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Abstract 
 

Ability to predict whether a change in one file may 
require a change in another can be extremely helpful to a 
software maintainer. Software change repositories store 
historic changes applied to a software system. They 
therefore inherently contain a wealth of information 
regarding (hidden) interactions between different 
components of the system, including the files that have 
changed together in the past. Data mining techniques can 
be employed to learn from this software change 
experience. We will report on our research into mining 
the software change repository of a legacy system to learn 
a relation that maps file pairs to a value indicating 
whether changing one may require a change in the other. 
 
 

1. Introduction1 
 

In large software systems there are many unknown or 
undocumented relationships and interactions between dif-
ferent components of the system. Such undocumented 
relationships are major sources of complexity and cost for 
maintaining the system. 

Source code management systems, along with error 
tracking and change repositories maintain a 
comprehensive change history of a system. They 
inherently store a wealth of information regarding many 
of the interactions and relationships among different 
components of the system. Data mining methods convert 
data containing past experience with a given process into 
the knowledge about this process. Therefore, source code 
management systems are a fertile area of application for 
data mining. The idea here is to learn relationships among 
software entities from the historic change records. 

In Section 2 of this paper we present the notion of 
Relevance Relations among entities in a system. Section 3 
shows how the problem of learning a relevance relation 
can be mapped to a classification learning problem, while 
Section 4 describes the measures used to evaluate the 

                                                 
1 Due to the space limitation the discussion of related work has been 
kept to a minimum. 

quality of the learned classifiers. 
As a proof of concept we will learn a relevance relation 

between file pairs in a legacy system. This relation maps a 
pair of files to a value indicating whether changing one 
may require a change in the other. Such a relation can be 
very helpful to a software maintainer. 

To learn this relation we will mine the change reposi-
tory of our subject legacy system. Sections 5 to 7 provide 
the details of this process as well as some of the results. 
The conclusion and future work is presented in section 8.  
 

2. Relevance Among Software Entities 
 

In this section we provide the definitions of Relevance 
Relation and other concepts closely related to it. We will 
also discuss a specific example of such relations in the 
context of software maintenance. 
 
2.1 Relevance Relations 
 

Definition: A Software Entity is any semantically or 
syntactically valid construct in a software system that can 
be seen as a unit with a well defined purpose2.. 

Examples of software entities include documents, 
source files, routines, modules, variables etc. 

Definition: A Predictor is a relation that maps tuples 
of one or more software entities to corresponding values 
reflecting a prediction made about the elements of the 
tuples. 

Definition: A Relevance Relation (RR) is a predictor 
that maps tuples of two or more software entities to a 
value r quantifying how Relevant i.e. connected or related, 
the entities are to each other. In other words r shows the 
strength of relevance among the entities. Therefore, 
“Relevant” here is embedded in, and dependent on, the 
definition of the relation. 

For instance, in section 2.2 we will discuss a relevance 
relation called co-update that maps file pair tuples to one 
of two relevance values Relevant or Not-Relevant. 

The relevance value r can be a number between 0 (lack 
of any relevance) and 1 (100% relevant), in which case the 

                                                 
2 Unless otherwise stated, in this paper an entity means a software entity. 



relevance relation is continuous, or it can be one of a set 
of predefined values, in which case the relevance relation 
is discrete. 
 
2.2 A real world example of Relevance Relations 
 

When a maintenance programmer is looking at a piece 
of code, such as a file or a routine, one of the important 
questions that she needs to answer is: 

"which other files should I know about, i.e. what other 
files might be relevant to this piece of code ?". 

Knowing the answer to this question is essential in 
understanding and maintaining any software system 
regardless of the type of maintenance activity. 

In this paper we will therefore focus on a special kind 
of relevance relation where the entities are files. We want 
to learn a special class of Maintenance Relevance 
Relations (MRR) called the co update relation: 

co-update(fi, fj) →{Relevant, Not-Relevant} where, 
i ≠ j and fi and fj are any two files in the system. 
co-update(fi, fj) → Relevant means that a change in fi 

may result in a change in fj, and vice versa . 
As it can be seen in this definition, the co-update rela-

tion is a discrete relevance relation mapping two entities 
(files in this case) to one of the two relevance values. 

A relevance relation such as co-update could be used to 
assist a maintenance programmer in answering the above 
question about files. 
 

3. Relevance Relations and classification 
learning 
 

While in most cases one can easily specify the behavior 
of a relevance relation in terms of its domain and range, 
the actual definition of the relation is unknown. It is also 
the case that one could provide instances of the relation of 
interest, without knowing an exact definition for it. For 
instance by looking at a software change repository we 
can find past instances of the co-update relation, without 
knowing the definition of the relation itself. If we knew 
the definition, we could use it to predict whether for any 
pair of files in the system a change in one may require a 
change in another, even if we do not have a record of them 
being changed together in the past. Therefore, it is natural 
for one to try to learn from these instances. 

The problem of learning a relevance relation can be 
directly mapped to a classification learning problem. Here 
the classifier represents the learned relevance relation. In 
classification learning terminology we are trying to learn a 
concept e.g. the co-update relation between files. Figure 1 
shows the relation between a relevance relation and a 
classifier modeling it. 

To learn a concept such as the co-update relation, an 
induction algorithm must be provided with pre-labeled 
(pre-classified) examples or cases of that concept. The 

example consists of the description of the concept and an 
assigned class or label. An example is described by 
calculating the value of a list of predefined attributes or 
features. The features of an example must describe the 
entities in the corresponding tuple which is mapped by the 
relevance relation. For instance an attribute could be the 
file type of the first file in a co-update tuple with possible 
values “source” and “header”. Another attribute could be 
the number of routines called by both files in the tuple. In 
the first case the attribute is based on one of the entities in 
the tuple, while in the latter case the attribute is based on 
two entities. 

Actual Relevance Value r 

Tuple of 
entities 

Relevance Relation R

Case (a1, a2, a3, a4, …, aN) 

Classified as r’ Classified as r’ 

(ei, ej, …, ez) 

Classifier/Model

 
Figure 1. The Mapping between a Relevance 
Relation and a Classifier 

The output of the induction algorithm is a classifier 
which will model the relevance relation of interest. As 
Figure 1 suggests, once a model is learned a previously 
unseen tuple of entities (ei, ei,…, , ez) can be translated to 
a case with feature or attribute values (a1, a2,…, , aN), and 
input to the learned model. The output of the model r’ is 
an approximation of the actual relevance value r 3. A 
classifier that always correctly classifies the given cases, 
accurately represents the corresponding relevance relation. 
However, this is hardly ever the case in a real world 
setting. In Section 4 we will discuss how we can measure 
the performance of generated classifiers or models. 

Due to software engineers’ time restrictions it is not 
always practical to ask them to provide instances of the 
co-update relation, therefore we used heuristics instead. 

We extract from the software change repository all the 
updates applied to the system within the time period for 
which the data will be mined. The Co-update heuristic 
suggests that files changed together by each update be 
paired and label as Relevant.  

The Not-Relevant heuristic labels a pair of files as 
Not-Relevant if these files are not changed by any updates 
within the time period used for mining 

If T=[T1,T2] is the period of time to which the Co-
update heuristic was applied, T’=[T3,T2] the period of time 
to which the Not Relevant heuristic is applied includes T 
i.e., T3 ≤ T1 

Our methodology allows the set of Not-Relevant tuples 
                                                 
3 Here we emphasize that any relevance relation can be modeled by a 
classifier learned from the instances of that relation. For the special case 
of suggesting software entities that tend to change together one could 
also employ other techniques such as association rule learning as 
discussed in [5]. 



be further refined, if there is additional information, e.g. 
expert feedback, suggesting a tuple should not be labeled 
as Not-Relevant. 
 
4. Measuring classifier performance 
 

Figure 2 shows a confusion matrix, where the counts of 
predicted versus actual class of examples used for 
evaluating a model are tabulated. The following measures 
can be derived from this matrix. 
  Classified As 
  Relevant Not-Relevant 

Relevant a b True Class 
Not-Relevant c d 
Figure 2. A confusion matrix 
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In our research we consider the Relevant class to be the 
positive class and the Not-Relevant class the negative 
class. TPR and FPR are the True Positive and the False 
Positive rates for the Relevant class. Readers familiar with 
the Recall measure will recognize that it is the same as 
true positive rate. Ec is the Cost Sensitive Error Rate. It 
generalizes the formula for Error Rate by allowing arbi-
trary cost factors to be assigned to each of the two possi-
ble misclassifications. CNP is the cost factor for misclassi-
fying negative examples e.g. Not-Relevant as positive. 
CPN is the cost factor for misclassifying positive examples 
e.g. Relevant, as negative. When the costs for both kinds 
of errors are set to one, this formula simplifies to the for-
mula for error rate. 

All three measures above are normalized. Ideally we 
would like to have a classifier with a true positive rate of 
1, and the false positive and error rates of 0.  
 

5. Attributes used in our experiments 
 

To learn the co-update relation, we have experimented 
with different sets of attributes. These attribute sets can be 
divided into two groups: 

• Syntactic attributes 
• Text based attributes 
Syntactic attributes are based on syntactic constructs in 

the source code such as function calls, variable definitions 
or type definitions. These attributes are extracted by static 
analysis of the source code4. They also include attributes 
                                                 
4Computing the value of some of these attributes involves steps similar 
to the ones taken to measure well known static software product metrics 
such as fan in, fan out, and cyclomatic complexity.  

based on names given to files. Interested readers can find 
the complete list of these attributes in [4]. 

Text-based attributes allow us to exploit another source 
of knowledge about the files modified together: the text of 
comments and problem reports. Each file is represented by 
a vector of features that correspond to the words found in 
the collection of all comments or all problem reports. 
Such a “bag of words” is a commonly used representation 
method for documents in information retrieval and 
machine learning. The Boolean bag of words 
representation sets a feature to true if the corresponding 
word exists in the document and false otherwise. 

We have adapted this representation to accommodate 
file pair tuples as is the case for the co-update relation. 
After assigning a bag of word feature vector to each file, 
we create an example for tuple (fi, fj, r) by creating a new 
bag of words feature vector which is the intersection (or 
logical AND) of the feature vectors corresponding to fi 
and fj. Therefore, in the new file pair feature vector a 
feature is set to true if the corresponding word appeared in 
the sets of words assigned to both fi and fi, otherwise the 
feature is set to false. The idea here is to find similarities 
between the two files. Of course the example will be 
labeled as r e.g. Relevant or Not-Relevant. 

We have created bag of word feature vectors for files 
using: 

• Source code comments 
• Problem reports 
In the first case a program file is seen as a document, 

i.e. assigned a set of words, consisting of the words in its 
comments. 

In the case of problem reports the words in problem 
reports must somehow be associated with program files. 
This is achieved by creating a set of words for each file 
consisting of the words in all problem reports that caused 
it to change. 
 

6. Experimental setup 
 

The subject for our experiments was a large telephone 
switching software system (a PBX) developed by Mitel 
Networks corporation. This software was originally 
created in 1983 and is still a major source of revenue for 
our industrial partner. Approximately 1.9 millions lines of 
high level language (HLL) and Assembler code were 
distributed in about 4700 source files. The high level 
language source files which are the subject of this report 
constitute about 75% of these files. 

In our research we used the source code and error 
tracking and update data maintained in a system called 
SMS. Using SMS one can view problem reports submitted 
against the system and updates applied to fix them. By 
applying the Co-update heuristic we extracted a set of file 
pairs that were changed together by updates submitted in 
the 1995 to 1999 time period, i.e. the set of Relevant file 



pairs. Using the Not-Relevant heuristic mentioned earlier, 
we found a set of file pairs that were not changed together 
during this time period, i.e. the set of Not-Relevant file 
pairs5. 

The group size of an update is the number of files 
changed by it. Experiments reported in this paper limit the 
Relevant file pairs to the ones changed by updates where 
the group size is at most 20. These updates constitute 93% 
of updates with a group size larger than 1. Our 
experiments have shown that limiting group size generate 
better results than not doing so. We generate a new 
Relevant tuple (and example) for each individual update 
that change a pair of files together. Table 1 shows the 
distribution of Relevant and Not Relevant examples used 
in our experiments. We split these examples to 1/3 
Training Repository and 2/3 Testing Repository. 

 
Table 1. Class distributions 

 Relevant Not Relevant #Relevant/#Not Relevant
All 4547 1226827 0.00371 
Training 3031 817884 0.00371 
Testing 1516 408943 0.00371 
As discussed above for each instance of the co-update 

relation we generate an example by calculating the value 
for a set of predefined attributes. We use the relevance 
value of the instance as example’s label e.g., Relevant. 

Table 1 shows that the number of Not-Relevant 
examples is about 270 times the number of Relevant 
examples. This imbalance creates difficulties for most 
learning algorithms as they are designed to select models 
with higher accuracy. In this skewed scenario a classifier 
that classifies every example as Not-Relevant will have a 
very high accuracy, yet it will be completely useless. To 
compensate for this, we train our classifiers on far less 
skewed data sets. These training sets include all the 
Relevant examples and a sampled subset of Not-Relevant 
examples in the training repository so that thy will have 
the following Not-Relevant/Relevant ratios: 

1-10,15,20,25,30,35,40,45,50 
In other words we learn from 18 training sets with the 

above skewness ratios and test on the complete testing 
repository that has the original skewness among classes. 
In the reminder of this paper any reference to a “ratio N 
classifier” means a classifier that is trained on a training 
set with a skewness ratio N. 

The learning system used in our experiments is C5.06, 
an advanced version of the C4.5 decision tree learner [3]. 
Decision tree learning is one of most widely used and well 

                                                 
5 To further restrict the size of this set the first file in a Not-Relevant pair 
must also appear as the first file in a Relevant file pair. 
6 We have also experimented with a simple learning algorithm called 1R 
[1] and Set Covering Machines (SCM) [2].The unsatisfactory, 1R results 
shows the complexity of the data. Results obtained for SCM were not 
significantly better than the ones obtained with C5.0. 

researched areas of machine learning. A decision tree is an 
explainable model that can be studied and reasoned about 
by domain experts. 
 
7. Comparing models learned from syntactic and 
text based features 
 

We have learned models of the co-update relevance 
relation by conducting three sets of experiments using the 
17 syntactic feature set, the source file comment feature 
set, and the problem report feature set. Each set of 
experiments generated 18 classifiers corresponding to the 
above training skewness ratios. For each set of 
experiments we plotted TPR of each classifier against its 
FPR. This plot is known as the ROC plot. Figure 3 shows 
the ROC plot generated from these experiments7. In an 
ROC plot the ideal point is (1, 0) where the true positive 
rate is at its maximum and the false positive rate is at its 
minimum. A classifier that is on the north-west side of 
another classifier on the plot, i.e. closer to point (1, 0), is  
said to be the dominant one.. In the ROC plots shown in 
this paper the rightmost point corresponds to a classifier 
learned from a balanced training set, while the leftmost 
point corresponds to ratio 50 classifier. 

As Figure 3 shows the text based attributes generate 
models that dominate the classifiers generated from 
syntactic features. The problem report based features 
generated the best models. Increasing the number of 
Not-Relevant examples in the training set causes a drop in 
TPR  and FPR. The drop in TPR, which is the undesirable 
effect, is far less in the case of classifiers learned from 
problem report based features. A closer look at the ratio 
50 problem report based classifier revealed that it achieves 
a precision of 62% and a recall of 86% for the Relevant 
class. We believe performance values such as these makes 
a classifier a good candidate for field deployment. 

We also combined text based features used in the clas-
sifiers of Figure 3 with syntactic features and repeated our 
experiments using these combined feature sets. As can be 
seen in Figures 4 and 5 the classifiers generated from the 
combined feature sets in most cases dominate the original 
text based classifiers. The effects are more prominent in 
the case of source file comment based classifiers, however 
this should not be very surprising as the problem report 
based classifiers already show fairly high quality. 

Finally, Figure 6 shows the cost sensitive error rate 
plots for the ratio 50 text based classifiers and two random 
classifiers used as comparison baselines. In a two class 
classification problem, a common baseline is a random 
classifier with a probability of 50% for each class. 
However since the distribution of our classes is skewed 
we have also used a classifier with the same skewness as 
the testing repository. Examples in the testing repository 

                                                 
7 The axes in these plots are scaled between 0 and 100. 



are randomly classified, with the desired probabilities, by 
these classifiers. To better account for the variation in the 
randomness, we create one accumulative confusion matrix 
for each classifier by repeating this 10 times. Figure 6 
shows that increasing cost factors CNP.and CPN both 

increase the cost sensitive error rate, however text based 
classifiers perform better than both base random 
classifiers. The problem report based classifier generated 
the best cost sensitive error rates. 
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Figure 3. Comparing syntactic and text based 
features 
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Figure 5. Combining syntactic and problem report 
features 
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Figure 4. Combining syntactic and source file 
comment features 
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Figure 6. Cost sensitive error rate plots 

 

8. Conclusion and future work 
 

In this paper we presented the notion of Relevance 
Relation to represent relations among entities in a soft-
ware system. We showed how classification learning can 
be used to model relevance relations. As a case study we 
set out to learn models for the co-update relevance rela-
tion between pairs of files in a large legacy system. 

We presented results obtained from syntactic and text 
based feature sets, and their combinations. Our results 
show one can learn models with performance values that 
merit their practical use. We further analyzed these 
models under different misclassification cost assignments 
to evaluate their quality. The problem report based models 
generate some of the lowest cost sensitive error rates even 
in the presence of high misclassification costs. In the 
future we intend to experiment with other feature sets, and 

learn other relevance relations in software systems. We 
also plan to deploy the learned classifiers and evaluate 
their performance in the field. 
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