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Abstract. This paper introduces a new approach to a problem of data
sharing among multiple parties, without disclosing the data between the
parties. Our focus is data sharing among two parties involved in a data
mining task. We study how to share private or confidential data in the
following scenario: two parties, each having a private data set, want to
collaboratively conduct association rule mining without disclosing their
private data to each other or any other parties. To tackle this demanding
problem, we develop a secure protocol for two parties to conduct the
desired computation. The solution is distributed, i.e., there is no central,
trusted party having access to all the data. Instead, we define a protocol
using homomorphic encryption techniques to exchange the data while
keeping it private. All the parties are treated symmetrically: they all
participate in the encryption and in the computation involved in learning
the association rules.
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1 INTRODUCTION

In this paper, we address the following problem: two parties are cooperating on
a data-rich task. Each of the parties owns data pertinent to the aspect of the
task addressed by this party. More specifically, the data consists of instances,
and all parties have data about all the instances involved, but each party has
its own view of the instances - each party works with its own attribute set.
The overall performance, or even solvability, of this task depends on the ability
of performing data mining using all the attributes of all the parties. The two
parties, however, may be unwilling to release their attributes to other parties
that are not involved in collaboration, due to privacy or confidentiality of the
data. How can we structure information sharing between the parties so that
the data will be shared for the purpose of data mining, while at the same time
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specific attribute values will be kept confidential by the parties to whom they
belong? This is the task addressed in this paper. In the privacy-oriented data
mining this task is known as data mining with vertically partitioned data (also
known as heterogeneous collaboration [8].) Examples of such tasks abound in
business, homeland security, coalition building, medical research, etc.

Without privacy concerns, all parties can send their data to a trusted cen-
tral place to conduct the mining. However, in situations with privacy concerns,
the parties may not trust anyone. We call this type of problem the Privacy-
preserving Collaborative Data Mining problem. As stated above, in this paper
we are interested in heterogeneous collaboration where each party has different
sets of attributes [8].

Data mining includes a number of different tasks, such as association rule
mining, classification, and clustering. This paper studies the association rule
mining problem. The goal of association rule mining is to discover meaningful
association rules among the attributes of a large quantity of data. For example,
let us consider the database of a medical study, with each attribute represent-
ing a characteristic of a patient. A discovered association rule pattern could be
“70% of patients who suffer from medical condition C have a gene G”. This
information can be useful for the development of a diagnostic test, for pharma-
ceutical research, etc. Based on the existing association rule mining technologies,
we study the Private Mining of Association Rules problem defined as follows:
two parties want to conduct association rule mining on a data set that consists
all the parties’ private data, but neither party is willing to disclose her raw data
to each other or any other parties. In this paper, we develop a protocol, based
on homomorphic cryptography, to tackle the problem.

The paper is organized as follows: The related work is discussed in Section 2.
We describe the association rule mining procedure in Section 3. We then present
our proposed secure protocols in Section 4. We give our conclusion in Section 5.

2 RELATED WORK

2.1 Secure Multi-Party Computation

A Secure Multi-party Computation (SMC) problem deals with computing any
function on any input, in a distributed network where each participant holds
one of the inputs, while ensuring that no more information is revealed to a
participant in the computation than can be inferred from that participant’s
input and output. The SMC problem literature was introduced by Yao [13].
It has been proved that for any polynomial function, there is a secure multi-
party computation solution [7]. The approach used is as follows: the function F
to be computed is firstly represented as a combinatorial circuit, and then the
parties run a short protocol for every gate in the circuit. Every participant gets
corresponding shares of the input wires and the output wires for every gate. This
approach, though appealing in its generality and simplicity, is highly impractical
for large datasets.
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2.2 Privacy-Preserving Data Mining

In early work on privacy-preserving data mining, Lindell and Pinkas [9] propose
a solution to privacy-preserving classification problem using oblivious transfer
protocol, a powerful tool developed by secure multi-party computation (SMC)
research. The techniques based on SMC for efficiently dealing with large data
sets have been addressed in [4, 8].

Random perturbation-based approaches were firstly proposed by Agrawal
and Srikant in [3] to solve privacy-preserving data mining problem. In addition
to perturbation, aggregation of data values [11] provides another alternative to
mask the actual data values. In [1], authors studied the problem of computing
the kth-ranked element. Dwork and Nissim [5] showed how to learn certain types
of boolean functions from statistical databases in the context of probabilistic
implication for the disclosure of statistics.

Homomorphic encryption [10], which transforms multiplication of encrypted
plaintexts into the encryption of the sum of the plaintexts, has recently been used
in secure multi-party computation. For instance, Freedmen, Nissim and Pinkas
[6] applied it to set intersection. The work most related to ours is [12], where
Wright and Yang applied homomorphic encryption to the Bayesian networks
induction for the case of two parties. However, the core protocol which is called
Scalar Product Protocol can be easily attacked. In their protocol, since Bob knows
the encryption key e, when Alice sends her encrypted vector (e(a1), · · · , e(an)),
where ais are Alice’s vector elements, Bob can easily figure out whether ai is
1 or 0 through the following attack: Bob computes e(1), and then compares
it with e(ai). If e(1) = e(ai), then ai = 1, otherwise ai = 0. In this paper,
we develop a secure two-party protocol based on homomorphic encryption. Our
contribution not only overcomes the attacks which exist in [12], but applies our
secure protocol to tackle collaborative association rule mining problems.

3 MINING ASSOCIATION RULES ON PRIVATE
DATA

Since its introduction in 1993 [2], the association rule mining has received a great
deal of attention. It is still one of most popular pattern-discovery methods in the
field of knowledge discovery. Briefly, an association rule is an expression X ⇒ Y ,
where X and Y are sets of items. The meaning of such rules is as follows: Given
a database D of transactions, X ⇒ Y means that whenever a transaction R
contains X then R also contains Y with certain confidence. The rule confidence
is defined as the percentage of transactions containing both X and Y with regard
to the overall number of transactions containing X. The fraction of transactions
R supporting an item X with respect to database D is called the support of X.

3.1 Problem Definition

We consider the scenario where two parties, each having a private data set (de-
noted by D1 and D2 respectively), want to collaboratively conduct association
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rule mining on the concatenation of their data sets. Because they are concerned
about their data privacy, neither party is willing to disclose its raw data set to
the other. Without loss of generality, we make the following assumptions about
the data sets (the assumptions can be achieved by pre-processing the data sets
D1 and D2, and such a pre-processing does not require one party to send her
data set to other party): (1) D1 and D2 contain the same number of transac-
tions. Let N denote the total number of transactions for each data set. (2) The
identities of the ith (for i ∈ [1, N ]) transaction in D1 and D2 are the same.

Private Mining of Association Rule problem: Party 1 has a private data set
D1, party 2 has a private data set D2. The data set [D1 ∪D2] forms a database,
which is actually the concatenation of D1 and D2 (by putting D1 and D2 together
so that the concatenation of the ith row in D1 and D2 becomes the ith row in
[D1∪D2]). The two parties want to conduct association rule mining on [D1 ∪ D2]
and to find the association rules with support and confidence being greater than
the given thresholds. We say an association rule (e.g., xi ⇒ yj) has confidence
c% in the data set [D1∪D2] if in [D1∪D2] c% of the transactions which contain
xi also contain yj (namely, c% = P (yj | xi)). We say that the association rule
has support s% in [D1 ∪ D2] if s% of the transactions in [D1 ∪ D2] contain
both xi and yj (namely, s% = P (xi ∩ yj)). Consequently, in order to learn
association rules, one must compute the candidate itemsets, and then prune
those that do not meet the preset confidence and support thresholds. In order to
compute confidence and support of a given candidate itemset, we must compute,
for a given itemset C, the frequency of attributes (items) belonging to C in the
entire database (i.e., we must count how many attributes in C are present in
all transactions of the database, and divide the final count by the size of the
database which is N .). Note that association rule mining works on binary data,
representing presence or absence of items in transactions. However, the proposed
approach is not limited to the assumption about the binary character of the data
in the content of association rule mining.

3.2 Association Rule Mining Procedure

The following is the procedure for mining association rules on [D1 ∪ D2].

1. L1 = large 1-itemsets
2. for (k = 2; Lk−1 �= φ; k++) do begin
3. Ck = apriori-gen(Lk−1)
4. for all candidates c ∈ Ck do begin
5. Compute c.count 4

6. end
7. Lk = {c ∈ Ck|c.count ≥ min-sup}
8. end
9. Return L = ∪kLk

4 c.count divided by the total number of transactions is the support of a given item
set. We will show how to compute it in Section 3.3.
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The procedure apriori-gen is described in the following (please also see [2]
for details).

apriori-gen(Lk−1: large (k-1)-itemsets)

1. insert into Ck

2. select p.item1, p.item2, · · ·, p.itemk−1,q.itemk−1

3. from Lk−1 p, Lk−1 q
4. where p.item1 = q.item1, · · ·, p.itemk−2 = q.itemk−2, p.itemk−1 < q.itemk−1;

Next, in the prune step, we delete all itemsets c ∈ Ck

such that some (k-1)-subset of c is not in Lk−1:

1. for all itemsets c ∈ Ck do
2. for all (k-1)-subsets s of c do
3. if(s /∈ Lk−1) then
4. delete c from Ck;

3.3 How to compute c.count

In the procedure of association rule mining, the only steps accessing the ac-
tual data values are: (1) the initial step which computes large 1-itemsets, and
(2) the computation of c.count. Other steps, particularly computing candidate
itemsets, use merely attribute names. To compute large 1-itemsets, each party
selects her own attributes that contribute to large 1-itemsets. As only a single
attribute forms a large 1-itemset, there is no computation involving attributes
of the other party. Therefore, no data disclosure across parties is necessary.
However, to compute c.count, a computation accessing attributes belonging to
different parties is necessary. How to conduct this computations across parties
without compromising each party’s data privacy is the challenge we address.

If all the attributes belong to the same party, then c.count, which refers to the
frequency counts for candidates, can be computed by this party. If the attributes
belong to different parties, they then construct vectors for their own attributes
and apply our secure protocol, which will be discussed in Section 4, to obtain
c.count. We use an example to illustrate how to compute c.count. Alice and Bob
construct vectors Ck1 and Ck2 for their own attributes respectively. To obtain
c.count, they need to compute

∑N
i=1(Ck1[i] ·Ck2[i]) where N is the total number

of values in each vector. For instance, if the vectors are as depicted in Fig.1, then∑N
i=1(Ck1[i] · Ck2[i]) =

∑5
i=1(Ck1[i] · Ck2[i]) = 3. We provide a secure protocol

in Section 4 for the two parties to compute this value without revealing their
private data to each other.

4 COLLABORATIVE ASSOCIATION RULE MINING
PROTOCOL

How the collaborative parties jointly compute c.count without revealing their
raw data to each other presents a great challenge. In this section, we develop a
secure protocol to compute c.count between two parties.



6

1                                     1

0                                     1

  1   1

1 1

1 0

Alice                               Bob

Fig. 1. Raw Data For Alice and Bob

4.1 Introducing Homomorphic Encryption

In our secure protocols, we use homomorphic encryption [10] keys to encrypt
the parties’ private data. In particular, we utilize the following characterizer of
the homomorphic encryption functions: e(a1) × e(a2) = e(a1 + a2) where e is
an encryption function; a1 and a2 are the data to be encrypted. Because of the
property of associativity, e(a1 +a2 + ..+an) can be computed as e(a1)× e(a2)×
· · · × e(an) where e(ai) �= 0. That is

e(a1 + a2 + · · · + an) = e(a1) × e(a2) × · · · × e(an) (1)

4.2 Secure Two-Party Protocol

Let’s assume that Alice has a vector A1 and Bob has a vector A2. Both vectors
have N elements. We use A1i to denote the ith element in vector A1, and A2i

to denote the ith element in vector A2. In order to compute the c.count of an
itemset containing A1 and A2, Alice and Bob need to compute the scalar product
between A1 and A2.

Firstly, one of parties is randomly chosen as a key generator. For simplicity,
let’s assume Alice is selected as the key generator. Alice generates an encryption
key (e) and a decryption key (d). She applies the encryption key to the addition
of each value of A1 and Ri ∗ X (e.g., e(A1i + Ri ∗ X)), where Ri is a random
integer and X is an integer which is greater than N. She then sends e(A1i +
Ri ∗ X)s to Bob. Bob computes the multiplication

∏n
j=1[e(A1j + Ri ∗ X) ×

A2j ] when A2j = 1 (since when A2j = 0, the result of multiplication doesn’t
contribute to the c.count). He sends the multiplication results to Alice who
computes [d(e(A11 + A12 + · · · + A1j + (R1 + R2 + · · · + Rj) ∗ X)])modX =
(A11 +A12 + · · ·+A1j +(R1 +R2 + · · ·+Rj)∗X)modX and obtains the c.count.
In more detail, Alice and Bob follow the following protocol:

Protocol 1 (Secure Two-Party Protocol)

1. Alice generates a cryptographic key pair (d, e) of a homomorphic encryption
scheme. Let’s use e(.) denote encryption and d(.) denote decryption. Let X
be an integer number which is chosen by Alice and greater than N (i.e., the
number of transactions).
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2. Alice randomly generates an integer number R1 and sends e(A11 + R1 ∗ X)
to Bob.

3. Bob computes e(A11 + R1 ∗ X) ∗ A21.
4. Repeat Step 2 - 3 until Bob gets E1 = e(A11 + R1 ∗X) ∗A21, E2 = e(A12 +

R2 ∗ X) ∗ A22, · · · and EN = e(A1N + RN ∗ X) ∗ A2N . Since A2i is either 1
or 0, e(A1i + Ri ∗X) ∗A2i is either e(A1i + Ri ∗X) or 0. Note that R1, R2,
· · ·, and RN are unrelated random numbers.

5. Bob multiplies all the Eis for those A2is that are not equal to 0. In other
words, Bob computes the multiplication of all non-zero Eis, e.g., E =

∏
Ei

where Ei �= 0. Without loss of generality, let’s assume only the first j elements
are not equal to 0s. Bob then computes E = E1 ∗ E2 ∗ · · · ∗ Ej = [e(A11 +
R1 ∗X)×A21]× [e(A12 + R2 ∗X)×A22]× · · · × [e(A1j + Rj ∗X)×A2j ] =
[e(A11 + R1 ∗X)× 1]× [e(A12 + R2 ∗X)× 1]× · · · × [e(A1j + Rj ∗X)× 1] =
e(A11 + R1 ∗X)× e(A12 + R2 ∗X)× · · · × e(A1j + Rj ∗X) = e(A11 + A12 +
· · · + A1j + (R1 + R2 + · · · + Rj) ∗ X) according to Eq. 1.

6. Bob sends E to Alice.
7. Alice computes d(E)modX which is equal to c.count.

4.3 Analysis of Two-Party Protocol

Correctness Analysis Let us assume that both parties follow the protocol.
When Bob receives each encrypted element e(A1i +Ri∗X), he computes e(A1i +
Ri) ∗ A2i. If A2i = 0, then c.count does not change. Hence, Bob computes
the product of those elements whose A2is are 1s and obtains

∏
e(A1j + Rj) =

e(A11 +A12 + · · ·+A1j +(R1 +R2 + · · ·+Rj)∗X) (note that the first j terms are
used for simplicity in explanation), then sends it to Alice. After Alice decrypts
it, she obtains [d(e(A11 + A12 + · · · + A1j + (R1 + R2 + · · · + Rj) ∗ X))]modX
= (A11 + A12 + · · · + A1j + (R1 + R2 + · · · + Rj) ∗ X)modX which is equal to
the desired c.count. The reasons are as follows: when A2i = 1 and A1i = 0,
c.count does not change; only if both A1i and A2i are 1s, c.count changes. Since
(A11 + A12 + · · · + A1j) ≤ N < X, (A11 + A12 + · · · + A1j + (R1 + R2 +
· · · + Rj) ∗ X)modX = (A11 + A12 + · · · + A1j). In addition, when A2i = 1,
(A11 + A12 + · · · + A1j) gives the total number of times that both A1i and A2i

are 1s. Therefore, c.count is computed correctly.

Complexity Analysis The bit-wise communication cost of this protocol is
α(N + 1) where α is the number of bits for each encrypted element. The cost
is approximately α times of the optimal cost of a two-party scalar product. The
optimal cost of a scalar product is defined as the cost of conducting the product
of A1 and A2 without privacy constraints, namely one party simply sends its
data in plaintext to the other party.

The computational cost is caused by the following: (1) the generation of a
cryptographic key pair; (2) the total number of N encryptions, e.g., e(A1i+Ri∗X)
where i ∈ [1, N ]; (3)at most 3N-1 multiplications; (4) one decryption; (5) one
modulo operation; (6) N additions.
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Privacy Analysis All the information that Bob obtains from Alice is e(A11 +
R1 ∗ X), e(A12 + R2 ∗ X), · · · and e(A1N + RN ∗ X). Bob does not know the
encryption key e, Ris, and X. Assuming the homomorphic encryption is secure,
he cannot know Alice’s original element values. The information that Alice ob-
tains from Bob is

∏
[e(A1i + Ri ∗ X) ∗ A2i] for those that A2i = 1. After Alice

computes [d(
∏

e(A1i + Ri ∗ X) ∗ A2i)]modX for those that A2i = 1, she only
obtains c.count, and can’t exactly know Bob’s original element values. From
symmetric point of view, we could let Alice and Bob be the key generator in
turn. When computing the first half of their vector product, Alice is selected
as the key generator; when computing the second half vector product, Bob is
selected as the key generator.

5 CONCLUSION

In this paper, we consider the problem of private mining of association rules. In
particular, we study how two parties can collaboratively conduct association rule
mining on their joint private data. We develop a secure collaborative association
rule mining protocol based on homomorphic encryption scheme. In our protocol,
the parties do not need to send all their data to a central, trusted party. Instead,
we use the homomorphic encryption techniques to conduct the computations
across the parties without compromising their data privacy. Privacy analysis is
provided. Correctness of our protocols is shown and complexity of the protocols
is addressed as well. As future work, we will develop a privacy measure to quan-
titatively measure the privacy level achieved by our proposed secure protocols.
We will also apply our technique to other data mining computations, such as
secure collaborative clustering.
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