite graph is one for which all possible edges between X and Y are

included, and is denoted by Ka,b, where a=|X| and b=|Y|.

Important Fact: A bipartite graph contains no odd length cycle.

A directed graph, or digraph, is a graph in which all of the edges have been

given a direction. In a digraph, an edge is represented by an ordered pair

<u, v> where the edge (also called an arc) is directed from u to v. Node u is

called the tail of the arc, and v is called the head. The indegree of a node v

(denoted by d
in

(v)) is the number of edges directed into v, and the outdegree

of v (denoted by d
out

(v)) is the number of edges directed out of v.

Important Fact: Σ (d
in

(v) : v∈V) = Σ (d
out

(v) : v∈V) = |E|

A directed graph is called symmetric if d
in

(v) = d
out

(v) for all nodes v. A

directed graph is strongly connected if there is a directed path from u to v

and from v to u for all node pairs u and v.

 13

2. INTEGER AND LINEAR PROGRAMMING PROBLEMS

Given a set of variables x1, x2, ..., xn, a linear programming problem (LP)

has the form:

Minimize (or maximize) z = c1x1 + c2x2 + c3x3 + ... +cnxn

 Subject to:

 a11x1 + a12x2 + a13x3 + . . . a1nxn ≥ b1

 a21x1 + a22x2 + a23x3 + . . . a2nxn ≤ b2

 am1x1 + am2x2 + am3x3 + . . . amnxn = bm

 (may also have xi ≥ 0 for some or all i values)

Notes:

If there is an added restriction that the variables must have integer values,

then it is called an integer linear programming problem (ILP), and if the

variables all must be 0 or 1, then it is called a binary ILP. There are no

known efficient methods for solving ILPs exactly in general (although

sometimes there are methods that can be applied for particular ILPs). Later

we will look at some strategies for solving difficult combinatorial

optimization problems using both LP and ILP models.

:

.

 14

Modelling Example: An Integer Linear Programming Formulation

 (ILP) For the Perfect Matching Problem

General Perfect Matching Problem:

Given a complete weighted graph G = (V,E) on n nodes where n is even,

find a minimum weight (cost) perfect matching in G (a perfect matching is a

set of n/2 edges such that every node in V is an endpoint of exactly 1 of

these edges).

Example:

We can represent any perfect matching M by a 0-1 vector x ∈∈∈∈ R
E

as follows:

 1 if edge e is in M

 xe =

 0 otherwise

For our example:

For an ILP description:

Matching Degree Constraints: The idea behind these constraints is that there

 is exactly one edge in M incident with each

 node.

 15

Form of Constraints: ∑ (xij : i ∈V, i ≠ j) = 1 for all nodes j in V.

For our example:

ILP Formulation:

If you solve the ILP, for all x ∈∈∈∈ R
E
,

 minimize cx

 subject to 1) matching degree constraints,

 2) xe ∈ {0,1}

then you will have a vector x whose 1's represent an optimal perfect

matching M for our problem.

Linear Programming (LP) Formulation for Perfect Matchings:

If we relax the restriction of x being a 0-1 vector in the ILP formulation and

instead allow the values of x to lie anywhere between 0 and 1 (i.e. 0≤ xe ≤1),

we may get fractional optimal solutions to the corresponding LP.

Example:

 16

However, it turns out that for the perfect matching problem, there is another

set of constraints we can add to our LP which will ensure that there IS a 0-1

optimal solution.

Odd Cut Constraints: Suppose we have a subset S of the nodes such that the

 size of S is odd. What must be true about any perfect

 matching M of our graph?

How do we represent this as a set of constraints?

Final LP representation for perfect matchings:

If you solve the LP, for all x ∈∈∈∈ R
E
,

 minimize cx

 subject to 1) matching degree constraints,

 2) odd cut constraints

 3) 0≤ xe ≤1 for all edges e in E

then there will exist a 0-1 optimal solution x where the 1's correspond to a

perfect matching.

 17

ILP’s Geometrically

For any ILP we have a linear set of constraints defining a feasible region

(called the LP relaxation feasible region), and we are interested in the

integer solutions in that region.

This is illustrated in the figure below.

 1st

 Constraint

 2nd

 Constraint

 Plus nonnegativity

 objective function

Theorem: For any ILP P, there is a corresponding LP Q such that, for every

 objective function there exists an integer optimal solution for Q

 (so solving the LP Q solves the ILP P).

 1st

 Constraint

 2nd

 Constraint

 18

Question: How easy is it to find the corresponding LP Q for an ILP in

 general ?

Another example: An Integer Linear Programming Formulation (ILP)

of the Travelling Salesman Problem (TSP)

General TSP: Given a complete weighted graph G = (V,E) on n nodes, find

 a cycle which visits every node exactly once, and has

 minimum weight (or cost). We call the edge set of such a

 cycle a tour.

We can represent any tour T by a 0-1 vector x ∈∈∈∈ R
E

as follows:

 1 if edge e is in T

 xe =

 0 otherwise

Example: For n = 4

G:

We can represent T for our example by

 19

 x =

Cost vector c ∈∈∈∈ R
E
 for our example:

 c =

So the cost of T is cx =

An Integer Linear Programming (ILP) formulation for the TSP is a set of

linear constraints which, if satisfied by any 0,1 vector x, imply that x

represents a tour.

For this ILP formulation we have the following types of constraints:

Degree Constraints: The idea behind these constraints is that our tour must

 come to and leave every node j exactly once.

Form of constraints: ∑ (xij : i ∈V, i ≠ j) = 2 for all nodes j in V.

 20

For our example:

Subtour Elimination Constraints

Note that 0-1 vectors that satisfy all degree constraints may not represent a

tour, as there may be subtours present. The subtour elimination constraints

make sure that for any node subset S, our solution comes to S and leaves it

at least once.

Form of constraints: ∑ (xe : e has exactly one end in S) ≥ 2 for all S⊂V,

 |S|≥2, |S|≤n-2.

For our example:

 21

ILP Formulation:

If you solve the ILP, for all x ∈∈∈∈ R
E
,

 minimize cx

 subject to 1) degree constraints,

 2) subtour elimination constraints

 3) xe ∈ {0,1}

then you will have a vector x whose 1's represent an optimal TSP tour for

our problem.

Problems:

Question: How hard is it to find the necessary constraints to add to the

 ILP for TSP so that we can drop the integer requirement?

Answer:

There have been a huge number of families of constraints which have

all been shown to be necessary for this.

For n=8: The complete corresponding LP for the TSP has been found

(by computer generation) and there are_____________ constraints in

total.

No one knows the complete LP description for n>= 10 at this time.

 22

3. BRIEF BACKGROUND: ALGORITHM ANALYSIS AND

 COMPLEXITY THEORY

Algorithm Analysis

When we are analyzing algorithms to predict their run time in this

course, we will be considering what happens in the worst case. The

analysis will be an approximation of the function f(k) (ignoring

constants) that represents the number of basic operations performed

by the algorithm when the size k of the problem gets large. The

complexity of the algorithm will be written as Θ(f(k)) or Ο(f(k)).

Notes:

Complexity of Problems

Classes of problems: P, NP, NP-complete

Class P: The class of problems solvable in polynomial time.

 i.e. There is an algorithm known for the problem which has

 complexity bounded above by a polynomial in k.

 23

Class NP (nondeterministic polynomial): (just the idea)

(Note: It deals only with problems in their decision, i.e. yes/no form)

The problems for which, for any input that has a yes answer, there is a

certificate from which the correctness of this answer can be derived in

polynomial time.

Example:

Class NP-complete: (hardest problems in NP)

A problem Q (in decision form) that is in NP is called NP-complete if all

problems in NP can be reduced to the problem.

If a problem is NP-complete, it implies that if one problem can be

solved in polynomial time, then they all can.

 24

Relationship of problem sets P, NP, NP-complete:

P⊆NP, NP-complete ⊆NP

A very famous problem is to find the answer to the following

 question: Does P = NP?

Note: If you could find a polynomial-time algorithm for any one NP-

 complete problem, then you would have shown that P = NP.

Status of problems we have looked at so far:

