
Mining the Software Change Repository of a Legacy Telephony System

Jelber Sayyad Shirabad, Timothy C. Lethbridge, Stan Matwin
School of Information Technology and Engineering

University of Ottawa, Ottawa, Ontario, K1N 6N5 Canada
{jsayyad,tcl,stan}@site.uottawa.ca)

Abstract

Ability to predict whether a change in one file may
require a change in another can be extremely helpful to a
software maintainer. Software change repositories store
historic changes applied to a software system. They
therefore inherently contain a wealth of information
regarding (hidden) interactions between different
components of the system, including the files that have
changed together in the past. Data mining techniques can
be employed to learn from this software change
experience. We will report on our research into mining
the software change repository of a legacy system to learn
a relation that maps file pairs to a value indicating
whether changing one may require a change in the other.

1. Introduction1

In large software systems there are many unknown or
undocumented relationships and interactions between dif-
ferent components of the system. Such undocumented
relationships are major sources of complexity and cost for
maintaining the system.

Source code management systems, along with error
tracking and change repositories maintain a
comprehensive change history of a system. They
inherently store a wealth of information regarding many
of the interactions and relationships among different
components of the system. Data mining methods convert
data containing past experience with a given process into
the knowledge about this process. Therefore, source code
management systems are a fertile area of application for
data mining. The idea here is to learn relationships among
software entities from the historic change records.

In Section 2 of this paper we present the notion of
Relevance Relations among entities in a system. Section 3
shows how the problem of learning a relevance relation
can be mapped to a classification learning problem, while
Section 4 describes the measures used to evaluate the

1 Due to the space limitation the discussion of related work has been
kept to a minimum.

quality of the learned classifiers.
As a proof of concept we will learn a relevance relation

between file pairs in a legacy system. This relation maps a
pair of files to a value indicating whether changing one
may require a change in the other. Such a relation can be
very helpful to a software maintainer.

To learn this relation we will mine the change reposi-
tory of our subject legacy system. Sections 5 to 7 provide
the details of this process as well as some of the results.
The conclusion and future work is presented in section 8.

2. Relevance Among Software Entities

In this section we provide the definitions of Relevance
Relation and other concepts closely related to it. We will
also discuss a specific example of such relations in the
context of software maintenance.

2.1 Relevance Relations

Definition: A Software Entity is any semantically or
syntactically valid construct in a software system that can
be seen as a unit with a well defined purpose2..

Examples of software entities include documents,
source files, routines, modules, variables etc.

Definition: A Predictor is a relation that maps tuples
of one or more software entities to corresponding values
reflecting a prediction made about the elements of the
tuples.

Definition: A Relevance Relation (RR) is a predictor
that maps tuples of two or more software entities to a
value r quantifying how Relevant i.e. connected or related,
the entities are to each other. In other words r shows the
strength of relevance among the entities. Therefore,
“Relevant” here is embedded in, and dependent on, the
definition of the relation.

For instance, in section 2.2 we will discuss a relevance
relation called co-update that maps file pair tuples to one
of two relevance values Relevant or Not-Relevant.

The relevance value r can be a number between 0 (lack
of any relevance) and 1 (100% relevant), in which case the

2 Unless otherwise stated, in this paper an entity means a software entity.

relevance relation is continuous, or it can be one of a set
of predefined values, in which case the relevance relation
is discrete.

2.2 A real world example of Relevance Relations

When a maintenance programmer is looking at a piece
of code, such as a file or a routine, one of the important
questions that she needs to answer is:

"which other files should I know about, i.e. what other
files might be relevant to this piece of code ?".

Knowing the answer to this question is essential in
understanding and maintaining any software system
regardless of the type of maintenance activity.

In this paper we will therefore focus on a special kind
of relevance relation where the entities are files. We want
to learn a special class of Maintenance Relevance
Relations (MRR) called the co update relation:

co-update(fi, fj) →{Relevant, Not-Relevant} where,
i ≠ j and fi and fj are any two files in the system.
co-update(fi, fj) → Relevant means that a change in fi

may result in a change in fj, and vice versa .
As it can be seen in this definition, the co-update rela-

tion is a discrete relevance relation mapping two entities
(files in this case) to one of the two relevance values.

A relevance relation such as co-update could be used to
assist a maintenance programmer in answering the above
question about files.

3. Relevance Relations and classification
learning

While in most cases one can easily specify the behavior
of a relevance relation in terms of its domain and range,
the actual definition of the relation is unknown. It is also
the case that one could provide instances of the relation of
interest, without knowing an exact definition for it. For
instance by looking at a software change repository we
can find past instances of the co-update relation, without
knowing the definition of the relation itself. If we knew
the definition, we could use it to predict whether for any
pair of files in the system a change in one may require a
change in another, even if we do not have a record of them
being changed together in the past. Therefore, it is natural
for one to try to learn from these instances.

The problem of learning a relevance relation can be
directly mapped to a classification learning problem. Here
the classifier represents the learned relevance relation. In
classification learning terminology we are trying to learn a
concept e.g. the co-update relation between files. Figure 1
shows the relation between a relevance relation and a
classifier modeling it.

To learn a concept such as the co-update relation, an
induction algorithm must be provided with pre-labeled
(pre-classified) examples or cases of that concept. The

example consists of the description of the concept and an
assigned class or label. An example is described by
calculating the value of a list of predefined attributes or
features. The features of an example must describe the
entities in the corresponding tuple which is mapped by the
relevance relation. For instance an attribute could be the
file type of the first file in a co-update tuple with possible
values “source” and “header”. Another attribute could be
the number of routines called by both files in the tuple. In
the first case the attribute is based on one of the entities in
the tuple, while in the latter case the attribute is based on
two entities.

Actual Relevance Value r

Tuple of
entities

Relevance Relation R

Case (a1, a2, a3, a4, …, aN)

Classified as r’ Classified as r’

(ei, ej, …, ez)

Classifier/Model

Figure 1. The Mapping between a Relevance
Relation and a Classifier

The output of the induction algorithm is a classifier
which will model the relevance relation of interest. As
Figure 1 suggests, once a model is learned a previously
unseen tuple of entities (ei, ei,…, , ez) can be translated to
a case with feature or attribute values (a1, a2,…, , aN), and
input to the learned model. The output of the model r’ is
an approximation of the actual relevance value r 3. A
classifier that always correctly classifies the given cases,
accurately represents the corresponding relevance relation.
However, this is hardly ever the case in a real world
setting. In Section 4 we will discuss how we can measure
the performance of generated classifiers or models.

Due to software engineers’ time restrictions it is not
always practical to ask them to provide instances of the
co-update relation, therefore we used heuristics instead.

We extract from the software change repository all the
updates applied to the system within the time period for
which the data will be mined. The Co-update heuristic
suggests that files changed together by each update be
paired and label as Relevant.

The Not-Relevant heuristic labels a pair of files as
Not-Relevant if these files are not changed by any updates
within the time period used for mining

If T=[T1,T2] is the period of time to which the Co-
update heuristic was applied, T’=[T3,T2] the period of time
to which the Not Relevant heuristic is applied includes T
i.e., T3 ≤ T1

Our methodology allows the set of Not-Relevant tuples

3 Here we emphasize that any relevance relation can be modeled by a
classifier learned from the instances of that relation. For the special case
of suggesting software entities that tend to change together one could
also employ other techniques such as association rule learning as
discussed in [5].

be further refined, if there is additional information, e.g.
expert feedback, suggesting a tuple should not be labeled
as Not-Relevant.

4. Measuring classifier performance

Figure 2 shows a confusion matrix, where the counts of
predicted versus actual class of examples used for
evaluating a model are tabulated. The following measures
can be derived from this matrix.
 Classified As
 Relevant Not-Relevant

Relevant a b True Class
Not-Relevant c d
Figure 2. A confusion matrix

TPR=
casesRelevant ofNumber
classifiedcorrectly casesRelevant =

ba

a

+

FPR=
casesRelevant Not ofNumber
classifiedy incorrectl casesRelevant -Not =

dc

c

+

Ec=
dcCbCa

cCbC

NPPN

NPPN

+++

+

**

**

In our research we consider the Relevant class to be the
positive class and the Not-Relevant class the negative
class. TPR and FPR are the True Positive and the False
Positive rates for the Relevant class. Readers familiar with
the Recall measure will recognize that it is the same as
true positive rate. Ec is the Cost Sensitive Error Rate. It
generalizes the formula for Error Rate by allowing arbi-
trary cost factors to be assigned to each of the two possi-
ble misclassifications. CNP is the cost factor for misclassi-
fying negative examples e.g. Not-Relevant as positive.
CPN is the cost factor for misclassifying positive examples
e.g. Relevant, as negative. When the costs for both kinds
of errors are set to one, this formula simplifies to the for-
mula for error rate.

All three measures above are normalized. Ideally we
would like to have a classifier with a true positive rate of
1, and the false positive and error rates of 0.

5. Attributes used in our experiments

To learn the co-update relation, we have experimented
with different sets of attributes. These attribute sets can be
divided into two groups:

• Syntactic attributes
• Text based attributes
Syntactic attributes are based on syntactic constructs in

the source code such as function calls, variable definitions
or type definitions. These attributes are extracted by static
analysis of the source code4. They also include attributes

4Computing the value of some of these attributes involves steps similar
to the ones taken to measure well known static software product metrics
such as fan in, fan out, and cyclomatic complexity.

based on names given to files. Interested readers can find
the complete list of these attributes in [4].

Text-based attributes allow us to exploit another source
of knowledge about the files modified together: the text of
comments and problem reports. Each file is represented by
a vector of features that correspond to the words found in
the collection of all comments or all problem reports.
Such a “bag of words” is a commonly used representation
method for documents in information retrieval and
machine learning. The Boolean bag of words
representation sets a feature to true if the corresponding
word exists in the document and false otherwise.

We have adapted this representation to accommodate
file pair tuples as is the case for the co-update relation.
After assigning a bag of word feature vector to each file,
we create an example for tuple (fi, fj, r) by creating a new
bag of words feature vector which is the intersection (or
logical AND) of the feature vectors corresponding to fi
and fj. Therefore, in the new file pair feature vector a
feature is set to true if the corresponding word appeared in
the sets of words assigned to both fi and fi, otherwise the
feature is set to false. The idea here is to find similarities
between the two files. Of course the example will be
labeled as r e.g. Relevant or Not-Relevant.

We have created bag of word feature vectors for files
using:

• Source code comments
• Problem reports
In the first case a program file is seen as a document,

i.e. assigned a set of words, consisting of the words in its
comments.

In the case of problem reports the words in problem
reports must somehow be associated with program files.
This is achieved by creating a set of words for each file
consisting of the words in all problem reports that caused
it to change.

6. Experimental setup

The subject for our experiments was a large telephone
switching software system (a PBX) developed by Mitel
Networks corporation. This software was originally
created in 1983 and is still a major source of revenue for
our industrial partner. Approximately 1.9 millions lines of
high level language (HLL) and Assembler code were
distributed in about 4700 source files. The high level
language source files which are the subject of this report
constitute about 75% of these files.

In our research we used the source code and error
tracking and update data maintained in a system called
SMS. Using SMS one can view problem reports submitted
against the system and updates applied to fix them. By
applying the Co-update heuristic we extracted a set of file
pairs that were changed together by updates submitted in
the 1995 to 1999 time period, i.e. the set of Relevant file

pairs. Using the Not-Relevant heuristic mentioned earlier,
we found a set of file pairs that were not changed together
during this time period, i.e. the set of Not-Relevant file
pairs5.

The group size of an update is the number of files
changed by it. Experiments reported in this paper limit the
Relevant file pairs to the ones changed by updates where
the group size is at most 20. These updates constitute 93%
of updates with a group size larger than 1. Our
experiments have shown that limiting group size generate
better results than not doing so. We generate a new
Relevant tuple (and example) for each individual update
that change a pair of files together. Table 1 shows the
distribution of Relevant and Not Relevant examples used
in our experiments. We split these examples to 1/3
Training Repository and 2/3 Testing Repository.

Table 1. Class distributions

 Relevant Not Relevant #Relevant/#Not Relevant
All 4547 1226827 0.00371
Training 3031 817884 0.00371
Testing 1516 408943 0.00371
As discussed above for each instance of the co-update

relation we generate an example by calculating the value
for a set of predefined attributes. We use the relevance
value of the instance as example’s label e.g., Relevant.

Table 1 shows that the number of Not-Relevant
examples is about 270 times the number of Relevant
examples. This imbalance creates difficulties for most
learning algorithms as they are designed to select models
with higher accuracy. In this skewed scenario a classifier
that classifies every example as Not-Relevant will have a
very high accuracy, yet it will be completely useless. To
compensate for this, we train our classifiers on far less
skewed data sets. These training sets include all the
Relevant examples and a sampled subset of Not-Relevant
examples in the training repository so that thy will have
the following Not-Relevant/Relevant ratios:

1-10,15,20,25,30,35,40,45,50
In other words we learn from 18 training sets with the

above skewness ratios and test on the complete testing
repository that has the original skewness among classes.
In the reminder of this paper any reference to a “ratio N
classifier” means a classifier that is trained on a training
set with a skewness ratio N.

The learning system used in our experiments is C5.06,
an advanced version of the C4.5 decision tree learner [3].
Decision tree learning is one of most widely used and well

5 To further restrict the size of this set the first file in a Not-Relevant pair
must also appear as the first file in a Relevant file pair.
6 We have also experimented with a simple learning algorithm called 1R
[1] and Set Covering Machines (SCM) [2].The unsatisfactory, 1R results
shows the complexity of the data. Results obtained for SCM were not
significantly better than the ones obtained with C5.0.

researched areas of machine learning. A decision tree is an
explainable model that can be studied and reasoned about
by domain experts.

7. Comparing models learned from syntactic and
text based features

We have learned models of the co-update relevance
relation by conducting three sets of experiments using the
17 syntactic feature set, the source file comment feature
set, and the problem report feature set. Each set of
experiments generated 18 classifiers corresponding to the
above training skewness ratios. For each set of
experiments we plotted TPR of each classifier against its
FPR. This plot is known as the ROC plot. Figure 3 shows
the ROC plot generated from these experiments7. In an
ROC plot the ideal point is (1, 0) where the true positive
rate is at its maximum and the false positive rate is at its
minimum. A classifier that is on the north-west side of
another classifier on the plot, i.e. closer to point (1, 0), is
said to be the dominant one.. In the ROC plots shown in
this paper the rightmost point corresponds to a classifier
learned from a balanced training set, while the leftmost
point corresponds to ratio 50 classifier.

As Figure 3 shows the text based attributes generate
models that dominate the classifiers generated from
syntactic features. The problem report based features
generated the best models. Increasing the number of
Not-Relevant examples in the training set causes a drop in
TPR and FPR. The drop in TPR, which is the undesirable
effect, is far less in the case of classifiers learned from
problem report based features. A closer look at the ratio
50 problem report based classifier revealed that it achieves
a precision of 62% and a recall of 86% for the Relevant
class. We believe performance values such as these makes
a classifier a good candidate for field deployment.

We also combined text based features used in the clas-
sifiers of Figure 3 with syntactic features and repeated our
experiments using these combined feature sets. As can be
seen in Figures 4 and 5 the classifiers generated from the
combined feature sets in most cases dominate the original
text based classifiers. The effects are more prominent in
the case of source file comment based classifiers, however
this should not be very surprising as the problem report
based classifiers already show fairly high quality.

Finally, Figure 6 shows the cost sensitive error rate
plots for the ratio 50 text based classifiers and two random
classifiers used as comparison baselines. In a two class
classification problem, a common baseline is a random
classifier with a probability of 50% for each class.
However since the distribution of our classes is skewed
we have also used a classifier with the same skewness as
the testing repository. Examples in the testing repository

7 The axes in these plots are scaled between 0 and 100.

are randomly classified, with the desired probabilities, by
these classifiers. To better account for the variation in the
randomness, we create one accumulative confusion matrix
for each classifier by repeating this 10 times. Figure 6
shows that increasing cost factors CNP.and CPN both

increase the cost sensitive error rate, however text based
classifiers perform better than both base random
classifiers. The problem report based classifier generated
the best cost sensitive error rates.

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 2 4 6 8 10 12

T
ru

e
P

os
iti

ve
 R

at
e

(%
)

False Positive Rate (%)

1

50

Syntactic
File Comments

File Problem Report Words

Figure 3. Comparing syntactic and text based
features

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 0 2 4 6

T
ru

e
P

os
iti

ve
 R

at
e

(%
)

False Positive Rate (%)

File Problem Report Words
Juxtaposition of Syntactic and Used Problem Report Words

Figure 5. Combining syntactic and problem report
features

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 2 4 6 8 10 12 14

T
ru

e
P

os
iti

ve
 R

at
e

(%
)

False Positive Rate (%)

1

50
Juxtaposition of Syntactic and Used Comment Words

Comment Words
Syntactic

Figure 4. Combining syntactic and source file
comment features

A
po

st
er

io
ri

co
st

 s
en

si
tiv

e
er

ro
r

A
po

st
er

io
ri

co
st

 s
en

si
tiv

e
er

ro
r

A
po

st
er

io
ri

co
st

 s
en

si
tiv

e
er

ro
r

A
po

st
er

io
ri

co
st

 s
en

si
tiv

e
er

ro
r

A
po

st
er

io
ri

co
st

 s
en

si
tiv

e
er

ro
r

Problem Report
Random Full Skewed

Random 50/50
Source Commens

 10 20 30 40 50 60 70 80 90 100False Positive cost 10 20 30 40 50 60 70 80 90 100

False Negative cost

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Figure 6. Cost sensitive error rate plots

8. Conclusion and future work

In this paper we presented the notion of Relevance
Relation to represent relations among entities in a soft-
ware system. We showed how classification learning can
be used to model relevance relations. As a case study we
set out to learn models for the co-update relevance rela-
tion between pairs of files in a large legacy system.

We presented results obtained from syntactic and text
based feature sets, and their combinations. Our results
show one can learn models with performance values that
merit their practical use. We further analyzed these
models under different misclassification cost assignments
to evaluate their quality. The problem report based models
generate some of the lowest cost sensitive error rates even
in the presence of high misclassification costs. In the
future we intend to experiment with other feature sets, and

learn other relevance relations in software systems. We
also plan to deploy the learned classifiers and evaluate
their performance in the field.

References

[1] Holte R.C. 1993. Very Simple Classification Rules Perform

Well on Most Commonly Used Datasets. Machine Learning,
Vol. 3 pp. 63 91

[2] Marchand M. and Shawe-Taylor J. 2002, The Set Covering
Machine, JMLR, Vol. 3, pp. 723 745

[3].Quinlan J.R. 1993. C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers, Pat Langley, Series Editor

[4] Sayyad Shirabad J., Lethbridge T.C. and Matwin, S. 2003.
Mining the Maintenance History of a Legacy Software Sys-
tem. Proceedings of the 19th ICSM, pp. 95-104.

[5] Zimmermann T., Weißgerber P., Diehl S., and Zeller A.
2004. Mining Version Histories to Guide Software Changes.
Proceedings of 26th ICSE. (To appear).

