
Machine learning method for software quality

model building

Maurício Amaral de Almeida1 and Stan Matwin
School of Information Technology and Engineering

University of Ottawa
150 Louis Pasteur, Ottawa
Ontario, K1N 6N5 Canada

{malmeida,stan}@csi.uottawa.ca

Abstract

Software quality prediction can be cast as a concept learning problem. In this paper, we
discuss the full cycle of an application of Machine Learning to software quality prediction.
As it often happens in real-life applications, significant part of the project was devoted to
activities outside the learning process: data acquisition, feature engineering, labeling of the
examples, etc. We believe that in projects that reach out to real data (rather than rely on the
prepared data sets from the existing repositories), these activities often decide about the
success or a failure of the project. The method proposed here is applied to a set of real-life
COBOL programs and some discussion on the results is presented.

Keywords: Learning applications, software metrics, software quality, symbolic learning.

1. Introduction

Lack of adequate tools to evaluate and estimate software quality is one of the main
challenges in Software Engineering. Historically, there have been numerous attempts to
develop robust, analytical models based on the knowledge of factors influencing software
quality [Kan95]. Many of these approaches adapt to software the general engineering
reliability models (e.g. The Raleigh Model [Kan95]). The results, however, have not
produced tools whose use has proven itself in practice. A different approach posited that
rather than looking for analytical models, one should treat the problem as an empirical
experiment, and try to predict quality based on past experience. The existing models (e.g.
[Khoshgoftaar et al. 98]) typically use statistical approaches, e.g. regression techniques, on

1 Faculdade de Tecnologia de São Paulo, São Paulo, Brazil.

data that represents the past experience of some organization concerning selected aspects of
software quality. In our experience, statistical models have two drawbacks. Firstly, these
methods behave like “black boxes”. The user enters the values of the model’s parameters,
and obtains an answer quantifying some aspect of software quality. It is difficult for the user
to see the connection between the inputs of the model and the quantitative answers it
provides: interpretability of the model is questionable. Secondly, the empirical data
available about both the organization, and the software, may be drastically different from
the kind of organization and the kind of software whose quality is to be predicted.
Consequently, these methods are often criticized for being based on assumptions that do not
apply to the project at hand, and for the difficulties with the interpretation of their estimates.

We propose an approach that derives simple estimates of selected aspects of software
quality. The method that we have developed builds a quality model based on the
organization’s own past experience with similar type of software projects. The underlying
model-building technique is concept induction from examples. It inherits from the specific
induction technique the immediate interpretability of the results. We show how a problem
of software quality prediction can be cast as a concept learning problem. This allows us to
draw on a rich body of techniques for learning concepts from examples. Low
maintainability, for instance, becomes a concept to be learned from positive and negative
examples. These are software components whose maintenance effort can be labeled as low
or high.

In this paper, we discuss the full cycle of an application of Machine Learning. As it often
happens in real-life applications, significant part of the project was devoted to activities
outside the learning process: data acquisition, feature engineering, labeling of the examples,
etc. We believe that in projects that reach out to real data (rather than rely on the prepared
data sets from the existing repositories), these activities often decide about the success or a
failure of the project. Consequently, it is important to present and discuss them, with the
goal of producing generally recognized methodologies for data mining activities that
precede and follow the learning step.

2. Prior and related work

There is a small, but growing body of work in which ML is applied in the software quality
prediction task. Selby and Porter [Porter90] have used ID3 to identify the attributes that are
the best predictor of interface errors likely to be encountered during maintenance.
[Briand93] built cost models for isolation and correction using an approach that combines
statistical and machine learning classification methods [Briand92]. In this work, values of
metrics were used for the first time to represent the properties of the code believed relevant
to the task. The metrics were extracted by the ASAP tool form a set of ADA components
from the NASA SEL. Jorgensen [Jorgensen95] has constructed a predictive model of the
cost of corrective maintenance using the approach of [Briand92] for generating a logical
classification model, and has compared the symbolic ML approach to neural networks and
lest square regression. Basili [Basili97] has built maintenance cost using the C5.4 and
metrics extracted by the AMADEUS tool. Cohen [Cohen97] presents a comparison

between the FLIPPER and the FOIL using dada from class declarations in C++.

Almeida, Lounis and Melo [Almeida98] have continued the work by [Basili97] comparing
the models built with C4.5 with models built with NewID, CN2 and FOIL. The metrics was
extracted with the ASAP tool from a set of ADA components from the NASA SEL.

3. Methodology

We view software quality as a multi-dimensional concept, consisting of such properties of
the software as modifiability, changeability, error proneness, etc. The approach we are
proposing is to treat each quality dimension as an unknown function from the observable
attributes of the software to a value in a selected quality dimension. This function clearly
depends on the characteristics of the software organization that develops and maintains the
software. We treat these attributes, such as

• development tools for software and hardware;
• Software project methodologies;
• Software life cycle;
• Specific characteristics of the software development team

as non-observable: not only are they often unavailable or uncertain, but their precise
influence on software quality is difficult to quantify. We will refer to the collection of non-
observables as context. We rely on experience, which is represented as a certain number of
quality values, known from past experience, and the observables that resulted in these
values. We are then predicting the unknown values of the quality function, using ML
techniques.

In this manner, we do not need to work with the context. We assume that it implicitly
influences the observables, and that this influence is captured by the induction process.
Consequently, ML-generated software quality models are adaptable to a given context that
influences the quality.

Figure 1. Quality model construction process.

Source code Categorise

Categories

MetricsMetrics
extraction Model

Learner

Metrics

Fig. 1 presents the whole process. The starting point is the source code, divided into units
(modules, procedures, files, whatever are the units in a given programming language). The
experience with the quality of that software is represented by the quality labels, known from
the past (e.g. how long it took to perform a given maintenance request on a particular unit).
Units of source code are mapped into vector of software metrics values. These vectors, with
their corresponding quality labels, are fed into an inductive learner, which treats the
prediction problem as a classification problem: quality is discretized into a small number of
discrete values of labels. A ML system produces a model (e.g. a decision tree, or a set of
rules).

3.1. Case selection.

When building dedicated quality models one should pay special attention to the definition
of the specific conditions under which the model is being built. Fig. 2 presents a partial list
of aspects to be considered in the selection of the cases for the model building.

The first aspect to be considered is the attribute (the dimension of quality) to be modeled.
Enough reliable historical information about that attribute is necessary for model induction.

The context should be well defined, and all cases must belong to the same context to assure
the comprehensibility, reliability and applicability of the model. The context characteristics
to be considered include the software and hardware used, the team, and the project. The
software component aspects to be considered include the granularity, the accessibility, and
the quantity of the components.

1. Quality attribute to be modeled (independent variable)

• Disponibility
• Confiability
• Quantity

2. Environment (Context)
• Software
! Programming language
! Operational system
! Tools
! Special characteristics (real-time, multiusers, synchronization)

• Hardware
• Team
• Project
! Life-cycle model
! Project tools

3. Components
• Granularity
• Quantity
• Accessibility

3.2. Metrics selection and extraction

After the cases selection the metrics to be used should be chosen. In many cases the metrics
have already being extracted by the software organization, and we do not have even access
to the source code of the components.

The metrics to be chosen depends on the programming languages, the available extraction
tools, the attribute to be modeled, and others. Usually classical metrics [Fenton96], [Kan95]
are included in the metrics set, such as:

! Size metrics (KLOC, Function points, ...)
! Code documentation metrics (comment lines, blank lines, ...)
! Halstead metrics [Halstead77]
! Cyclomatic complexity [McCabe76]
! Specific syntactic structures (IF-THEN-ELSE, WHILE, DO-WHILE, FOR, ...)
! Structural metrics (Fan-in, Fan-out)
! Object oriented metrics (methods/class, inheritance tree depth, coupling,)
! Data structure metrics (Number of operands [Halstead77], DATA [Boehm81]).

In our experiment, we have used 19 metrics, based on the metrics from the list above.

3.3. Labeling

Due to a number of factors, i.e. the granularity and imprecision of the available
information, difficulty to automatically retrieve the available information, and incoherent
data, in our experience the labeling is the hardest phase of the quality model building. For
instance, it is quite common that the historical data are presented in a different granularity
then the one used in the metrics extraction.

The source code, extraction methods, and evaluation methods for the labeling process must
be clearly established. Finally the classes and a mapping scheme must be defined.
Frequently the classes are defined as “high” and “low” for many of the most common
dimensions of software quality modeling like maintainability, faut-proness, changeabilirty,
and others.

In our experiment, there was a need to attribute the cost to units of smaller granularity than
the units for which cost data was available. We have achieved this by attributing costs to

sub-units proportionally to the length of the code. This was consistent with the experts’
(maintainers’) intuition about the influence of the size of units maintained to the cost of
maintenance.

3.4. Data analysis

After the metrics extraction and the case labeling, the data set should be analyzed to assure
the data quality and consequent reliability of the model. The tools to analyze the data
include the outlier analysis, the pareto chart and the distribution of the classes and
attributes. A deeper discussion of the techniques for analyzing software data can be found
in [Fenton96].

An outlier in a class might indicate noise in the class that can be eliminated. Alternatively,
outliers of the whole set might indicate cases whose behavior is so atypical that they should
not be used to build de model. A pareto chart consists in plotting the histogram of the
classes to guarantee that there are enough data in each class to build a model. [Kubat97]
[Kubat98] have some interesting proposals to treat situations in which classes are highly
imbalanced.

Since we need to discretize the quality into a small number of label values, some
discretization process is necessary. In our experiments the median of the values of the
attribute that is being modeled is used as the boundary between the high and low labels.

A presentation of the de distribution of each of the attributes, containing maximums,
minimums, average, standard deviation, median, upper and lower quartiles and the
histogram may be a valuable tool in the interpretation of the model. In section 4, we present
these measures obtained in our experiment.

3.5. Model evaluation

The model validation should be done in two different dimensions: the accuracy and the
comprehensibility. As long as the model may be used to predict the behavior of unseen
cases the accuracy, precision and recall are relevant attributes for evaluating the model and
should be considered. Comprehensibility and meaningfulness of the model are harder to
evaluate. To evaluate the latter, the model should be taken back to the software organization
where its utility can be better evaluated. We present specific accuracy results in sec. 4.

3.6. Model application.

Software quality models may by applied in a number of ways, for example:

• Evaluating the software components generated inside the organization.
• Evaluating the software components generated by a third party.
• Construction of guidelines for the development process.

Firstly, the evaluation and prediction of software components generated inside de
organization is the most obvious application of the software quality models.

Secondly, sometimes when dealing with sub-contracting of software, one whishes to be
able to evaluate quality attributes of the software product before accepting it. In such cases
during the relation with each sub-contacted it is possible to build quality models that relates
the internal attributes of the sub-contracted software with its external behavior in the
context of the contracting organization.

Thirdly, the analysis of the model may allow a better comprehension of the reasons that
leads some quality aspect to be bellow the accepted level, allowing the organization to build
or refine it’s software development guidelines.

It is important to notice that although the method presented here was primarily exemplified
using metrics of internal attributes of the software source code, this method can be extended
to any metric of any phase of the software life-cycle.

Figure 3. represents a long-term view of the application of the software quality models in
the software development process. A life-cycle model can be viewed as processes
transforming software descriptions. The software quality model generation method
proposed here can be applied to any software description, and may be used both to evaluate
and to help creating guidelines for the process. In that way a software quality optimization
cycle can be built.

Figure 3. Long-term view of the application of the software quality models in the software development
process

 Software
description

Guidelines for
process n

Quality
manadgement

Process n+1 Process n

Software
quality model

generation

Guidelines for
process n+1

Software
quality model

generation

4. A specific application

The method proposed above was applied to a set of programs from Bell Canada, the
company responsible for the local and phone traffic, as well as for the majority (60%) of
long-distance and overseas market in Canada.

Bell Canada has implemented a set of functional changes in the billing system. The system
is composed of hundreds of COBOL programs from which 355 were altered. The metrics
extracted form those programs are presented in the figure 4.

Large values in the standard deviation column, when compared with the average, of the
table indicate considerable degree of variance in the data. This large variance makes us
believe that the sample programs were well selected.

During the change of the billing system the cost of specification and development of the
changes were registered to entire sets of programs. The attribute to be modeled was the
chagebility of the programs. To do so, the cost for changing was spread among the
individual programs. Different forms of spreading the cost were considered. The chosen
method was to divide the cost attributed to each program set in a weighed way to each
program in the set, using as weight the “Total lines of Code”.

∑
⋅

=

Set

i
i code of lines Total

code of lines Total costSet
cost Alteration

The dichotomization of the cost in two classes was made using the median of the costs.
Alteration cost above the median was classified as “high” otherwise they were categorized
as “low”. In that manner 176 programs were classified as “high” and 179 as “low”.

 Average Std.
Deviation

Median Max. Min.

Cyclomatic complexity 43.0507 81.28723 16 851 1
Declarative length 178.6056 214.7458 121 2066 18
Declarative statements 136.631 178.6303 87 1917 10
Declarative comments 19.16338 36.95701 12 378 0
Declarative comments density 0.164557 0.159099 0.123596 1.333333 0
Declarative blank lines 22.81127 22.241 17 226 0
Declarative blank lines density 0.208776 0.112239 0.187845 0.73913 0
Executable length 510.2676 813.6223 281 9939 17
Executable statements 371.5859 554.7937 205 5458 5
Executable comments 68.12113 254.8285 31 4470 1

Executable comments density 0.230784 0.237322 0.168 2.4 0.006452
Executable blank lines 70.56056 95.77846 37 686 0
Executable blank lines density 0.208938 0.111368 0.193548 0.650794 0
Total source lines 906.5634 1105.779 572 11290 105
Total Lines of code 513.0761 664.4598 313 5814 23
Total Lines of comments 298.2648 406.127 185 5464 51
Total Blank lines 95.22254 111.43 58 792 1
Reserved words 724.4761 1017.704 428 9667 20
Unconditional branches 5 22.04003 0 264 0

Five different models were generated using for NewID, CN2, C4.5, C4.5 rules and FOIL
[Almeida98]. The models were tested using the one-out cross validation for NewID, CN2
and C4.5 and 3-fold cross validations for FOIL. The results are presented in the figure 5.

NewID CN2
 High Low Completeness High Low Completeness

High 134 42 76.14% High 131 45 74.43%
Low 39 140 78.21% Low 44 135 75.42%
 Accuracy Accuracy

Correctness 77.46% 76.92% 77.18% Correctness 74.86% 75.00% 75.00%

C4.5 Tree C4.5 rules
 High Low Completeness High Low Completeness

High 135 41 76.70% High 135 41 76.70%
Low 40 139 77.65% Low 40 139 77.65%
 Accuracy Accuracy

Correctness 77.43% 77.22% 77.18% Correctness 77.43% 77.22% 77.18%

FOIL
 High Low Completeness

High 89 90 48,86%
Low 49 130 72.63%
 Accuracy
Correctness 63.70% 59.09% 64.48%

5. Conclusion

The results shown in sec. 4 indicate that the correctness and completeness do not differ
significantly between the different learningt systems used. The values obtained for C4.5
(trees and rules), NewID, and CN2 are virtually identical. The results for FOIL are lower,
likely due to the fact that there are no truly relational attributes among the metrics that
represent the programs, and therefore FOIL is used as a non-relational learning system.

Figure 5. Evaluation of the models in the Bell Canada experiment

A criterion under which the results between different learners differ is comprehensibility.
The difference, however, is difficult to quantify, as there are no generally agreed upon
measures to express comprehensibility [IJCAI95]. To us, the C4.5 rules results seemed
most comprehensible.

Our experience on this real-life Data Mining project indicates that the choice of the learning
system matters much less than the whole process, which is summarized bellow:

1. Case selection.
2. Attribute selection and extraction.
3. Labeling.
4. Data analysis.
5. Model generation by the learning program.
6. Model evaluation.
7. Model application.

This is consistent with the overall conclusion of the recent review of Machine Learning
applications [Provost98]. In our paper, we have indicated how we dealt with some of these
issues. We believe that more work in this area needs to be done, leading to a systematic
approach by which ML techniques can be applied to the problems of this kind.

Bibliography

[Briand92] Briand, L.; Basili, V.; Hetmansky, C. J. A pattern recognition approach for software engineering

data analysis IEEE transactions on software engineering, n. 18, v. 1, Nov. 1992.
 [Briand93] Briand, L.; Thomas, W. M.; Hetmanski, C. J. Modeling and managing risk early in software

development In proceedings IEEE 15th International Conference on software engineering, Baltmore, May
1993.

 [Boehm81] Boehm, B. W. Software engineering economics, Prentice Hall, Englewood Cliffs, NJ 1981.
 [Fenton96] Fenton, N. E.; Pfleeger, S. L. Software metrics: A rigorous & practical approach International

Thomson computer press, London, 1996.
[Halstead77] Halstead, M. H. Elements of software science Elsevier Nonth Holand, New York, 1977.
 [IJCAI95] IJCAI’95 workshop Machine learning and comprehensibility 14th International joint conference

on artificial intelligence, Montreal, 1995.
 [Jorgensen95] Jorgensen, M. Experience with the accuracy of software maintenance task effort prediction

models IEEE Transactions on software engineering, v. 21, n. 8, p. 674-81, Aug. 1995.
[Kan95] Kan, S. H. Metrics and models in software quality engineering. 1. Ed. Readings , Massachusets,

Addison-Wesley Publishing Company, 1995.
 [Khoshgoftaar98] Khoshgoftaar, T. M. at all Using process history to predict software quality IEEE

Computer p. 66-72, April 1998.
 [Kubat97] Kubat, M.; Matwin, S. Addressing the course of imbalanced training sets: One-side selection In

Fisher Jr., D. H. Machine leaning proceedings of the fourteenth international conference (ICML ’97)
Nasville, Tenesse, July 8-12, 1997, p. 179-85, Morgan Kaufman, San Francisco, Califonia, 1997.

 [Kubat98] Kubat, M.; Holte, R. C.; Matwin, S. Machine learning for the detection of oil spills in satellite
radar images Machine learning, n. 30, p. 195-215.

 [Michalski83] Michalski, R. S. A theory and methodology of inductive learning endgames In Carbonel, J.G.;
Michalski, R. S.; Mitchell, T. M. Machine learning. An artificial intelligence approach, v.1, Tioga, Palo
Alto, California, p. 83-134, 1983.

 [McCabe76] McCabe, T. J. A complexity measure IEEE Transactions on software engineering, v. 2, n.4 p.
308-20, Dec 1976.

 [Porter90] Porter, A.; Selby, R. Empiricaly guided software development using metric-based classification
trees IEEE Software, v. 7, n. 2, p. 463-81, March 1991.

 [Provost98] Provost, F.; Kohavi, R. On applied research in machine learning Machine learning, v. 30, n.2/3,
p. 127-32, 1998.

