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Abstract

We consider the problem of approximating an underlying distribution by one derived
from a dependence polytree. We propose a formal and systematic algorithm, which
traverses the undirected tree obtained by the Chow method [IEEE Trans. Inform.
Theory 14 (1968) 462], and which subsequently processes the latter using the knowledge
of inter-node independence tests. By using the tree structure and these independence
tests, our scheme successfully orients the polytree using an application of the depth first
search (DFS) strategy to multiple causal basins. The algorithm has been formally
proven, and rigorously tested for synthetic and real-life data.
© 2004 Elsevier Inc. All rights reserved.

1. Introduction and background

Over the last decade Bayesian learning principles have received a fair
amount of attention. Although they are elegant, they usually involve sum-
mations or integrals along all possible instantiations of the parameters and
along all possible models. In the case of learning of Bayesian networks (which
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is distinct from Bayesian learning itself) this can be perceived as a discrete
optimization problem [5]. Precise solutions of this can be obtained by using
search techniques, if we assume that there are only a few relevant models. This
has proven to be the method of choice in many real-life applications [1].

Many of the Bayesian models, which are studied, are intractable [3,10]. The
challenge is to find general-purpose, tractable approximation algorithms for
reasoning with these elegant and expressive stochastic models. ' For example, if
we are to use Bayesian learning to improve performance of distributed database
applications, where there can be millions of transactions every day, we will need
an efficient technique to build a model of the use of the database. The belief
network that underlies the Bayesian learning is at the heart of the approach. The
connection between Bayesian learning and belief networks is that one can use
Bayesian techniques to induce a belief network referred to as a Bayesian belief
network (BBN). Often, due to the lack of domain knowledge and in the interest
of simplicity, it is assumed that the underlying structure is in a particularly
simple form, representing reciprocal independence of variables involved.

The reader will observe that the learning, clearly, benefits if a more com-
prehensive and causal model of interaction between the variables is available.
Such a model, represented as a Bayesian network, plays the role of a restricted
hypothesis bias [9]. The method allows us to obtain the approximating prob-
ability distribution P(X) by a well-defined and easily computable density
function P,(X). Indeed, it is impractical to store all estimates of the joint
function P(X) for all possible values of the vector X. Our goal is to build a
probabilistic network from the distribution of the data, which adequately
represents it. Once constructed, such a network can provide insight into
probabilistic dependencies that exist between the variables.

In order to measure the “goodness’ of the approximation, an information
theoretic measure can be specified in terms of the Kullback—Leibler [8] cross-
entropy metric to compare joint probability distributions. Chow and Liu [2]
used this measure to approximate discrete distributions by collecting the entire
first and second order marginals. They derived a relationship between the
measure of closeness between the probabilities and the measure of indepen-
dence between all the pairs of the variables. A maximum weight-spanning tree
(MWST) called the “Chow tree” [2,3,6,10,14,15,17,21-23] was built using the
information measure between the variables forming the nodes of the tree. An
alternative method of obtaining such a tree using the y*> metric was later

"'Our algorithm is not an approximation algorithm. By virtue of Chow’s result and the
independence tests, it will yield the MLE of the true underlying polytree if the underlying
distribution obeys a polytree nature. But if the underlying distribution does not obey a polytree
structure, our algorithm turns out to be an approximation algorithm, which approximates the true
structure with a polytree.
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proposed by Valiveti and Oommen [17]. A subsequent work due to Rebane and
Pearl [15] used the Chow tree as the starting point of an algorithm which builds
a polytree (singly connected network) from a probability distribution. This
algorithm orients the Chow tree by assuming the availability of independence
tests on various multiple parent nodes.

The works of Rebane and Pearl [15] are commendable. Although, as we
shall see, they did not answer all the questions regarding polytrees, their
inference and their characterization, in our opinion their work was pioneering
(i.e., with regard to polytree representations) and represented a quantum jump
since the work done on trees in the late 1960s. In our opinion, their most
fundamental contribution was to discover and utilize the edge “orienting”
principle [18] referred to later.

Numerous authors have built on the foundation of the work of Rebane and
Pearl. Noteworthy are the results of Srinivas et al. [16] who worked with
independence, and the recent results of Dasgupta [3,10] which explicitly spec-
ifies the complexity of the underlying problem. Friedman has also worked in
this area and has modified the traditional EM algorithm to devise the
“structural” EM algorithm [4] to learn BBNSs, and also demonstrated how one
can learn Bayesian networks from massive data sets using the “sparse candi-
date algorithm™ [16].

Much of the current work has made substantial progress on learning the
structure of multiply connected networks and dynamic Bayesian networks, and
this has even been achieved in the presence of hidden variables and for real
data sets for which perfect independence tests are not realistic.

1.1. Why polytrees

The most simplistic model for random vectors is the one that assumes that
the components of the vector (the individual random variables) are statistically
independent. At the other end of the spectrum, we have the model in which
every variable is assumed to be dependent on every other variable, making the
model both cumbersome, and often intractable. The first attempt to strike a
happy medium was the one due to Chow [2,3,8,14,17,21,22] in which the model
assumed that there was a tree-based dependence between the variables. This
dependence has been exhaustively studied for discrete and continuous vectors
using various error norms including the entropy and Chi-square norms.

The tree-based model has been successfully generalized to specify the
dependence using polytrees, which is the model of interest of this study. The
question: “Why polytrees?”’ is thus not rhetorical, and deserves justification.
Indeed, in his doctoral thesis, Dasgupta (see Section V.1 titled “Why polytrees”
in [10]) argued, that while it is easy to learn branchings of frees in the structured
learning problem, it is NP-Hard to learn probabilistic nets even if the degrees
are bounded. He suggested, quite eloquently, that the first step in moving from
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simple branchings towards generalized networks was to consider the polytree
structure. While Dasgupta [3,10] considered how an approximation algorithm
for polytrees could be developed, de Campos and his colleagues showed how
these structures could be learned from data in Heute and de Campos [21], and
presented a solid experimental verification of their proposed techniques in Acid
and de Campos [20]. They also describe a system [22], CASTLE, implementing
these techniques. More recently, Meila and Jaakkola [23] have studied specific
analytic problems associated with learning tree belief networks, although they
have not specifically addressed the problem that we have solved here.

1.2. Problem statement and outline of solution

This paper deals with the problem of automatically building a belief net-
work 2 in terms of a directed polytree, with the assumption that the observa-
tions have been presented to the system in terms of joint probability
distributions [5,6,14,18,19]. We assume that the true underlying dependence
obeys a polytree structure, and that the joint dependence relations represented
by these observations is available. Pearl and his co-authors [14,15] discussed
this process using a two-phase dependence learning scheme. Our aim is to find
causal * polytree structures that fit the data presented in terms of joint prob-
ability distributions. The question of inferring the polytree structure from the
data (as opposed to the data distribution) is the study of a subsequent paper
presently being compiled and is described in [11,12].

Before we embark on discussing our contribution, we mention that in the
context of polytrees, the work of Rabane and coworkers [14,15,18,19] can be
perceived to be of a pioneering sort! Also, the reader must observe that
polytrees represent much richer dependency models than undirected trees,
because their joint probability density functions are products of higher order
distributions. Consequently, (as argued in [3,10,23]) the problem itself can be
shown to be a much harder problem than that of finding the best tree [14].
Indeed, first of all, the reported algorithms do not guarantee to yield a polytree
structure if the underlying distribution is degenerate, and not of a polytree type
distribution i.e., if the distributions do not fit into a polytree representation.
Secondly, the algorithm relies on the repeated use of the independence tests

2 We assume that the reader is reasonably familiar with the concepts and terms involved in the
learning of belief networks such as “‘polytree”, “articulation point™, “causal basin” etc. Their
formal definitions can be found in [14].

3 The concept of causality is not derived from the semantics of the probabilistic graphical
models, which is, in turn, related to the conditional independences between the triplets of variables.
On the contrary, causality is a well-studied and “hot” topic of research for the community of
researchers interested in issues related to “Uncertainty in Artificial Intelligence”. It is found on
principles that we do not discuss here—such a discussion would merely distract.
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that determines categorically whether two random variables X; and X, are
statistically independent. As shown in [12], even if the random variables are
statistically independent, the experimental evaluation may never yield con-
clusive independence decisions.

Although the work in [15] is fundamental and pioneering, if we consider the
polytree construction algorithm as given by [15], we observe that the order of
traversing the tree, in order to render it oriented, is not formally specified. The
implementation strategy of determining the order of dependence tests is
unanswered and left to the reader. In this paper, we shall formally develop an
algorithm which answers these questions. First of all, the algorithm determines
the network structure or the tree using the MWST algorithm described earlier,
and subsequently orients the tree by beginning with the assumption that we
have marginal independence between at least two parents of any node. Thus if]
there is no independence of any two parents of a node the algorithm will ter-
minate by informing the user that the underlying tree structure cannot be
oriented to yield a polytree.

The problem of orienting the tree is solved in two steps. The first step
identifies all the independencies, where, two nodes X; and X; are independent if
the following is satisfied: P(X;, X;) = P(X;) * P(X;). Although, as mentioned
above, this equality is not always satisfied with sample data, in this paper, we
assume that such independence inferences are available. We also assume that
we are provided with this information whenever it is requested. The second step
is as follows: after inferring all the statistical independence between the pairs of
variables, we use the following Orienting principle (T) due to Pearl [14] to
completely orient the tree.

Orienting principle (T). For every unoriented triplet of variables X, Y and Z
ordered as: X—Z-Y, we test for the independence of X and Y. If X and Y are
independent then X is a parent of Z and Y is a parent of Z. For any triplet X, ¥
and Z such that: X — Z-Y, we test if X and Y are independent, and if this is so
Y is parent of Z otherwise Y is a child of Z.

The details of why this principle works is shown using an example taken
directly from Verma and Pearl [18]. Given three variables X, ¥ and Z, the set of
causal dependency models that could exist between these variables are shown
in Fig. 1.

As explained in [19] (in what follows, we refer the reader to Fig. 1), the set of
parameters portrayed by the dependency model (M) are: P(X), P(Z|X) and
P(Y|Z). The set of parameters required for model (M,) are P(X|Z), P(Y|Z) and
P(Z). For model (M;), the probabilities required for its structure are: P(Y),
P(Z|Y) and P(X|Z). It is easy to see that models (M;) and (M,) are equivalent
because P(X)P(Z|X) = P(XZ) = P(Z)P(X|Z). Furthermore, model (M3) is also
equivalent to these models since its parameters P(Y), P(Z|Y) and P(X|Z) can be
obtained from those of models (M;) and (M;) [19]. However, model (M) is
completely different from the previous models. Its parameters are P(X), P(Y)
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Fig. 1. The causal models that can be obtained with three variables X, ¥ and Z.

and P(Z|X,Y), and these parameters cannot be obtained from the sets of
parameters of models (M;—M;). The directed acyclic graphs (DAG) repre-
senting models (M;—M;) are indistinguishable in the sense that they carry the
same set of independence assertions; I(X,Z,Y) (i.e., X and Y are conditionally
independent given Z), while the DAG representing model (M,) is distinguish-
able from the previous DAGS because it represents the independence /(X, 0, Y)
which implies that X and Y are marginally independent which is a condition
not represented in either of the former DAGs. In [14], the principle of model
(M,) is used to orient the skeleton of the polytree.

2. A depth first search algorithm for building polytrees

Our algorithm for inducing the polytree is an application of the depth first
search (DFS) algorithm to causal components of the undirected tree. Let
T = (V,E) be a connected, undirected tree where V is the set of vertices, and E,
the set of edges. A vertex Z is said to be an articulation point between vertices X
and Y if we have independence between X and Y. As defined by Pearl [14] and
used by all the researchers since, a causal basin starts with a multi-parent
cluster (a child node and all of its direct parents) and continues in the direction
of causal flow to include all of the child’s descendants and all of the direct
parents of those descendants. An example of this is given in Fig. 2.

2.1. Problems with Pearl’s algorithm

Although the above definition is consistent, there are some unanswered
questions which arise from the work of Rebane and co-workers [14,15]. In fact,



M. Ouerd et al. | Information Sciences 168 (2004) 111-132 117

Causal Basins

Fig. 2. A causal basin as defined by Pearl [14].

Fig. 3. Three causal basins starting respectively at nodes H, K and C.

although they specify a formal algorithm to compute the causal basins, they
leave the following questions unanswered:

1. The question of what is meant by the outermost layer is not clear since it
“depends on the tree” and its representation.

2. The question of how the traversal is done is not completely defined.

3. The algorithm introduces ambiguity regarding the edges that are already
traversed.

4. The notion of causal basins depends on the starting point. *

The last of these issues can be seen from the following figure in which the
Chow tree of this polytree is taken from [14].

Observe that the Chow tree of Figs. 2 and 3 is the same. In Fig. 2, the first
articulation point (starting point) is node C and the second articulation point is

* Apparently the works of Pearl et al. do not highlight this salient point. We too do not solve the
problem that results from the “‘starting point issue” in its entirety. However, having observed it, we
have attempted to deliver a comprehensive solution based on this assumption.
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node K. Having this order for the choice of the starting points we detect two
causal basins as given in Fig. 2. In Fig. 3, we use node H as the starting point,
node C as the second and node K as the third to be able to complete the same
orientation of the Chow tree as in Fig. 2 using three causal basins instead of
two. From this it is easy to see that the starting point determines the individual
causal basins.

2.2. Motivation for a DFS strategy

Consider the process of visiting the vertices of an undirected tree in the
following manner. We select and “visit” a starting vertex Z which is one of the
articulation points in 7 and in particular, an articulation point between two
nodes X and Y. First of all we orient the edges (X, Z) and (Y, Z) as pointing to
node Z following the orienting principle since we have independence between
them. Then we select any edge (Z, W) incident upon Z. We check for inde-
pendence between nodes X and W to determine the orientation of edge (Z, W).
We observe two possible scenarios: If there is no independence between X and
W then edge (Z, W) is pointing to node . We then visit node W and begin to
search for a new edge starting at vertex W. After completing the search through
all causal paths beginning at W, the search returns either to Z, the vertex from
which W was first reached, to search through all nodes in the adjacency list of
Z, or to another non-visited articulation point. If there is independence be-
tween X and W the edge (Z, W) is pointing to node Z, and the search returns
either to Z, the vertex from which W was first reached, to search through all the
nodes in the adjacency list of Z, or to another non-visited articulation point.
The process of selecting unexplored edges incident on Z is continued until this
list is exhausted. This is formalized in the algorithm Polytree-Depth-First-
Search.

The input to the algorithm is the set of nodes, and for every node X; we
specify its “adjacency” list, namely, a list of nodes X; such that arc X—X;
exists in the underlying tree structure. Also provided are the independence
tests between nodes whenever required. The algorithm is formally given be-
low.

Algorithm Polytree-Depth-First-Search

Input: (a) A tree T = (V,E).

(b) Independence test available for every pair of nodes when it is required.

(c) For every node, a list of all its direct neighbours specified as a connected
list specified as ConList. We assume that the test for a node being an
articulation point is a straightforward operation. Also, a node W is in
the causal basin of X if there is a path from X to W.

Output: A directed polytree if the orientation exists. It returns 7, the undi-

rected tree if any orientation is not possible. Even if 7 cannot be fully
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oriented, edges in every causal basin will be oriented, and the other edges
can be oriented if additional information is provided.
Method
Begin
For (all X in V) Do
Visited [X] = false /* Visited is an array holding the nodes */
EndFor
For (all X in V) Do
/* always start with an articulation point */
If (!Visited[X] and X is an articulation point) Then
Call Processing (X)
EndIf
EndFor
End Algorithm Polytree-Depth-First-Search
Procedure Processing (X)
Begin
/* node X is not a leaf */
If ((Visited[X] = false) and (ConList(X)) > 1) Then
/* orient the adjacent edges */
Call IndepOrient(X)
Visited[X] = true
/* traverse the adjacency list of X */
For (all W in the ConList of X and W is in causal basin of X) Do
/* Processing is recursive because of Depth-First Search */
Call Processing (W)
EndFor
EndIf
End Algorithm Processing
Procedure IndepOrient (X)
Begin
For (every distinct Ny and N, in ConList(X)) Do
If Indep(N;,N,) = True Then
print arcs from (N; to X) and (N, to X)
EndIf
EndFor
For (every distinct Ny and N, in ConList(X)) Do
If (arc from N; to X exists and edge from N, to X is unoriented) Then
print arc from X to N,
Else If (arc from N, to X exists and edge from N; to X is unoriented) Then
print arc from X to N,
EndIf
EndFor
End Algorithm IndepOrient
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2.3. Analytic properties of the algorithm

The formal proof that the above algorithm works follows the arguments of
the DFS traversal of a graph. To clarify how this is achieved we now present a
straightforward example. °

Example 1. Consider the following undirected tree given in Fig. 4. Here, we
assume that the independence information given in Table 1. This information
may either be given a priori or obtained “on request”. Also, for the sake of
simplicity, we assume that the tree is formed of one causal basin.

As stated, the starting point is always an articulation point. Here, we assume
that the DFS algorithm takes node 1 as the starting point to orient the tree
since we have independence between nodes 2 and 3 (Fig. 5).

Step 1: 1(2,3) = T. Therefore the edges are directed as:

1

2 ot 3

Step 2: The next independence tests between neighbors of 1 are: 1(3,4) = F
and 7(2,4) = F. Since edge (2, 1) is already directed as pointing to
1, edge (1, 4) is directed in the causal basin of the edge (2, 1) as:

4

1
'Y N
L d L

After directing all the edges starting at node 1, we mark it as a visited
node and we progress in the DFS manner to the nodes belonging to its
adjacency list.

Step 3: Both nodes 2 and 3 are marked as visited because they are leaves. We
therefore move to node 4 and start the same process of testing inde-
pendence between its neighbors as we did for node 1. We check for
independence between every pair of its neighbors, which are: (6, 5),
I1(1,5) and I(1,6). These tests fail and we know already that edge (1,
4) is pointing to node 4. Thus edges (4, 5) and (4, 6) are directed in
the same causal flow as with edge (1, 4). The direction of the edges
for the nodes processed till now is:

Step 4—End: The same process will continue for all the nodes of the tree. The
final figure is as below, and all the edges will be directed in the
same flow as they are in the same causal basin. The result of ori-
enting the whole tree is given in Fig. 6 below.

3 This example (and the one given later) are a little tedious. We include them here only for the
sake of illustration—to highlight the salient points of the algorithm. They were included on the
recommendation of the reviewers.
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12
1 22
3 16 & 48 19 20 21
Fig. 4. A tree example.
Table 1
Independence information about the nodes of the tree above
12,3)=T 12,4)=F 13,4)=F I(51)=F 1(1,6)=F
I1(5,6)=F 1(4,8)=F 14,7)=F 1(7,8)=F 1(4,9)=F
1(4,10) =F 1(9,10) = F 1(9,16) = F I(15,9)=F 1(15,16) = F
19,18) =F I(17,9)=F I(17,18) = F 1(12,5) = I(11,5) =
I(11,12) = F 1(10,19) = F 1(10,20) = F 1(19,20) = F 1(10,22) = F
1(10,21) = F 1(21,22) = F
1
2
4
3
5
6

Fig. 5. Portion of polytree oriented at the end of Step 3.

Theorem 1. The algorithm Polytree-Depth-First-Search correctly computes the
polytree given the skeleton tree structure and the underlying independence rela-
tionships.
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15 16 22

19 20 21

17 18

Fig. 6. The polytree obtained from the tree in Fig. 4 and the independence tests of Table 1.

Proof. The proof of the correctness of the algorithm is achieved by induction

on the number of the nodes. We shall prove the following statements:

(i) Every node of the tree is visited, and,

(i) Every edge in the tree is directed by the DFS as imposed by the ordering
given by the independence tests.

Without loss of generality, we assume that we are processing one causal
basin from the starting node. Thus if a node is not visited it will be a starting
point for another causal basin. The first statement is trivial as a direct result of
the DFS traversal to the tree. The more crucial argument involves the orien-
tation of its edges.

Basis step: We use an articulation point as the starting point for the algo-
rithm since it is clear that the algorithm will not lead to any orientation without
such a starting point. The basis step involves the first articulation point X. Let
the variables {X;} denote the neighbors of X and in particular, let X, and X, be
the neighbors of X that satisfy /(X,,X,,) = T for indexes n and m because X is
an articulation point. Thus edges (X,,X) and (X,X,,) are oriented as pointing
to node X since X, and X,, are independent. We then proceed to check for
independence between all pairs of the neighbors of X to orient the corre-
sponding edges. If a test /(X, X;) = T for some j, it implies that the edge (X, X))
points to node X; otherwise it points to node X;. This achieves the orientation
of all the neighbors of X.
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Inductive hypothesis: Suppose that at a certain stage of the algorithm we are
visiting node Y, where node Y can be any node of the tree. Suppose that Y; is
one of the children of Y, and ¥}, is one of the parents of ¥ where the edge (¥, 1;)
is unoriented. When visiting node Y, we check for all the independence tests
between the neighbors of ¥ which include Y, and ¥,. We know that edge (Y}, Y)
is already oriented as pointing to Y since we have earlier visited ¥,. Two sce-
narios can happen:

The first scenario is that the independence test (Y}, Y;) is false. In such a
case, as per the orienting principle, we orient edge (Y, ;) as pointing to Y.

The second scenario is when the independence test I(Y,, Y.) is true. In this
case both edges (Y, Y) and (Y, ¥;) point to node Y.

By the same reasoning it is clear that we can keep orienting all the
neighbors of Y, and using the DFS procedure we traverse the whole tree
and orient all the edges. The result is thus true for all edges in one causal
basin.

The result is also true if we have more than one causal basin, because once
we have exhausted the nodes in the first causal basin, we would invoke the
same DFS strategy from a new starting point in the next causal basin. Hence
the theorem. [

The above algorithm uses a DFS strategy. It is easy to devise an analogous
algorithm, which uses a Breadth-First search strategy, or for that matter, any
systematic search scheme. Also, observe that this is a worst-case scenario.
Thus, it may be possible to optimize our algorithm to require less independence
tests when other independence relationships can be inferred from tests that
have already been done. This is an open problem.

We shall now state results regarding the complexity of the above algorithm.
This is done by considering the number of independence tests that need to be
performed to be able to orient the tree. To clarify issues, we first present a
straightforward example.

Example 2. Consider the case of Fig. 7 in which n, the number of nodes is 22.
The root (node 1) has three children, and all the other nodes have only two
children. Note that this exactly fits our model since every internal node has
three dependent nodes—its parents and its two children, and thus, as men-
tioned in this case, n = 22 and k = 3.

We list below the number of independence tests, which need to be done for
this tree in order to orient it.

Depth = 0: At this level three tests which must be done, i.e., 7(2,3), 1(2,4),
1(3,4) which is <;> = 3 tests.
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18 19 20

s
16 V7

Fig. 7. A tree example.

Depth = 1: At this depth the result of nine tests must be returned, namely,
1(5,6), 1(5,1), 1(6,1), 1(7,8), I1(7,1), 1(8,1), 1(9,10), 1(9,1), 1(10,1). The
number of tests is seen to be: 3 (3) =9 tests.

Depth = 2: The 18 tests to be done in this case are:
I(11,12),1(11,2),1(12,2),1(13,14),1(13,2),1(14,2),1(15,16),1(15,3),1(16,3),
1(17,18),1(17,3),1(18,3),1(19,20),1(19,4),1(20,4),1(21,22),1(21,4),1(22,4).

3

The number of tests can be seen to be : 3 * (3-1)" « <2> = 18 tests.

Thus the total number of tests to be done at all levels is 30. The above results
are formalized below.

Remark. From a straightforward examination it is clear that the overall burden
of the computation can be obtained by observing that for each node we have to
do pairwise independence tests between its neighbors. Thus, in a straightforward

manner the cost is n * (g) However, to understand what happens at every
level of the tree, a more detailed study is needed. This is done in Theorem 2.
Theorem 2. For a tree with n nodes, in which every node has k adjacent nodes,

at depth d in the tree, the total number of independence tests that have to be
done, is:

kox (k—1)"" % <’2‘>
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Proof. The proof is done by induction.

Basis Step
The basis step considers all nodes of depths 0, 1 and 2.
For Depth 0, the root has & dependents, and so we have to test every pair of

nodes for independence. This results in ]2{ tests = 4% k x (k—1) tests.
For Depth 1, every node in the £ nodes has (k — 1) dependents not counting
the parent. The number of independence tests is £ * ; tests for children

and k * (k — 1) tests involving the nodes with the grandparent. This is equal to
Test(Depth 1), where,

Test(Depth 1) =k « <k; 1) +ke(k—1)

_ B*k*(kl)*(kZ)Jrk*(kl)] . <’2‘>

For Depth 2, every node in the k£ * (kK — 1) nodes has k — 1 dependents. The
number of independence tests is Test(Depth 2) where

Test(Depth 2) = [k * (k—1) = ( 5

)—Hc*(k—l)*(k—l)}
=k (k—1) [%*(k—l)*(k—2)+(k—l)]

=k>x<(k—1)*(k—l)[%*(k—Z)—s—l] =K% (k—1)°

=k (k—1) (g)

As mentioned before, the expressions for d = 0, d = 1 and d = 2 collectively
constitute the basis case.

Inductive Hypothesis
We now assume that the property is true until level d — 1, i.e., the number of
independence tests at depth d — 1 is equal to Test(Depthd — 1) where,

Test(Depth d — 1) =k * (k— 1)" « (’2‘)

At depth d or layer d in the tree we have k * (k— 1)*"' nodes each having
(k — 1) dependents not counting the parent. Once we are at depth d, we have to

perform (k; 1) tests for every node at this depth, which amounts, for

ko (k— 1)"71 * (k; ! ) tests. Subsequently, we have to check every child of
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the k = (k—1)" nodes with its grand parent, which amounts for
k % (k—1)"" % (k — 1) tests. Thus, the total number of tests is Test(Depth d)
where,

Test(Depth d) = {k « (k—1)"" « (kg 1) ko (k=1 % (k- 1)}

—kx (k—1)"" % Kk;) +(k—1)]

—kx (k=1 BJrk*(k—l)} =kx(k—1)""« (g‘)
(kl)*k*(kl)d2*<k)

2
:k*(k—l)dl*(];).

The theorem follows. [

Corollary to Theorem 2. As mentioned earlier, the total number of indepen-
dence tests which needs to be done for a tree with n nodes of depth d and

branching factor k is n * 12{ . This follows from the above theorem since:

d d

Total Tests = > k(k — 1)""! <’2‘> _ <’2€) ke Sk 1)

h=1 h=1

But since we know that [k 3¢ (k—1)"'=n we obtain,
Total Tests =1 « k * (k— 1) * n.

2.4. Limitations of the algorithm

The limitations of the algorithm are primarily due to the lack of information
about the independence between the variables. In order to orient the edges we
used the independence tests between every two neighbors. This information
may not be provided by the user, and it therefore prevents the algorithm from
orienting the tree. The example below illustrates the case. In this example, let us
suppose that it is not possible to orient edges (F,G) and (E, G) because the
dependence information about nodes £ and F is not available. Observe that
this limitation is also relevant for the work of [15].

Elsewhere [13] we have presented a strategy for providing a temporal
ordering of the variables and thus allowing an orientation following this
ordering. Thus, if a variable 4 precedes a variable B in the “time ordering”, we
have shown how we will permit the orientation of A4 towards B (Fig. 8).
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Fig. 8. An example of an incomplete oriented polytree.

3. Experimental results

In order to check the algorithm developed here we have done numerous
experiments. We assumed that we were to learn an underlying polytree, which
is unknown to the algorithm. One such polytree is given in Fig. 9. Also, we
assumed that independence tests, which are consistent with the polytree ori-
entation, were available whenever they were needed by the algorithm. These
independence tests for the specific polytree in Fig. 9 are given in Table 2. The
polytree learning algorithm specifically modified for discrete data (referred to
as Discrete-Polytree-Depth-First-Search) was invoked using the skeleton and

Fig. 9. Underlying dependence polytree.
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Table 2

Independence information for the polytree given in Fig. 9
1(0,1)=T 1(2,6) =F I(7,11)=F
12,9)=T 12,5 =F 1(4,8)=F
1(7,8) =T 1(3,4)=F 1(4,7)=F
1(12,13) =T 1(5,6)=F 109,10) =F
I(1,3)=F 1(5,9)=F I1(10,13) = F
1(0,4) =F 1(9,6) =F 1(10,12) = F

the sequence of independence tests. The results of running the polytree algo-
rithm demonstrate its power.

Since we already know the distribution of the data, we first run the Chow
algorithm on the given distribution. We then obtain the skeletal tree of the
polytree, the tree given in Fig. 10. We are thus required to orient this tree using
the independence tests given in Table 2. In order to orient it the algorithm
detected the following articulation points: nodes 2, 4, 9 and 11 as starting
points. The algorithm then attempted to orient the tree starting at articulation
points, which represent nodes with multiple parents. After running the algo-
rithm, the orientation of every edge of the “true” underlying polytree was
compared with the orientation of the edge of the resultant “inferred” polytree.

12 13

Fig. 10. Tree structure for Fig. 9.
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In every case the results are exactly the same. These experiments were con-
ducted for various kinds of polytrees, namely polytrees with one or multiple
causal basins. In every case, the polytree was exactly inferred—this was true for
every polytree tested.

A second example is given in Figs. 11 and 12. Its independence information
is given in Table 3.

Our experimental results consistently demonstrate that the algorithm suc-
cessfully orients the polytree. Again we observe that if the independence
information for any pair of nodes is not provided to the algorithm, it will fail to
orient the entire tree.

Fig. 11. Underlying dependence polytree.

Fig. 12. The skeletal tree of the underlying polytree given in Fig. 11.

Table 3
Independence information for the polytree given in Fig. 11

I1(11,10) =T 1(3,
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We conclude this section by mentioning that the techniques presented here
have also been used quite successfully in a real-life application where the
problem is to improve performance in systems using repeated queries which
access distributed databases [13], and for the ALARM data [7].

4. Conclusion

In this paper we have considered the problem of approximating an under-
lying distribution by one derived from a dependence polytree. The skeletal
form of the polytree is known to be the MWST of a complete graph, with
I;(X;, X;), the information theoretic metric, as the edge weight between the pair
of nodes X; and .X;. Once the tree is derived, Rebane and Pearl [15], proposed to
use an independence test to determine if a variable has multiple parents. They
dictated that every two node neighbors X and Y of a node Z must be tested for
marginal independence to decide if Z has parents X and Y.

This paper proposes a formal and systematic algorithm to traverse the tree
obtained by the Chow method. It uses an application of the DFS strategy to
multiple causal basins. Experimental results clearly demonstrate that when the
required independence tests are available to the algorithm the orientation of
the polytree is completed, and always correct. The algorithm has also been used
in two real-life applications [13] involving distributed databases and the
ALARM data.
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