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Abstract 
 
Software quality prediction can be cast as a concept learning problem. In this paper, we 
discuss the full cycle of an application of Machine Learning to software quality prediction. 
As it often happens in real-life applications, significant part of the project was devoted to 
activities outside the learning process: data acquisition, feature engineering, labeling of the 
examples, etc. We believe that in projects that reach out to real data (rather than rely on the 
prepared data sets from the existing repositories), these activities often decide about the 
success or a failure of the project. The method proposed here is applied to a set of real-life 
COBOL programs and some discussion on the results is presented.  
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1. Introduction 
 
Lack of adequate tools to evaluate and estimate software quality is one of the main 
challenges in Software Engineering. Historically, there have been numerous attempts to 
develop robust, analytical models based on the knowledge of factors influencing software 
quality [Kan95]. Many of these approaches adapt to software the general engineering 
reliability models (e.g. The Raleigh Model [Kan95]). The results, however, have not 
produced tools whose use has proven itself in practice. A different approach posited that 
rather than looking for analytical models, one should treat the problem as an empirical 
experiment, and try to predict quality based on past experience. The existing models (e.g. 
[Khoshgoftaar et al. 98]) typically use statistical approaches, e.g. regression techniques, on 
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data that represents the past experience of some organization concerning selected aspects of 
software quality. In our experience, statistical models have two drawbacks. Firstly, these 
methods behave like “black boxes”. The user enters the values of the model’s parameters, 
and obtains an answer quantifying some aspect of software quality. It is difficult for the user 
to see the connection between the inputs of the model and the quantitative answers it 
provides: interpretability of the model is questionable. Secondly, the empirical data 
available about both the organization, and the software, may be drastically different from 
the kind of organization and the kind of software whose quality is to be predicted.  
Consequently, these methods are often criticized for being based on assumptions that do not 
apply to the project at hand, and for the difficulties with the interpretation of their estimates.  
 
We propose an approach that derives simple estimates of selected aspects of software 
quality. The method that we have developed builds a quality model based on the 
organization’s own past experience with similar type of software projects. The underlying 
model-building technique is concept induction from examples. It inherits from the specific 
induction technique the immediate interpretability of the results. We show how a problem 
of software quality prediction can be cast as a concept learning problem. This allows us to 
draw on a rich body of techniques for learning concepts from examples. Low 
maintainability, for instance, becomes a concept to be learned from positive and negative 
examples. These are software components whose maintenance effort can be labeled as low 
or high. 
 
In this paper, we discuss the full cycle of an application of Machine Learning. As it often 
happens in real-life applications, significant part of the project was devoted to activities 
outside the learning process: data acquisition, feature engineering, labeling of the examples, 
etc. We believe that in projects that reach out to real data (rather than rely on the prepared 
data sets from the existing repositories), these activities often decide about the success or a 
failure of the project. Consequently, it is important to present and discuss them, with the 
goal of producing generally recognized methodologies for data mining activities that 
precede and follow the learning step.  
 
2. Prior and related work 
 
There is a small, but growing body of work in which ML is applied in the software quality 
prediction task. Selby and Porter [Porter90] have used ID3 to identify the attributes that are 
the best predictor of interface errors likely to be encountered during maintenance. 
[Briand93] built cost models for isolation and correction using an approach that combines 
statistical and machine learning classification methods [Briand92]. In this work, values of 
metrics were used for the first time to represent the properties of the code believed relevant 
to the task. The metrics were extracted by the ASAP tool form a set of ADA components 
from the NASA SEL. Jorgensen [Jorgensen95] has constructed a predictive model of the 
cost of corrective maintenance using the approach of [Briand92] for generating a logical 
classification model, and has compared the symbolic ML approach to neural networks and 
lest square regression. Basili [Basili97] has built maintenance cost using the C5.4 and 
metrics extracted by the AMADEUS tool. Cohen [Cohen97] presents a comparison 



between the FLIPPER and the FOIL using dada from class declarations in C++. 
 
Almeida, Lounis and Melo [Almeida98] have continued the work by [Basili97] comparing 
the models built with C4.5 with models built with NewID, CN2 and FOIL. The metrics was 
extracted with the ASAP tool from a set of ADA components from the NASA SEL. 
 
3. Methodology 
 
We view software quality as a multi-dimensional concept, consisting of such properties of 
the software as modifiability, changeability, error proneness, etc. The approach we are 
proposing is to treat each quality dimension as an unknown  function from the observable 
attributes of the software to a value in a selected quality dimension. This function clearly 
depends on the characteristics of the software organization that develops and maintains the 
software. We treat these attributes, such as 

• development tools for software and hardware; 
• Software project methodologies; 
• Software life cycle; 
• Specific characteristics of the software development team 

as non-observable: not only are they often unavailable or uncertain, but their precise 
influence on software quality is difficult to quantify. We will refer to the collection of non-
observables as context. We rely on experience, which is represented as a certain number of 
quality values, known from past experience, and the observables that resulted in these 
values. We are then predicting the unknown values of the quality function, using  ML 
techniques.  
 
In this manner, we do not need to work with the context. We assume that it implicitly 
influences the observables, and that this influence is captured by the induction process. 
Consequently, ML-generated software quality models are adaptable to a given context that 
influences the quality. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Quality model construction process. 
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Fig. 1 presents the whole process. The starting point is the source code, divided into units 
(modules, procedures, files, whatever are the units in a given programming language). The 
experience with the quality of that software is represented by the quality labels, known from 
the past (e.g. how long it took to perform a given maintenance request on a particular unit). 
Units of source code are mapped into vector of software metrics values. These vectors, with 
their corresponding quality labels, are fed into an inductive learner, which treats the 
prediction problem as a classification problem: quality is discretized into a small number of 
discrete values of labels. A ML system produces a model (e.g. a decision tree, or a set of 
rules).  
 
3.1. Case selection.  
 
When building dedicated quality models one should pay special attention to the definition 
of the specific conditions under which the model is being built. Fig. 2 presents a partial list 
of aspects to be considered in the selection of the cases for the model building. 
 
The first aspect to be considered is the attribute (the dimension of quality) to be modeled. 
Enough reliable historical information about that attribute is necessary for model induction. 
 
The context should be well defined, and all cases must belong to the same context to assure 
the comprehensibility, reliability and applicability of the model. The context characteristics 
to be considered include the software and hardware used, the team, and the project. The 
software component aspects to be considered include the granularity, the accessibility, and 
the quantity of the components.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
1. Quality attribute to be modeled (independent variable) 

• Disponibility   
• Confiability 
• Quantity 

2. Environment (Context) 
• Software 
! Programming language 
! Operational system 
! Tools 
! Special characteristics (real-time, multiusers, synchronization) 

• Hardware 
• Team 
• Project 
! Life-cycle model 
! Project tools  

3. Components 
• Granularity 
• Quantity 
• Accessibility 

 



 
 
 
 
 
 
 
3.2. Metrics selection and extraction  
 
 
After the cases selection the metrics to be used should be chosen. In many cases the metrics 
have already being extracted by the software organization, and we do not have even access 
to the source code of the components. 
 
The metrics to be chosen depends on the programming languages, the available extraction 
tools, the attribute to be modeled, and others. Usually classical metrics [Fenton96], [Kan95] 
are included in the metrics set, such as: 

! Size metrics (KLOC, Function points, ...)    
! Code documentation metrics (comment lines, blank lines, ...) 
! Halstead metrics [Halstead77] 
! Cyclomatic complexity [McCabe76] 
! Specific syntactic structures (IF-THEN-ELSE, WHILE, DO-WHILE, FOR, ...) 
! Structural metrics (Fan-in, Fan-out) 
! Object oriented metrics (methods/class, inheritance tree depth, coupling, ....) 
! Data structure metrics (Number of operands [Halstead77], DATA [Boehm81]). 

 
In our experiment, we have used 19 metrics, based on the metrics from the list above. 
 
 
3.3. Labeling 
 
Due to a number of factors, i.e. the granularity and  imprecision of the available 
information, difficulty to automatically retrieve the available information, and incoherent 
data, in our experience the labeling is the hardest phase of the quality model building. For 
instance, it is quite common that the historical data are presented in a different granularity 
then the one used in the metrics extraction. 
 
The source code, extraction methods, and evaluation methods for the labeling process must 
be clearly established. Finally the classes and a mapping scheme must be defined. 
Frequently the classes are defined as “high” and “low” for many of the most common 
dimensions of software quality modeling like maintainability, faut-proness, changeabilirty, 
and others.  
 
In our experiment, there was a need to attribute the cost to units of smaller granularity than 
the units for which cost data was available. We have achieved this by attributing costs to 



sub-units proportionally to the length of the code. This was consistent with the experts’ 
(maintainers’) intuition about the influence of the size of units maintained to the cost of 
maintenance. 
 
3.4. Data analysis 
 
After the metrics extraction and the case labeling, the data set should be analyzed to assure 
the data quality and consequent reliability of the model. The tools to analyze the data 
include the outlier analysis, the pareto chart and the distribution of the classes and 
attributes. A deeper discussion of the techniques for analyzing software data can be found 
in [Fenton96]. 
 
An outlier in a class might indicate noise in the class that can be eliminated. Alternatively, 
outliers of  the whole set might indicate cases whose behavior is so atypical that they should 
not  be used to build de model. A  pareto chart consists in plotting the histogram of the 
classes to guarantee that there are enough data in each class to build a model. [Kubat97] 
[Kubat98] have some interesting proposals to treat situations in which classes are highly 
imbalanced. 
 
Since we need to discretize the quality into a small number of label values, some 
discretization process is necessary. In our experiments the median of the values of the 
attribute that is being modeled is used as the boundary between the high and low labels. 
 
A presentation of the de distribution of each of the attributes, containing maximums, 
minimums, average, standard deviation, median, upper and lower quartiles and the 
histogram may be a valuable tool in the interpretation of the model. In section 4, we present 
these measures obtained in our experiment. 
 
3.5. Model evaluation 
 
The model validation should be done in two different dimensions: the accuracy and the 
comprehensibility. As long as the model may be used to predict the behavior of unseen 
cases the accuracy, precision and recall are relevant attributes for evaluating the model and 
should be considered. Comprehensibility and meaningfulness of the model are harder to 
evaluate. To evaluate the latter, the model should be taken back to the software organization 
where its utility can be better evaluated. We present specific accuracy results in sec. 4. 
  
3.6. Model application. 
 
Software quality models may by applied in a number of ways, for example: 
 

• Evaluating the software components generated inside the organization. 
• Evaluating the software components generated by a third party. 
• Construction of guidelines for the development process. 

 



Firstly, the evaluation and prediction of software components generated inside de 
organization is the most obvious application of the software quality models. 
 
Secondly, sometimes when dealing with sub-contracting of software, one whishes to be 
able to evaluate quality attributes of the software product before accepting it. In such cases 
during the relation with each sub-contacted it is possible to build quality models that relates 
the internal attributes of the sub-contracted software with its external behavior in the 
context of the contracting organization.  
 
Thirdly, the analysis of the model may allow a better comprehension of the reasons that 
leads some quality aspect to be bellow the accepted level, allowing the organization to build 
or refine it’s software development guidelines. 
 
It is important to notice that although the method presented here was primarily exemplified 
using metrics of internal attributes of the software source code, this method can be extended 
to any metric of any phase of the software life-cycle.  
 
Figure 3. represents a long-term view of the application of the software quality models in 
the software development process. A life-cycle model can be viewed as processes 
transforming software descriptions. The software quality model generation method 
proposed here can be applied to any software description, and may be used both to evaluate 
and to help creating guidelines for the process. In that way a software quality optimization 
cycle can be built. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Long-term view of the application of the software quality models in the software development 
process
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4. A specific application  
 
 
 
 
 
The method proposed above was applied to a set of programs from Bell Canada, the 
company responsible for the local and phone traffic, as well as for the majority (60%) of 
long-distance and overseas market in Canada.  
 
Bell Canada has implemented a set of functional changes in the billing system. The system 
is composed of hundreds of COBOL programs from which  355 were altered. The metrics 
extracted form those programs are presented in the figure 4.  
 
Large values in the standard deviation column, when  compared with the average, of the 
table indicate considerable degree of variance in the data. This large variance makes us 
believe that the sample programs were well selected.   
 
During the change of the billing system the cost of  specification and development of the 
changes were registered to entire sets of programs. The attribute to be modeled was the 
chagebility of the programs. To do so, the cost for changing was spread among the 
individual programs. Different forms of spreading the cost were considered. The chosen 
method was to divide the cost attributed to each program set in a weighed way to each 
program in the set, using as weight the “Total lines of Code”. 

∑
⋅

=

Set

i
i code of lines Total

code of lines Total costSet 
cost Alteration  

The dichotomization of the cost in two classes was made using the median of the costs. 
Alteration cost above the median was classified as “high” otherwise they were categorized 
as “low”. In that manner 176 programs were classified as “high” and 179 as “low”. 
 
 
 

 Average Std. 
Deviation 

Median Max. Min. 

Cyclomatic complexity 43.0507 81.28723 16 851 1 
Declarative length 178.6056 214.7458 121 2066 18 
Declarative statements 136.631 178.6303 87 1917 10 
Declarative comments 19.16338 36.95701 12 378 0 
Declarative comments density 0.164557 0.159099 0.123596 1.333333 0 
Declarative blank lines 22.81127 22.241 17 226 0 
Declarative blank lines density 0.208776 0.112239 0.187845 0.73913 0 
Executable length 510.2676 813.6223 281 9939 17 
Executable statements 371.5859 554.7937 205 5458 5 
Executable comments 68.12113 254.8285 31 4470 1 



Executable comments density 0.230784 0.237322 0.168 2.4 0.006452 
Executable blank lines 70.56056 95.77846 37 686 0 
Executable blank lines density 0.208938 0.111368 0.193548 0.650794 0 
Total source lines 906.5634 1105.779 572 11290 105 
Total Lines of code 513.0761 664.4598 313 5814 23 
Total Lines of comments 298.2648 406.127 185 5464 51 
Total Blank lines 95.22254 111.43 58 792 1 
Reserved words 724.4761 1017.704 428 9667 20 
Unconditional branches 5 22.04003 0 264 0 

 
 
 
Five different models were generated using for NewID, CN2, C4.5, C4.5 rules and FOIL  
[Almeida98]. The models were tested using the one-out cross validation for NewID, CN2 
and C4.5 and 3-fold cross validations for FOIL. The results are presented in the figure 5. 
 
 

NewID  CN2 
 High Low  Completeness   High Low  Completeness 

High 134 42  76.14%  High 131 45  74.43% 
Low 39 140  78.21%  Low 44 135  75.42% 
    Accuracy      Accuracy 

Correctness 77.46% 76.92%  77.18%  Correctness 74.86% 75.00%  75.00% 
 
 

C4.5 Tree  C4.5 rules 
 High Low  Completeness   High Low  Completeness 

High 135 41  76.70%  High 135 41  76.70% 
Low 40 139  77.65%  Low 40 139  77.65% 
    Accuracy      Accuracy 

Correctness 77.43% 77.22%  77.18%  Correctness 77.43% 77.22%  77.18% 
 
 

FOIL 
 High Low  Completeness 

High 89 90  48,86%
Low 49 130  72.63%
    Accuracy 
Correctness 63.70% 59.09%  64.48%

 
 
 
 
5. Conclusion 
 

The results shown in sec. 4 indicate that the correctness and completeness do not differ  
significantly between the different learningt systems used. The values obtained for C4.5 
(trees and rules), NewID, and CN2 are virtually identical. The results for FOIL are lower, 
likely due to the fact that there are no truly relational attributes among the metrics that 
represent the programs, and therefore FOIL is used as a non-relational learning system. 

Figure 5. Evaluation of the models in the Bell Canada experiment   



 

A criterion under which the results between different learners differ is  comprehensibility. 
The difference, however, is difficult to quantify, as there are no generally agreed upon 
measures to express comprehensibility [IJCAI95]. To us, the C4.5 rules results seemed 
most comprehensible. 

 

Our experience on this real-life Data Mining project indicates that the choice of the learning 
system matters much less than the whole process, which is summarized bellow: 

 
1. Case selection. 
2. Attribute selection and extraction. 
3. Labeling. 
4. Data analysis. 
5. Model generation by the learning program. 
6. Model evaluation. 
7. Model application. 

  

This is consistent with the overall conclusion of the recent review of Machine Learning 
applications [Provost98]. In our paper, we have indicated how we dealt with some of these 
issues. We believe that more work in this area needs to be done, leading to a systematic 
approach by which ML techniques can be applied to the problems of this kind.  
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