
Information Sciences 168 (2004) 111–132

www.elsevier.com/locate/ins
A formal approach to using data
distributions for building causal

polytree structures

M. Ouerd a, B.J. Oommen b,*, S. Matwin a

a School of Information Technology and Engineering, University of Ottawa,

Ottawa, Canada K1S 5B6
b School of Computer Science, IEEE, Carleton University, Ottawa, Canada K1S 5B6

Received 10 February 2003; received in revised form 17 November 2003; accepted 13 January 2004
Abstract

We consider the problem of approximating an underlying distribution by one derived

from a dependence polytree. We propose a formal and systematic algorithm, which

traverses the undirected tree obtained by the Chow method [IEEE Trans. Inform.

Theory 14 (1968) 462], and which subsequently processes the latter using the knowledge

of inter-node independence tests. By using the tree structure and these independence

tests, our scheme successfully orients the polytree using an application of the depth first

search (DFS) strategy to multiple causal basins. The algorithm has been formally

proven, and rigorously tested for synthetic and real-life data.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction and background

Over the last decade Bayesian learning principles have received a fair

amount of attention. Although they are elegant, they usually involve sum-

mations or integrals along all possible instantiations of the parameters and

along all possible models. In the case of learning of Bayesian networks (which
* Corresponding author. Tel.: +1-613-520-4333; fax: +1-613-520-4334.

E-mail addresses: ouerd@site.uottawa.ca (M. Ouerd), oommen@scs.carleton.ca (B.J. Oom-

men), matwin@site.uottawa.ca (S. Matwin).

0020-0255/$ - see front matter � 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.ins.2004.01.001

mail to: ouerd@site.uottawa.ca

112 M. Ouerd et al. / Information Sciences 168 (2004) 111–132
is distinct from Bayesian learning itself) this can be perceived as a discrete

optimization problem [5]. Precise solutions of this can be obtained by using

search techniques, if we assume that there are only a few relevant models. This

has proven to be the method of choice in many real-life applications [1].
Many of the Bayesian models, which are studied, are intractable [3,10]. The

challenge is to find general-purpose, tractable approximation algorithms for

reasoning with these elegant and expressive stochastic models. 1 For example, if

we are to use Bayesian learning to improve performance of distributed database

applications, where there can be millions of transactions every day, we will need

an efficient technique to build a model of the use of the database. The belief

network that underlies the Bayesian learning is at the heart of the approach. The

connection between Bayesian learning and belief networks is that one can use

Bayesian techniques to induce a belief network referred to as a Bayesian belief

network (BBN). Often, due to the lack of domain knowledge and in the interest

of simplicity, it is assumed that the underlying structure is in a particularly

simple form, representing reciprocal independence of variables involved.

The reader will observe that the learning, clearly, benefits if a more com-

prehensive and causal model of interaction between the variables is available.

Such a model, represented as a Bayesian network, plays the role of a restricted

hypothesis bias [9]. The method allows us to obtain the approximating prob-
ability distribution P ðX Þ by a well-defined and easily computable density

function PaðX Þ. Indeed, it is impractical to store all estimates of the joint

function P ðX Þ for all possible values of the vector X . Our goal is to build a

probabilistic network from the distribution of the data, which adequately

represents it. Once constructed, such a network can provide insight into

probabilistic dependencies that exist between the variables.

In order to measure the ‘‘goodness’’ of the approximation, an information

theoretic measure can be specified in terms of the Kullback–Leibler [8] cross-
entropy metric to compare joint probability distributions. Chow and Liu [2]

used this measure to approximate discrete distributions by collecting the entire

first and second order marginals. They derived a relationship between the

measure of closeness between the probabilities and the measure of indepen-

dence between all the pairs of the variables. A maximum weight-spanning tree

(MWST) called the ‘‘Chow tree’’ [2,3,6,10,14,15,17,21–23] was built using the

information measure between the variables forming the nodes of the tree. An

alternative method of obtaining such a tree using the v2 metric was later
1 Our algorithm is not an approximation algorithm. By virtue of Chow’s result and the

independence tests, it will yield the MLE of the true underlying polytree if the underlying

distribution obeys a polytree nature. But if the underlying distribution does not obey a polytree

structure, our algorithm turns out to be an approximation algorithm, which approximates the true

structure with a polytree.

M. Ouerd et al. / Information Sciences 168 (2004) 111–132 113
proposed by Valiveti and Oommen [17]. A subsequent work due to Rebane and

Pearl [15] used the Chow tree as the starting point of an algorithm which builds

a polytree (singly connected network) from a probability distribution. This

algorithm orients the Chow tree by assuming the availability of independence
tests on various multiple parent nodes.

The works of Rebane and Pearl [15] are commendable. Although, as we

shall see, they did not answer all the questions regarding polytrees, their

inference and their characterization, in our opinion their work was pioneering

(i.e., with regard to polytree representations) and represented a quantum jump

since the work done on trees in the late 1960s. In our opinion, their most

fundamental contribution was to discover and utilize the edge ‘‘orienting’’

principle [18] referred to later.
Numerous authors have built on the foundation of the work of Rebane and

Pearl. Noteworthy are the results of Srinivas et al. [16] who worked with

independence, and the recent results of Dasgupta [3,10] which explicitly spec-

ifies the complexity of the underlying problem. Friedman has also worked in

this area and has modified the traditional EM algorithm to devise the

‘‘structural’’ EM algorithm [4] to learn BBNs, and also demonstrated how one

can learn Bayesian networks from massive data sets using the ‘‘sparse candi-

date algorithm’’ [16].
Much of the current work has made substantial progress on learning the

structure of multiply connected networks and dynamic Bayesian networks, and

this has even been achieved in the presence of hidden variables and for real

data sets for which perfect independence tests are not realistic.

1.1. Why polytrees

The most simplistic model for random vectors is the one that assumes that

the components of the vector (the individual random variables) are statistically

independent. At the other end of the spectrum, we have the model in which

every variable is assumed to be dependent on every other variable, making the

model both cumbersome, and often intractable. The first attempt to strike a

happy medium was the one due to Chow [2,3,8,14,17,21,22] in which the model

assumed that there was a tree-based dependence between the variables. This
dependence has been exhaustively studied for discrete and continuous vectors

using various error norms including the entropy and Chi-square norms.

The tree-based model has been successfully generalized to specify the

dependence using polytrees, which is the model of interest of this study. The

question: ‘‘Why polytrees?’’ is thus not rhetorical, and deserves justification.

Indeed, in his doctoral thesis, Dasgupta (see Section V.1 titled ‘‘Why polytrees’’

in [10]) argued, that while it is easy to learn branchings of trees in the structured

learning problem, it is NP-Hard to learn probabilistic nets even if the degrees
are bounded. He suggested, quite eloquently, that the first step in moving from

114 M. Ouerd et al. / Information Sciences 168 (2004) 111–132
simple branchings towards generalized networks was to consider the polytree

structure. While Dasgupta [3,10] considered how an approximation algorithm

for polytrees could be developed, de Campos and his colleagues showed how

these structures could be learned from data in Heute and de Campos [21], and
presented a solid experimental verification of their proposed techniques in Acid

and de Campos [20]. They also describe a system [22], CASTLE, implementing

these techniques. More recently, Meila and Jaakkola [23] have studied specific

analytic problems associated with learning tree belief networks, although they

have not specifically addressed the problem that we have solved here.
1.2. Problem statement and outline of solution

This paper deals with the problem of automatically building a belief net-

work 2 in terms of a directed polytree, with the assumption that the observa-
tions have been presented to the system in terms of joint probability

distributions [5,6,14,18,19]. We assume that the true underlying dependence

obeys a polytree structure, and that the joint dependence relations represented

by these observations is available. Pearl and his co-authors [14,15] discussed

this process using a two-phase dependence learning scheme. Our aim is to find

causal 3 polytree structures that fit the data presented in terms of joint prob-

ability distributions. The question of inferring the polytree structure from the

data (as opposed to the data distribution) is the study of a subsequent paper
presently being compiled and is described in [11,12].

Before we embark on discussing our contribution, we mention that in the

context of polytrees, the work of Rabane and coworkers [14,15,18,19] can be

perceived to be of a pioneering sort! Also, the reader must observe that

polytrees represent much richer dependency models than undirected trees,

because their joint probability density functions are products of higher order

distributions. Consequently, (as argued in [3,10,23]) the problem itself can be

shown to be a much harder problem than that of finding the best tree [14].
Indeed, first of all, the reported algorithms do not guarantee to yield a polytree

structure if the underlying distribution is degenerate, and not of a polytree type

distribution i.e., if the distributions do not fit into a polytree representation.

Secondly, the algorithm relies on the repeated use of the independence tests
2 We assume that the reader is reasonably familiar with the concepts and terms involved in the

learning of belief networks such as ‘‘polytree’’, ‘‘articulation point’’, ‘‘causal basin’’ etc. Their

formal definitions can be found in [14].
3 The concept of causality is not derived from the semantics of the probabilistic graphical

models, which is, in turn, related to the conditional independences between the triplets of variables.

On the contrary, causality is a well-studied and ‘‘hot’’ topic of research for the community of

researchers interested in issues related to ‘‘Uncertainty in Artificial Intelligence’’. It is found on

principles that we do not discuss here––such a discussion would merely distract.

M. Ouerd et al. / Information Sciences 168 (2004) 111–132 115
that determines categorically whether two random variables Xi and Xj are

statistically independent. As shown in [12], even if the random variables are

statistically independent, the experimental evaluation may never yield con-

clusive independence decisions.
Although the work in [15] is fundamental and pioneering, if we consider the

polytree construction algorithm as given by [15], we observe that the order of

traversing the tree, in order to render it oriented, is not formally specified. The

implementation strategy of determining the order of dependence tests is

unanswered and left to the reader. In this paper, we shall formally develop an

algorithm which answers these questions. First of all, the algorithm determines

the network structure or the tree using the MWST algorithm described earlier,

and subsequently orients the tree by beginning with the assumption that we
have marginal independence between at least two parents of any node. Thus if,

there is no independence of any two parents of a node the algorithm will ter-

minate by informing the user that the underlying tree structure cannot be

oriented to yield a polytree.

The problem of orienting the tree is solved in two steps. The first step

identifies all the independencies, where, two nodes Xi and Xj are independent if

the following is satisfied: PðXi, XjÞ ¼ P ðXiÞ � P ðXjÞ. Although, as mentioned

above, this equality is not always satisfied with sample data, in this paper, we
assume that such independence inferences are available. We also assume that

we are provided with this information whenever it is requested. The second step

is as follows: after inferring all the statistical independence between the pairs of

variables, we use the following Orienting principle (T) due to Pearl [14] to

completely orient the tree.

Orienting principle (T): For every unoriented triplet of variables X , Y and Z
ordered as: X–Z–Y , we test for the independence of X and Y . If X and Y are

independent then X is a parent of Z and Y is a parent of Z. For any triplet X , Y
and Z such that: X ! Z–Y , we test if X and Y are independent, and if this is so

Y is parent of Z otherwise Y is a child of Z.
The details of why this principle works is shown using an example taken

directly from Verma and Pearl [18]. Given three variables X , Y and Z, the set of
causal dependency models that could exist between these variables are shown

in Fig. 1.

As explained in [19] (in what follows, we refer the reader to Fig. 1), the set of

parameters portrayed by the dependency model ðM1Þ are: P ðX Þ, P ðZjX Þ and
P ðY jZÞ. The set of parameters required for model ðM2Þ are P ðX jZÞ, P ðY jZÞ and
P ðZÞ. For model ðM3Þ, the probabilities required for its structure are: P ðY Þ,
P ðZjY Þ and PðX jZÞ. It is easy to see that models ðM1Þ and ðM2Þ are equivalent

because P ðX ÞPðZjX Þ ¼ P ðXZÞ ¼ P ðZÞP ðX jZÞ. Furthermore, model ðM3Þ is also
equivalent to these models since its parameters P ðY Þ, P ðZjY Þ and P ðX jZÞ can be

obtained from those of models ðM1Þ and ðM2Þ [19]. However, model ðM4Þ is

completely different from the previous models. Its parameters are P ðX Þ, P ðY Þ

 X Y

 Z

Model (M1)

 X Y

 Z

Model (M2)

 X Y

 Z

 Model (M4)

 X Y

 Z

 Model (M3)

Fig. 1. The causal models that can be obtained with three variables X , Y and Z.

116 M. Ouerd et al. / Information Sciences 168 (2004) 111–132
and PðZjX ; Y Þ, and these parameters cannot be obtained from the sets of

parameters of models ðM1–M3Þ. The directed acyclic graphs (DAG) repre-

senting models ðM1–M3Þ are indistinguishable in the sense that they carry the

same set of independence assertions; IðX ; Z; Y Þ (i.e., X and Y are conditionally
independent given Z), while the DAG representing model ðM4Þ is distinguish-
able from the previous DAGS because it represents the independence IðX ; ;; Y Þ
which implies that X and Y are marginally independent which is a condition

not represented in either of the former DAGs. In [14], the principle of model

(M4) is used to orient the skeleton of the polytree.
2. A depth first search algorithm for building polytrees

Our algorithm for inducing the polytree is an application of the depth first

search (DFS) algorithm to causal components of the undirected tree. Let

T ¼ ðV ;EÞ be a connected, undirected tree where V is the set of vertices, and E,
the set of edges. A vertex Z is said to be an articulation point between vertices X
and Y if we have independence between X and Y . As defined by Pearl [14] and

used by all the researchers since, a causal basin starts with a multi-parent

cluster (a child node and all of its direct parents) and continues in the direction

of causal flow to include all of the child’s descendants and all of the direct

parents of those descendants. An example of this is given in Fig. 2.
2.1. Problems with Pearl’s algorithm

Although the above definition is consistent, there are some unanswered
questions which arise from the work of Rebane and co-workers [14,15]. In fact,

H

C
K

Fig. 3. Three causal basins starting respectively at nodes H , K and C.

Causal Basins

Fig. 2. A causal basin as defined by Pearl [14].

M. Ouerd et al. / Information Sciences 168 (2004) 111–132 117
although they specify a formal algorithm to compute the causal basins, they

leave the following questions unanswered:

1. The question of what is meant by the outermost layer is not clear since it

‘‘depends on the tree’’ and its representation.

2. The question of how the traversal is done is not completely defined.

3. The algorithm introduces ambiguity regarding the edges that are already

traversed.
4. The notion of causal basins depends on the starting point. 4

The last of these issues can be seen from the following figure in which the

Chow tree of this polytree is taken from [14].

Observe that the Chow tree of Figs. 2 and 3 is the same. In Fig. 2, the first

articulation point (starting point) is node C and the second articulation point is
4 Apparently the works of Pearl et al. do not highlight this salient point. We too do not solve the

problem that results from the ‘‘starting point issue’’ in its entirety. However, having observed it, we

have attempted to deliver a comprehensive solution based on this assumption.

118 M. Ouerd et al. / Information Sciences 168 (2004) 111–132
node K. Having this order for the choice of the starting points we detect two

causal basins as given in Fig. 2. In Fig. 3, we use node H as the starting point,

node C as the second and node K as the third to be able to complete the same

orientation of the Chow tree as in Fig. 2 using three causal basins instead of
two. From this it is easy to see that the starting point determines the individual

causal basins.
2.2. Motivation for a DFS strategy

Consider the process of visiting the vertices of an undirected tree in the

following manner. We select and ‘‘visit’’ a starting vertex Z which is one of the

articulation points in T and in particular, an articulation point between two
nodes X and Y . First of all we orient the edges ðX ; ZÞ and ðY ; ZÞ as pointing to

node Z following the orienting principle since we have independence between

them. Then we select any edge ðZ;W Þ incident upon Z. We check for inde-

pendence between nodes X and W to determine the orientation of edge ðZ;W Þ.
We observe two possible scenarios: If there is no independence between X and

W then edge ðZ;W Þ is pointing to node W . We then visit node W and begin to

search for a new edge starting at vertex W . After completing the search through

all causal paths beginning at W , the search returns either to Z, the vertex from
which W was first reached, to search through all nodes in the adjacency list of

Z, or to another non-visited articulation point. If there is independence be-

tween X and W the edge ðZ;W Þ is pointing to node Z, and the search returns

either to Z, the vertex from which W was first reached, to search through all the

nodes in the adjacency list of Z, or to another non-visited articulation point.

The process of selecting unexplored edges incident on Z is continued until this

list is exhausted. This is formalized in the algorithm Polytree-Depth-First-

Search.
The input to the algorithm is the set of nodes, and for every node Xi we

specify its ‘‘adjacency’’ list, namely, a list of nodes Xj such that arc Xi–Xj

exists in the underlying tree structure. Also provided are the independence

tests between nodes whenever required. The algorithm is formally given be-

low.

Algorithm Polytree-Depth-First-Search

Input: (a) A tree T ¼ ðV ;EÞ.
(b) Independence test available for every pair of nodes when it is required.

(c) For every node, a list of all its direct neighbours specified as a connected

list specified as ConList. We assume that the test for a node being an

articulation point is a straightforward operation. Also, a node W is in
the causal basin of X if there is a path from X to W .

Output: A directed polytree if the orientation exists. It returns T , the undi-

rected tree if any orientation is not possible. Even if T cannot be fully

M. Ouerd et al. / Information Sciences 168 (2004) 111–132 119
oriented, edges in every causal basin will be oriented, and the other edges

can be oriented if additional information is provided.

Method

Begin
For (all X in V) Do

Visited [X] ¼ false /* Visited is an array holding the nodes */

EndFor

For (all X in V) Do

/* always start with an articulation point */

If (!Visited[X] and X is an articulation point) Then

Call Processing (X)
EndIf

EndFor

End Algorithm Polytree-Depth-First-Search

Procedure Processing (X)
Begin

/* node X is not a leaf */

If ((Visited[X] ¼ false) and (ConList(X)) > 1) Then

/* orient the adjacent edges */

Call IndepOrient(X)
Visited[X] ¼ true

/* traverse the adjacency list of X */

For (all W in the ConList of X and W is in causal basin of X) Do

/* Processing is recursive because of Depth-First Search */

Call Processing (W)

EndFor

EndIf

End Algorithm Processing
Procedure IndepOrient (X)

Begin

For (every distinct N1 and N2 in ConList(X)) Do

If Indep(N1,N2) ¼ True Then

print arcs from (N1 to X) and (N2 to X)

EndIf

EndFor

For (every distinct N1 and N2 in ConList(X)) Do
If (arc from N1 to X exists and edge from N2 to X is unoriented) Then

print arc from X to N2

Else If (arc from N2 to X exists and edge from N1 to X is unoriented) Then

print arc from X to N1

EndIf

EndFor

End Algorithm IndepOrient

120 M. Ouerd et al. / Information Sciences 168 (2004) 111–132
2.3. Analytic properties of the algorithm

The formal proof that the above algorithm works follows the arguments of

the DFS traversal of a graph. To clarify how this is achieved we now present a
straightforward example. 5

Example 1. Consider the following undirected tree given in Fig. 4. Here, we

assume that the independence information given in Table 1. This information

may either be given a priori or obtained ‘‘on request’’. Also, for the sake of

simplicity, we assume that the tree is formed of one causal basin.

As stated, the starting point is always an articulation point. Here, we assume

that the DFS algorithm takes node 1 as the starting point to orient the tree
since we have independence between nodes 2 and 3 (Fig. 5).

Step 1: Ið2; 3Þ ¼ T . Therefore the edges are directed as:

Step 2: The next independence tests between neighbors of 1 are: Ið3; 4Þ ¼ F
and Ið2; 4Þ ¼ F . Since edge (2, 1) is already directed as pointing to

1, edge (1, 4) is directed in the causal basin of the edge (2, 1) as:
After directing all the edges starting at node 1, we mark it as a visited
node and we progress in the DFS manner to the nodes belonging to its

adjacency list.

Step 3: Both nodes 2 and 3 are marked as visited because they are leaves. We

therefore move to node 4 and start the same process of testing inde-

pendence between its neighbors as we did for node 1. We check for

independence between every pair of its neighbors, which are: Ið6; 5Þ,
Ið1; 5Þ and Ið1; 6Þ. These tests fail and we know already that edge (1,

4) is pointing to node 4. Thus edges (4, 5) and (4, 6) are directed in
the same causal flow as with edge (1, 4). The direction of the edges

for the nodes processed till now is:

Step 4––End: The same process will continue for all the nodes of the tree. The

final figure is as below, and all the edges will be directed in the

same flow as they are in the same causal basin. The result of ori-

enting the whole tree is given in Fig. 6 below.
5 This example (and the one given later) are a little tedious. We include them here only for the

sake of illustration––to highlight the salient points of the algorithm. They were included on the

recommendation of the reviewers.

1

4

6
10

11 12

21 22

2

3

5

9

7
8 13 14

16 17
15 1918 20

1

4

6
10

11 12

21 22

2

3

5

9

7
8 13 14

16 17
15 1918 20

Fig. 4. A tree example.

Table 1

Independence information about the nodes of the tree above

Ið2; 3Þ ¼ T Ið2; 4Þ ¼ F Ið3; 4Þ ¼ F Ið5; 1Þ ¼ F Ið1; 6Þ ¼ F
Ið5; 6Þ ¼ F Ið4; 8Þ ¼ F Ið4; 7Þ ¼ F Ið7; 8Þ ¼ F Ið4; 9Þ ¼ F
Ið4; 10Þ ¼ F Ið9; 10Þ ¼ F Ið9; 16Þ ¼ F Ið15; 9Þ ¼ F Ið15; 16Þ ¼ F
Ið9; 18Þ ¼ F Ið17; 9Þ ¼ F Ið17; 18Þ ¼ F Ið12; 5Þ ¼ F Ið11; 5Þ ¼ F
Ið11; 12Þ ¼ F Ið10; 19Þ ¼ F Ið10; 20Þ ¼ F Ið19; 20Þ ¼ F Ið10; 22Þ ¼ F
Ið10; 21Þ ¼ F Ið21; 22Þ ¼ F

4

6

2

3

5

1

4

6

2

3

5

1

Fig. 5. Portion of polytree oriented at the end of Step 3.

M. Ouerd et al. / Information Sciences 168 (2004) 111–132 121
Theorem 1. The algorithm Polytree-Depth-First-Search correctly computes the
polytree given the skeleton tree structure and the underlying independence rela-
tionships.

1

4

6

10

11 12

21 22

2

3

5

9

7

81 31 4

16
17

15 1918 20

9

Fig. 6. The polytree obtained from the tree in Fig. 4 and the independence tests of Table 1.

122 M. Ouerd et al. / Information Sciences 168 (2004) 111–132
Proof. The proof of the correctness of the algorithm is achieved by induction

on the number of the nodes. We shall prove the following statements:

i(i) Every node of the tree is visited, and,

(ii) Every edge in the tree is directed by the DFS as imposed by the ordering

given by the independence tests.

Without loss of generality, we assume that we are processing one causal

basin from the starting node. Thus if a node is not visited it will be a starting
point for another causal basin. The first statement is trivial as a direct result of

the DFS traversal to the tree. The more crucial argument involves the orien-
tation of its edges.

Basis step: We use an articulation point as the starting point for the algo-

rithm since it is clear that the algorithm will not lead to any orientation without

such a starting point. The basis step involves the first articulation point X . Let

the variables fXig denote the neighbors of X and in particular, let Xn and Xm be

the neighbors of X that satisfy IðXn;XmÞ ¼ T for indexes n and m because X is
an articulation point. Thus edges ðXn;X Þ and ðX ;XmÞ are oriented as pointing

to node X since Xn and Xm are independent. We then proceed to check for

independence between all pairs of the neighbors of X to orient the corre-

sponding edges. If a test IðX ;XjÞ ¼ T for some j, it implies that the edge ðX ;XjÞ
points to node X ; otherwise it points to node Xj. This achieves the orientation

of all the neighbors of X .

M. Ouerd et al. / Information Sciences 168 (2004) 111–132 123
Inductive hypothesis: Suppose that at a certain stage of the algorithm we are

visiting node Y , where node Y can be any node of the tree. Suppose that Yc is
one of the children of Y , and Yp is one of the parents of Y where the edge ðY ; YcÞ
is unoriented. When visiting node Y , we check for all the independence tests
between the neighbors of Y which include Yc and Yp. We know that edge ðYp; Y Þ
is already oriented as pointing to Y since we have earlier visited Yp. Two sce-

narios can happen:

The first scenario is that the independence test IðYp; YcÞ is false. In such a

case, as per the orienting principle, we orient edge ðY ; YcÞ as pointing to Yc.
The second scenario is when the independence test IðYp; YcÞ is true. In this

case both edges ðYp; Y Þ and ðY ; YcÞ point to node Y .
By the same reasoning it is clear that we can keep orienting all the

neighbors of Y , and using the DFS procedure we traverse the whole tree

and orient all the edges. The result is thus true for all edges in one causal

basin.

The result is also true if we have more than one causal basin, because once

we have exhausted the nodes in the first causal basin, we would invoke the

same DFS strategy from a new starting point in the next causal basin. Hence

the theorem. h

The above algorithm uses a DFS strategy. It is easy to devise an analogous

algorithm, which uses a Breadth-First search strategy, or for that matter, any

systematic search scheme. Also, observe that this is a worst-case scenario.

Thus, it may be possible to optimize our algorithm to require less independence

tests when other independence relationships can be inferred from tests that

have already been done. This is an open problem.

We shall now state results regarding the complexity of the above algorithm.

This is done by considering the number of independence tests that need to be
performed to be able to orient the tree. To clarify issues, we first present a

straightforward example.
Example 2. Consider the case of Fig. 7 in which n, the number of nodes is 22.

The root (node 1) has three children, and all the other nodes have only two

children. Note that this exactly fits our model since every internal node has

three dependent nodes––its parents and its two children, and thus, as men-

tioned in this case, n ¼ 22 and k ¼ 3.
We list below the number of independence tests, which need to be done for

this tree in order to orient it.

Depth ¼ 0: At this level three tests which must be done, i.e., Ið2; 3Þ, Ið2; 4Þ,

Ið3; 4Þ which is
3

2

� �
¼ 3 tests.

1

2

3
4

5

6

7 8
9

10
11

12
13 14

15
16 17

18 19 20

21 22

1

2

3
4

5

6

7 8
9

10
11

12
13 14

15
16 17

18 19 20

21 22

Fig. 7. A tree example.

124 M. Ouerd et al. / Information Sciences 168 (2004) 111–132
Depth ¼ 1: At this depth the result of nine tests must be returned, namely,

Ið5; 6Þ, Ið5; 1Þ, Ið6; 1Þ, Ið7; 8Þ, Ið7; 1Þ, Ið8; 1Þ, Ið9; 10Þ, Ið9; 1Þ, Ið10; 1Þ. The

number of tests is seen to be: 3 � 3
2

� �
¼ 9 tests.

Depth ¼ 2: The 18 tests to be done in this case are:

Ið11; 12Þ; Ið11; 2Þ; Ið12; 2Þ; Ið13; 14Þ; Ið13; 2Þ; Ið14; 2Þ; Ið15; 16Þ; Ið15; 3Þ; Ið16; 3Þ;
Ið17; 18Þ; Ið17; 3Þ; Ið18; 3Þ; Ið19; 20Þ; Ið19; 4Þ; Ið20; 4Þ; Ið21; 22Þ; Ið21; 4Þ; Ið22; 4Þ.

The number of tests can be seen to be : 3 � ð3–1Þ1 � 3

2

� �
¼ 18 tests.

Thus the total number of tests to be done at all levels is 30. The above results
are formalized below.

Remark. From a straightforward examination it is clear that the overall burden

of the computation can be obtained by observing that for each node we have to

do pairwise independence tests between its neighbors. Thus, in a straightforward

manner the cost is n � k
2

� �
. However, to understand what happens at every

level of the tree, a more detailed study is needed. This is done in Theorem 2.

Theorem 2. For a tree with n nodes, in which every node has k adjacent nodes,

at depth d in the tree, the total number of independence tests that have to be

done, is:
k � ðk
 1Þd
1 � k
2

� �
:

M. Ouerd et al. / Information Sciences 168 (2004) 111–132 125
Proof. The proof is done by induction.

Basis Step

The basis step considers all nodes of depths 0, 1 and 2.

For Depth 0, the root has k dependents, and so we have to test every pair of

nodes for independence. This results in
k
2

� �
tests ¼ 1

2
� k � ðk
 1Þ tests.

For Depth 1, every node in the k nodes has ðk
 1Þ dependents not counting
the parent. The number of independence tests is k � k
 1

2

� �
tests for children

and k � ðk
 1Þ tests involving the nodes with the grandparent. This is equal to

Test(Depth 1), where,
TestðDepth 1Þ ¼ k � k
 1

2

� �
þ kcðk
 1Þ

¼ 1

2
� k � ðk

�

 1Þ � ðk
 2Þ þ k � ðk
 1Þ

�
¼ k � k

2

� �
:

For Depth 2, every node in the k � ðk
 1Þ nodes has k
 1 dependents. The
number of independence tests is Test(Depth 2) where
TestðDepth 2Þ ¼ k � ðk
�

 1Þ �
k
 1

2

� �
þ k � ðk
 1Þ � ðk
 1Þ

�

¼ k � ðk
 1Þ � 1

2
� ðk

�

 1Þ � ðk
 2Þ þ ðk
 1Þ

�

¼ k � ðk
 1Þ � ðk
 1Þ 1

2
� ðk

�

 2Þ þ 1

�
¼ k2 � ðk
 1Þ2

¼ k � ðk
 1Þ �
k

2

� �
:

As mentioned before, the expressions for d ¼ 0, d ¼ 1 and d ¼ 2 collectively

constitute the basis case.

Inductive Hypothesis

We now assume that the property is true until level d
 1, i.e., the number of

independence tests at depth d
 1 is equal to Test(Depthd
 1) where,
TestðDepth d
 1Þ ¼ k � ðk
 1Þd
2 � k
2

� �
:

At depth d or layer d in the tree we have k � ðk
 1Þd
1
nodes each having

ðk
 1Þ dependents not counting the parent. Once we are at depth d, we have to

perform
k
 1
2

� �
tests for every node at this depth, which amounts, for

k � ðk
 1Þd
1 � k
 1

2

� �
tests. Subsequently, we have to check every child of

the k � ðk
 1Þd
1
nodes with its grand parent, which amounts for

k � ðk
 1Þd
1 � ðk
 1Þ tests. Thus, the total number of tests is Test(Depth d)

where,

126 M. Ouerd et al. / Information Sciences 168 (2004) 111–132
TestðDepth dÞ ¼ k � ðk
�

 1Þd
1 �
k
 1

2

� �
þ k � ðk
 1Þd
1 � ðk
 1Þ

�

¼ k � ðk
 1Þd
1 �
k
 1

2

� ��
þ ðk
 1Þ

�

¼ k � ðk
 1Þd
1 � 1

2

�
þ k � ðk
 1Þ

�
¼ k � ðk
 1Þd
1 �

k

2

� �

¼ ðk
 1Þ � k � ðk
 1Þd
2 �
k

2

� �

¼ k � ðk
 1Þd
1 �
k

2

� �
:

The theorem follows. h

Corollary to Theorem 2. As mentioned earlier, the total number of indepen-
dence tests which needs to be done for a tree with n nodes of depth d and

branching factor k is n � k
2

� �
. This follows from the above theorem since:
Total Tests ¼
Xd

h¼1

kðk
 1Þh
1 k
2

� �
¼ k

2

� �
� k �

Xd

h¼1

ðk
 1Þh
1
But since we know that ½k �
Pd

h¼1ðk
 1Þh
1 ¼ n, we obtain,

Total Tests ¼ 1
2
� k � ðk
 1Þ � n.
2.4. Limitations of the algorithm

The limitations of the algorithm are primarily due to the lack of information

about the independence between the variables. In order to orient the edges we

used the independence tests between every two neighbors. This information
may not be provided by the user, and it therefore prevents the algorithm from

orienting the tree. The example below illustrates the case. In this example, let us

suppose that it is not possible to orient edges ðF ;GÞ and ðE;GÞ because the

dependence information about nodes E and F is not available. Observe that

this limitation is also relevant for the work of [15].

Elsewhere [13] we have presented a strategy for providing a temporal

ordering of the variables and thus allowing an orientation following this

ordering. Thus, if a variable A precedes a variable B in the ‘‘time ordering’’, we
have shown how we will permit the orientation of A towards B (Fig. 8).

A

B

CD

EF

G

Fig. 8. An example of an incomplete oriented polytree.

M. Ouerd et al. / Information Sciences 168 (2004) 111–132 127
3. Experimental results

In order to check the algorithm developed here we have done numerous

experiments. We assumed that we were to learn an underlying polytree, which

is unknown to the algorithm. One such polytree is given in Fig. 9. Also, we

assumed that independence tests, which are consistent with the polytree ori-
entation, were available whenever they were needed by the algorithm. These

independence tests for the specific polytree in Fig. 9 are given in Table 2. The

polytree learning algorithm specifically modified for discrete data (referred to

as Discrete-Polytree-Depth-First-Search) was invoked using the skeleton and
0
1

8

7

9

3

10

13

11

12

5

6

4

2

Fig. 9. Underlying dependence polytree.

Table 2

Independence information for the polytree given in Fig. 9

Ið0; 1Þ ¼ T Ið2; 6Þ ¼ F Ið7; 11Þ ¼ F
Ið2; 9Þ ¼ T Ið2; 5Þ ¼ F Ið4; 8Þ ¼ F
Ið7; 8Þ ¼ T Ið3; 4Þ ¼ F Ið4; 7Þ ¼ F
Ið12; 13Þ ¼ T Ið5; 6Þ ¼ F Ið9; 10Þ ¼ F
Ið1; 3Þ ¼ F Ið5; 9Þ ¼ F Ið10; 13Þ ¼ F
Ið0; 4Þ ¼ F Ið9; 6Þ ¼ F Ið10; 12Þ ¼ F

128 M. Ouerd et al. / Information Sciences 168 (2004) 111–132
the sequence of independence tests. The results of running the polytree algo-

rithm demonstrate its power.

Since we already know the distribution of the data, we first run the Chow

algorithm on the given distribution. We then obtain the skeletal tree of the

polytree, the tree given in Fig. 10. We are thus required to orient this tree using

the independence tests given in Table 2. In order to orient it the algorithm

detected the following articulation points: nodes 2, 4, 9 and 11 as starting

points. The algorithm then attempted to orient the tree starting at articulation
points, which represent nodes with multiple parents. After running the algo-

rithm, the orientation of every edge of the ‘‘true’’ underlying polytree was

compared with the orientation of the edge of the resultant ‘‘inferred’’ polytree.
10

6

9

8

4

13

11

12

2

3

1

7

0

5

Fig. 10. Tree structure for Fig. 9.

M. Ouerd et al. / Information Sciences 168 (2004) 111–132 129
In every case the results are exactly the same. These experiments were con-

ducted for various kinds of polytrees, namely polytrees with one or multiple

causal basins. In every case, the polytree was exactly inferred––this was true for

every polytree tested.
A second example is given in Figs. 11 and 12. Its independence information

is given in Table 3.

Our experimental results consistently demonstrate that the algorithm suc-

cessfully orients the polytree. Again we observe that if the independence

information for any pair of nodes is not provided to the algorithm, it will fail to

orient the entire tree.
1

2

43

9

6

8

5

7

1011

Fig. 11. Underlying dependence polytree.

Table 3

Independence information for the polytree given in Fig. 11

Ið11; 10Þ ¼ T Ið3; 4Þ ¼ T
Ið10; 8Þ ¼ F Ið3; 1Þ ¼ F
Ið11; 8Þ ¼ F Ið4; 1Þ ¼ F
Ið9; 5Þ ¼ F Ið2; 5Þ ¼ F
Ið8; 7Þ ¼ F
Ið8; 6Þ ¼ F

1

2

4
3

9

6

8

5

7

1011

Fig. 12. The skeletal tree of the underlying polytree given in Fig. 11.

130 M. Ouerd et al. / Information Sciences 168 (2004) 111–132
We conclude this section by mentioning that the techniques presented here

have also been used quite successfully in a real-life application where the

problem is to improve performance in systems using repeated queries which

access distributed databases [13], and for the ALARM data [7].
4. Conclusion

In this paper we have considered the problem of approximating an under-

lying distribution by one derived from a dependence polytree. The skeletal

form of the polytree is known to be the MWST of a complete graph, with

If ðXi;XjÞ, the information theoretic metric, as the edge weight between the pair

of nodes Xi and Xj. Once the tree is derived, Rebane and Pearl [15], proposed to

use an independence test to determine if a variable has multiple parents. They

dictated that every two node neighbors X and Y of a node Z must be tested for
marginal independence to decide if Z has parents X and Y .

This paper proposes a formal and systematic algorithm to traverse the tree

obtained by the Chow method. It uses an application of the DFS strategy to

multiple causal basins. Experimental results clearly demonstrate that when the

required independence tests are available to the algorithm the orientation of

the polytree is completed, and always correct. The algorithm has also been used

in two real-life applications [13] involving distributed databases and the

ALARM data.
Acknowledgements

Partially supported by the Natural Sciences and Engineering Research

Council of Canada. A preliminary version of some of the results in this paper

can be found in the Proceedings of the 2002 Int’l Symposium on Intelligent

Systems, Charlotte, NC. The latter did not contain the formal theorems or
proofs, nor did it contain a detailed description of the actual algorithm.
References

[1] G.F. Cooper, E.H. Herskovits, A bayesian method for the induction of probabilistic networks

from data, Machine Learning 9 (1992) 309–347.

[2] C.K. Chow, C.N. Liu, Approximating discrete probability distributions with dependence trees,

IEEE Transactions on Information Theory 14 (1968) 462–467.

[3] S. Dasputa, Learning polytrees, in: Proceedings of the Fifteenth Conference on Uncertainty in

Artificial Intelligence, Stockholm Sweden, July/August 1999, pp. 134–141. The paper can be

downloaded from http://www2.sis.pitt.edu/~dsl/UAI/UAI99/Dasgupta.UAI99.html.

http://www2.sis.pitt.edu/~dsl/UAI/UAI99/Dasgupta.UAI99.html

M. Ouerd et al. / Information Sciences 168 (2004) 111–132 131
[4] N. Friedman, The Bayesian structural EM algorithm, in: Proceedings of the Fourteenth

Conference on Uncertainty in Artificial Intelligence, University of Wisconsin Business School

Madison, Wisconsin, USA, July 1998, pp. 129–138. The paper can be downloaded from http://

www.cs.huji.ac.il/~nirf/Papers/Fr2.pdf.

[5] N. Friedman, I. Nachman, D. Pe’er, Learning Bayesian network structure from massive

datasets: the ‘‘Sparse Candidate’’ algorithm, in: Proceedings of the Fifteenth Conference on

Uncertainty in Artificial Intelligence, Stockholm Sweden, July/August 1999, pp. 206–215. The

paper can be downloaded from http://www2.sis.pitt.edu/~dsl/UAI/UAI99/Fried-

man.UAI99.html.

[6] D. Geiger, A. Paz, J. Pearl, Learning causal trees from dependence information, in:

Proceedings of 1990 AAAI Conference, Boston, MA, MIT Press, 1990, pp. 770–776.

[7] E.H. Herskovits, Computer-based probabilistic-network construction, Doctoral Dissertation,

Medical Information Sciences, Stanford University, CA, 1991.

[8] S. Kullback, R.A. Leibler, On information and sufficiency, Annals Mathematics Statistics 22

(1951) 79–86.

[9] T.M. Mitchell, Machine Learning, McGraw-Hill, 1997.

[10] S. Dasputa, Learning probability distributions, Doctoral Dissertation, University of California

at Berkeley, 2000.

[11] M. Ouerd, B.J. Oommen, S. Matwin, Generation of random vectors for underlying DAG

structures given first order marginals, in preparation.

[12] M. Ouerd, B.J. Oommen, S. Matwin, Inferring polytree dependencies from sampled data, in:

Proceedings of the 2002 IEEE International Conference on Systems, Man and Cybernetics,

Hammamet, Tunisia, October 2002, in press.

[13] M. Ouerd, Building probabilistic networks and its application to distributed databases,

Doctoral Dissertation, SITE, University of Ottawa, Ottawa, Canada, 2000.

[14] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference,

Morgan Kaufmann, San Mateo, CA, 1988.

[15] G. Rebane, J. Pearl, The recovery of causal polytrees from statistical data, in: Proceedings of

the Third Conference on Uncertainty in Artificial Intelligence, Seattle, Washington, July 1987,

pp. 222–228.

[16] S. Srinivas, S. Russell, A. Agogino, Automated construction of sparse bayesian networks from

unstructured probabilistic models and domain information, in: Proceedings of the Fifth

Workshop on Uncertainty in Artificial Intelligence, Windsor, Canada, August 1989, pp. 343–

350. The paper can be downloaded from http://www2.sis.pitt.edu/~dsl/UAI/uai89.html.

[17] R.S. Valiveti, B.J. Oommen, On using the chi-squared metric for determining stochastic

dependence, Pattern Recognition 25 (11) (1992) 1389–1400.

[18] T. Verma, J. Pearl, An algorithm for deciding if a set of observed independencies has a causal

explanation, in: Proceedings of the Eighth Conference on Uncertainty in Artificial Intelligence,

San Mateo, CA, July 1992, pp. 323–330. The paper can be downloaded from http://

singapore.cs.ucla.edu/csl_papers.html.

[19] T. Verma, J. Pearl, Equivalence and synthesis of causal models, in: Proceedings of the Sixth

Conference on Uncertainty in Artificial Intelligence, Cambridge, MA, July 1990, pp. 220–

227.

[20] S. Acid, L.M. de Campos, Approximations of causal networks by polytrees: an empirical

study, in: B. Bouchon-Meunier, R.R. Yager, L.A. Zadeh (Eds.), Proceedings of the Fifth

IPMU Conference, 972–977. Also found in Advances in Intelligent Computing, Springer

Verlag, 1994, pp. 149–158.

[21] J.F. Huete, L.M. de Campos, Learning causal polytrees, in: M. Clarke, R. Kruse, S. Moral

(Eds.), Proceedings of the 1993 Conference on Symbolic and Quantitative Approaches to

Reasoning and Uncertainty, Lecture Notes in Computer Science, vol. 747, Springer Verlag,

1993, pp. 180–185.

http://www.cs.huji.ac.il/~nirf/Papers/Fr2.pdf
http://www.cs.huji.ac.il/~nirf/Papers/Fr2.pdf
http://www2.sis.pitt.edu/~dsl/UAI/UAI99/Friedman.UAI99.html
http://www2.sis.pitt.edu/~dsl/UAI/UAI99/Friedman.UAI99.html
http://www2.sis.pitt.edu/~dsl/UAI/uai89.html
http://singapore.cs.ucla.edu/csl_papers.html
http://singapore.cs.ucla.edu/csl_papers.html

132 M. Ouerd et al. / Information Sciences 168 (2004) 111–132
[22] A. Acid, L.M. de Campos, A. Gonzales, R. Molina, N. Perez de la Blanca, Learning with

CASTLE, in: R. Kruse, P. Siegel (Eds.), Proceedings of the 1991 Conference on Symbolic and

Quantitative Approaches to Uncertainty, Lecture Notes in Computer Science, vol. 548,

Springer-Verlag, 1991, pp. 99–106.

[23] M. Meila, T. Jaakkola, Tractable Bayesian learning of tree belief networks, in: Proceedings of

the Sixteenth Workshop on Uncertainty in Artificial Intelligence. The paper can be

downloaded from http://www.stat.washington.edu/mmp/#publications.

http://www.stat.washington.edu/mmp/

	A formal approach to using data distributions for building causal polytree structures
	Introduction and background
	Why polytrees
	Problem statement and outline of solution

	A depth first search algorithm for building polytrees
	Problems with Pearl's algorithm
	Motivation for a DFS strategy
	Analytic properties of the algorithm
	Limitations of the algorithm

	Experimental results
	Conclusion
	Acknowledgements
	References

