CSI 4105/ Winter 2017

CSI 4105 DESIGN AND ANALYSIS OF ALGORITHMS II (3, 0, 0) - 3 cr.

Theory of NP-completeness, methods for dealing with NP-complete problems. Selected topics in such areas as combinatorial optimization, computational geometry, cryptography, parallel algorithms.

	Dr. Sylvia Boyd, STE 5106 Email: sylvia@site.uottawa.ca Office Hours: Tuesdays 13:30-15:00			
TIME AND PLACE:	Wednesday Friday	13:00 - 14:30 11:30 - 13:00		
<u>COURSE WEB PAGE:</u> http://www.site.uottawa.ca/~sylvia/csi4105web/index.htm (some course information will be posted here)				
CLASS NOTES: Will be p	rovided by em	ail and/or on th	e course website.	
TEXTBOOK: (Required)	-	-	<i>thm Design</i> , Addison [•] the Agora bookstore.	Wesley.
COURSE EVALUATION	Midter	ents (there wil n tests (there w Wed. March 1	,	25% 50%

COURSE OBJECTIVES

• To understand the importance of a formal treatment of "problems" and "algorithms" in the design of algorithms for solving difficult problems and in Computer Science in general.

Project (see Project Outline for details)

25%

- To learn what NP-complete problems are, to be able to recognize NP-complete problems, and to be able to formally prove that certain problems are NP-complete.
- To learn techniques to deal with NP-complete problems, such as approximation algorithms, local search, backtracking and randomized algorithms, and to be able to analyze these algorithms.
- To also learn about other formal complexity classes for problems.

BRIEF COURSE OUTLINE

- 1) Introduction
- 2) NP-complete: Definition, examples.
- 3) Examples of reductions for NP-complete proofs.
- 4) Methods for dealing with NP-complete problems: Approximation algorithms, local search, backtracking, randomized algorithms.
- 5) Polynomial-time algorithms for special cases of NP-complete problems.
- 6) Beyond NP and NP-complete—other special complexity classifications of problems.

SOME SPECIAL IMPORTANT NOTES

- Taking photographs or videos during class is **strictly prohibited**.
- All materials prepared by the course professor, including lab manuals, class handouts and test papers, are **copyright**. Copying or scanning them or posting them on a website is therefore **a violation of copyright and is illegal**.