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Abstract

The operation and maintenance of modern sensor-equipped systems

such as passenger aircraft generate vast amounts of numerical and sym-

bolic data. Learning models from this data to predict problems with com-

ponent may lead to considerable savings, reducing the number of delays,

and increasing the overall level of safety. Several data mining techniques

exist to learn models from vast amounts of data. However, the use of these

techniques to infer the desired models from the data obtained during the

operation and maintenance of aircraft is extremely challenging. Di�cul-

ties that need to be addressed include: data gathering, data labeling,

data and model integration, and model evaluation. This paper presents

an approach that addresses these issues. We also report results from the

application of this approach to build models that predict problems for a

variety of aircraft components.

Keywords: Data mining, machine learning, aircraft health monitoring,

component failure prediction.

1 Introduction

The operation and maintenance of modern sensor-equipped systems such as

aircraft generates vast amounts of numerical and symbolic data. The data is
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generated by thousands of sensors installed in various components of the air-

craft; it is then sent in real-time to ground stations and then stored in relational

databases. Before being transmitted to the ground, a number of on-board com-

puter systems monitor and analyze the data in order to make sure that various

systems of the aircraft operate properly. However, once the data is stored in

central databases, further data analysis is rarely performed. This paper presents

an approach that makes use of this data in order to develop models to predict

the need for replacement of various aircraft components before they become

non-operational. The end goal is to implement these models in a ight data

monitoring system that will receive as input (in real-time) the data from a eet

of commercial aircraft, will analyze it, and as output it will alert appropriate

sta� when there is a need for a component replacement. The monitoring sys-

tem will use the automatically sensor data from the aircraft, and a predictive

model described in this paper, to detect component problems and recommend

their replacement. Such a system could help improving the airline's operation

by: reducing the number of delays, reducing the maintenance costs, helping to

obtain better maintenance planning, and increasing the level of safety.

The approach proposed in this paper applies techniques from the �elds of

Machine Learning and Data Mining on huge amounts of complex historical data

in order to develop the predictive models required by the monitoring system.

The approach described addresses four fundamental di�culties with existing

data mining approaches: automatic selection of relevant data, automatic label-

ing of instances, evaluation method that accounts for dependencies between the

instances, and a scoring function measuring the extent to which the results �t

the domain requirements. By addressing these four issues, we believe that the
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proposed approach will help extending the range of potential applications for

data mining techniques. Examples of other applications that can bene�t from

the approach developed in this paper are: prediction of problems in complex sys-

tems (e.g.: trucks, ships, trains, and cars), prediction of problems with complex

industrial equipment for which a lot of data is continuously acquired, and pre-

diction of critical events in medical applications (e.g. Emergency Room care).

The fact that the proposed approach relies on a minimal amount of domain

speci�c information will also facilitate the adaptation to other applications.

2 The application and the data used

The aim of the approach described in this paper is to generate a valid set of

models to predict the need for replacement of an aircraft component. These

models will have to accurately recognize particular patterns in the data that

indicate upcoming problems with a component. Our approach makes use of data

mining techniques to infer these models from the available data. Ideally, the

models developed will be able to recognize problems within a reasonable period

of time prior to the actual occurrence of the problem. For most components,

a period of 1-3 weeks in advance is appropriate. For components that are very

expensive or di�cult to obtain, it may be preferable to receive alerts even before

3 weeks in order to allow enough time for proper actions.

There are two reasons to replace an aircraft component: either the compo-

nent has to be replaced as part of regular maintenance (imposed by aerospace

regulations or airline's policy) or it is in a deteriorated condition and needs to

be replaced before it fails. Only the second type of replacement requires the de-

velopment of predictive models because maintenance sta� already know about
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regular maintenance requirements. It is also important to remember that no

accurate predictions can be expected for components for which relevant data is

not available. For instance, there is usually no data related to the quality of

passenger seats, therefore one will not be able to predict the need for replace-

ment of passenger seats. Since the majority of the data available for this project

is related to the engines of the aircraft, we focus on models to predict problems

with engine's components.

The approach presented in this paper does not attempt to capture all phe-

nomena that may lead to a component failure. Two types of component failures

that our approach is very likely to miss are: failure because of a problematic

maintenance action, and failure due to a design problem with a speci�c compo-

nent. Currently, we do not have su�cient data about the maintenance actions

and design of the components to identify such phenomena. Fortunately, these

problems do not represent a very high percentage of all component problems.

More than 3 years of data from a eet of 34 Airbus A320 is available for

this project and new data is continuously acquired. Each Airbus A320 gener-

ates around 1MB of data per month. The data consists of two major parts:

(i) textual descriptions of all repair actions taken on these aircraft, and (ii)

all parametric data acquired from sensors during the operation of the aircraft.

The parametric data is obtained in the form of reports at di�erent stages of

operation. For example, during takeo� a report which consists of about 100

measurements is generated, in stable cruising conditions another report is gen-

erated with a di�erent set of measurements. etc. An Airbus A320 generates up

to 19 types of reports. These are generated at di�erent frequencies and contain

between 20 and 150 parameters (numeric and symbolic).
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3 Application challenges

The idea of using data mining techniques to infer models from historical data

is not new and has already been applied in other applications. On the other

hand, our approach contributes to the domain by addressing a number of issues

that are not taken into account in these classical applications of data mining.

The �rst two issues are related to data preparation requirements prior to the

application of data mining techniques, the third issue involves adequate evalu-

ation of the results for the application considered, and �nally, the fourth issue

is about the fusion of results obtained during the analysis.

Data Gathering Most Data mining techniques require as input one dataset

containing a set of examples described by a vector of attribute values. Modern

aircraft such as Airbus A320 do not generate one, but up to 19 di�erent datasets

reporting the status of the aircraft in di�erent phases of operation. The number

of examples in each dataset varies considerably from one dataset to another.

Given a component of interest, the �rst problem is to decide on which dataset(s)

to use to develop the predictive models.

Once a dataset has been chosen, we must select the subset of instances to be

included in the analysis. Considering the number of instances available in each

dataset, it will be very ine�cient to try to learn the models using all instances.

Simple solutions such as random sampling are not appropriate either. In order

to build the desired predictive models, we need to focus the analysis on the data

generated around each occurrence of component replacement. The approach to

retrieve this data is explained in Section 4.

Data Labeling Data mining approaches are typically classi�ed in two cat-

egories: supervised and unsupervised [1]. The two approaches di�er in the data
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they require as input and the type of tasks they can address. For instance, a su-

pervised learning approach will require each instance to be de�ned by a number

of attributes along with its class membership. Given this data as input, the su-

pervised algorithm will try to learn models to predict the class of each instance

using the other attributes. Supervised learning approaches are useful in both

classi�cation and forecasting tasks. On the other hand, unsupervised learning

approach will take as input as set of examples without any class information

and will try to �nd groups of similar instances.

Since there exists a variety of robust classi�cation techniques, predicting

the need for replacement of a component could be cast as a classi�cation task

with two class values: (i) there is a need to replace the component or (ii) there

is no need for replacement. The model learned from the data will have to

classify each new report received from the aircraft in one of these two classes.

Supervised approaches are appropriate for this kind of tasks. However, the

data that we receive from the aircraft cannot be directly used by a supervised

learning approach because it does not contain the class attribute. The solution

is to have a pre-processing step that automatically computes the membership

value of all examples that will be used during the analysis. This process is called

Data Labeling and it is described in Section 5.

Model Evaluation Proper evaluation of the results is a key factor in a

practical application such as the one described here. The evaluation approach

must respect two criteria: (i) provide a fair estimate of the performance of the

model when applied to new data, and (ii) take into account important domain

speci�c requirements. In Section 6, we present an approach to adequately come

up with a good estimate for the performance of a model. This approach ex-
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tends the well known cross-validation technique. We also discuss an evaluation

function that accounts for important application constrains. This new evalu-

ation function di�ers considerably from traditional evaluation criteria such as

accuracy, and recall/precision.

Exploiting multiple sources of information Data mining algorithms are

designed to take as input one dataset in a given format. As discussed earlier,

among all datasets generated by the aircraft, more than one could be poten-

tially useful to predict the need for replacement of the component of interest.

The question is how could we e�ciently combine the information from the dif-

ferent datasets that are all relevant. Two basic approaches exist: (i) merge

the datasets into a new dataset during a pre-processing step and then we build

the models from this new dataset, or (ii) build independent predictive models

using di�erent datasets and then we combine the output of these models to

get the �nal prediction. The former approach is di�cult to implement for a

number of reasons. First, there is no obvious merging strategy because di�erent

datasets may contain a very di�erent number of examples. Moreover, by merg-

ing datasets which already have a signi�cant number of attributes we are likely

to end up with a very complex dataset. This will contribute to make learn-

ing of the models even more di�cult. Our experiments have been focusing on

the second approach which turned out to be easier to implement while helping

to improve the results. Models are developed independently from the di�erent

datasets, then we combine the output of these initial models to get the �nal

prediction. In this paper, we do not fully address this fourth issue (merging of

results) because we are still experimenting with di�erent strategies to combine

the models.
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Building models to predict need for component replacement

APU reports

ETO reports

ECR reports

EOR reports

Data
Gathering

Data
Labeling

Modeling &
Evaluation

Model
Fusion

Final
Models

Repair
descriptions

Figure 1: The 4 steps process to build models for component replacements.

It is important to note that the �rst three issues must be addressed in order

to apply data mining techniques to predict the need for aircraft component

replacement. On the other hand, the fourth issue is only related to optimization

and as we argue in Section 6, promising results can be obtained without fully

addressing it. Figure 1 presents the main steps of the approach developed to

build models for predicting the need for component replacement. The �rst three

processes are further explained in the following sections.

4 Data Gathering

There are two tasks to perform during this step. The �rst one is to decide which

datasets should be used during the analysis. We rely on the descriptions of the

datasets and advices from domain experts to determine which dataset(s) may

be relevant to the component under study.

The second task consists of retrieving all relevant instances from the selected

dataset(s). Figure 2 illustrates the process followed to retrieve these instances.

The �rst and the most di�cult challenge of the Data Gathering step is to retrieve

the required information about all occurrences of replacement of a given compo-
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nent. The information is retrieved from a database which contains descriptions

of all maintenance actions performed on the aircraft. These descriptions are

provided by the engineers and technicians who perform the actions. Examples

of information used to describe the maintenance actions are: the date on which

the action has been performed, the identi�er of the aircraft, the identi�er(s)

for part(s)removed and/or installed, and textual explanation of the problem

and work carried out. Ideally, a simple query returning all maintenance reports

for which the Part Removed identi�er is equal to the identi�er for the compo-

nent of interest will be enough to return all the desired information about all

replacement occurrences.

Unfortunately, this is not possible because the �eld for part removed iden-

ti�er is often not �lled out properly. For instance, in many cases a component

has been replaced but the part identi�er is put within the textual explanation

instead of being given in the �eld for part removed identi�er. This implies that

the textual explanation of the repairs also need to be processed in order to �nd

all occurrences of replacement of a given component. Automatic processing

of the textual explanations is very di�cult because of the open language used

by the maintenance sta�. There are many abbreviations and acronyms, major

grammatical and syntactical problems (e.g. no delimiters between prepositions,

absence of verbs, absence of articles and complements), typing mistakes, and

inconsistent use of abbreviations among reports. Manual analysis of the texts is

not a viable solution either, there are simply too many reports that would need

to be analyzed (more than 65000).

The approach we adopt to address this problem is represented by the �rst

three processes in Figure 2. This approach is built around the Information Re-
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trieval paradigm. First, we query the maintenance database in order to retrieve

the information about all replacements for which the part removed identi�er is

equal to the identi�er of the part of interest. Second, we use a tuned version

of a keyword generation system called Extractor [2] to extract the key phrases

from the textual explanations for these replacements. These key phrases are

then used to extend the initial query which was uniquely based on the part

identi�er. The reasoning behind this approach is as follow: if the key phrases

obtained correspond to the vocabulary used by the maintenance sta� to talk

about the component of interest, then these key phrases are very likely to help

in �nding other replacement occurrences for which the �eld for part removed

identi�er has not been �lled. For instance, if the key phrases found by Extractor

are \STARTER MOTOR", \STARTER", and \49400126" then the new query

will try to �nd any maintenance report that contains the given part identi�er

in the appropriate �eld or any of the these three key phrases in the textual

descriptions. As shown in Figure 2, this will probably add a number of new

maintenance reports to the initial ones obtained from the �rst query. These

new reports may talk about the component of interest but without necessarily

referring to its replacement. A manual validation of the new maintenance re-

ports is required in order to take out the reports not describing a replacement

of the given component. Note that the number of reports that require manual

validation is very small in comparison with the overall number of maintenance

reports available in the database. In that sense, the proposed approach helps in

reducing the amount of manual analysis by automatically pre-selecting poten-

tially related reports. On the other hand, there is no guarantee that all related

reports will be selected by the proposed mechanism. This depends on the com-
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pleteness of the set of key phrases outputs by the Information Retrieval system.

To evaluate the coverage of the proposed method, we asked a domain specialist

to comment on the number of replacements found for 5 randomly selected com-

ponents. In all cases, the expert concluded that the number of replacements

found with our approach is very close to the exact number of replacements. In

other words, for these 5 components, all or almost all occurrences of replacement

have been retrieved by the proposed approach.

Once we have the date and aircraft identi�er for each replacement of the

component of interest, we can retrieve the relevant instances from the selected

dataset(s). We consider relevant all instances obtained around the time of the

replacement. In particular, for each selected dataset and for each occurrence

of replacement, we retrieve the data obtained during m days prior to the re-

placement and n days after the replacement. The numbers m and n depend on

the datasets and the component of interest. Our strategy is to select m so that

we have at least 200 instances available for learning the patterns. For instance,

with a dataset for which we have an average of two reports per aircraft per day,

m will be set to be at least 100. For n, we simply set it as n = :15 �m. As we

discuss in Section 5 (Data Labeling), the selected values for m and n inuenced

the setting of the k parameter.

In our approach, we use days as time metric instead of cycles (pairs of

takeo�s and landings) or hours of operation mainly because the maintenance

sta� which are the target users prefer to obtain predictions about the need for

replacement in days. From a data analysis point of view, this choice may not

seem appropriate because one would think that repairs are more related to the

use of a plane than to time. We veri�ed this hypothesis through experiments
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Figure 2: Retrieving relevant data for the analysis.

using cycles instead of days, but the results were quite similar. Consequently,

we decided to only use days.

Finally, two new attributes are added to the initial raw measurements: the

time between the observation is collected and the actual replacement time (\time

from failure"), and a tag identifying each observation with a speci�c replacement

case (\problem Id"). The instance from a given selected dataset are combined

to create a dataset that will be used to build the predictive model. The number

of output datasets is equal to the number of dataset(s)selected as potentially

useful for the given component.

5 Data Labeling

As explained earlier, the data mining techniques we intend to use to build the

models fall into the category of supervised learning algorithms. These algo-
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rithms require the input dataset to contain a class attribute (also called label or

membership attribute). In our case, the class attribute may take two di�erent

values (0 indicating no need for replacement of the component and 1 indicat-

ing a need). In our approach, we set the class attribute to 1 for all instances

obtained between the time of the replacement and the preceding k days (these

k days de�ne the window that we target for the predictions of the need for

component replacement), and set the class attribute to 0 for all other instances

observed outside that period of time. Obviously, k has to be smaller than m

(see Section 4). Figure 3 presents the label value obtained from the labeling

algorithm as a function of the number of days from replacement.

The interval for positive examples is predetermined for each component of

interest. The choice for k is a function of:

1. Target period for prediction of the need for replacement of the component

of interest. Di�erent components may have di�erent target periods.

2. Proportion of positive and negative examples. Without a signi�cant pro-

portion of positive examples, several data mining approaches are expected

to have di�culties learning the desired models. To obtain at least 10% of

positive examples, we use the following constraint k > :1 � (m+ n).

3. The complexity of the patterns to model. Some components may start

giving indications of deterioration a while before they actually need to be

replaced. The labeling approach should be adjusted accordingly.

For each component studied, we have performed a number of experiments with

di�erent values of k in order to satisfy the above criteria. Values obtained are

between 10 and 40, depending on the component and the dataset used.
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Figure 3: Labeling the instances.

6 Building and Evaluating models

The datasets obtained after the application of the labeling process can be used

to learn the desired models. Several data mining techniques are available to

infer these models such as Decision Tree, Instance Based, Naive-Bayes, Rough

Sets, Regression, and Neural Networks. Depending on the technique used, one

may need to further pre-process the data in order to: (i) select the most suit-

able subset of attributes, (ii) normalize the initial attributes, (iii) create new

attributes from the initial ones, or (iv) discretize the continuous attributes. Ap-

proaches to perform these tasks are proposed in di�erent areas of research such

as machine learning, statistics, pattern recognition, and data mining [3].

A critical issue in any data mining application is the evaluation of the learned

models. In order to decide on the suitability of a model we need to get a good

estimate of its expected performance on operational data (i.e. new data that

will be provided as input to the model once it has been deployed). There are a
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number of methods to compute the expected performance; these include hold-

out validation, cross-validation, and bootstrapping.

Hold-out validation consists of randomly splitting the data into a training

and a testing set. In this approach, one would �rst use the training set to build

the model, and then estimate its performance by using the model to classify the

instances in the testing set. The performance on the testing set becomes the

expected performance of the model on new cases. This method considerably

reduces the number of instances available to build your models. The method is

therefore unsuitable when only a small dataset is available. Hold-out validation

assumes that the instances are independent of each other.

Cross-validation makes use of the available data in a more e�cient manner

than hold-out validation. Cross-validation starts by randomly splitting the data

into k subsets of approximately equal size. Then, you train the model using k�1

subsets and evaluate it on the remaining one. The previous step is repeated

until each subset has been used for testing once. The expected performance

is �nally computed from the testing results obtained from the di�erent runs.

When k equals the number of instances, the process is called leave-one-out

cross-validation. Cross-validation requires more computer time than hold-out

validation but provides a more robust estimation of the expected performance.

Bootstrapping is even more demanding in terms of computation time than

cross-validation. In its simplest form, you repeat the analysis (train and vali-

date) by randomly sampling (with replacement) the test and training instances

from the population. Thousands of repetitions are usually required. Experimen-

tal comparisons of bootstrapping and cross-validation tend to show that boot-

strapping is better than cross-validation with some learning approaches such as
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stepwise regression [4] and signi�cantly worse than cross-validation with other

learning approaches such as decision tree [5].

Unfortunately, none of these three approaches is adequate for the applica-

tion considered here. All of these approaches rely on random sampling at some

point to select instances from the population. The problem with random sam-

pling is that it implicitly assumes that the instances are independent. Whenever

this assumption is not too severely violated, repeated analysis methods such as

cross-validation and bootstrapping will probably lead to reasonably good results.

However, with our application this assumption is simply not viable. Because

of variations in the construction, operation, and maintenance of the aircraft,

it is clear that any two instances from a given aircraft are not as independent

as any two instances from two di�erent aircraft. This means that if we use

data from the same aircraft for training and validation the likelihood of success

would be much higher than if we validate using data from a di�erent aircraft.

Similar reasoning applies to the data related to a given occurrence of component

replacement versus data related to di�erent occurrences of component replace-

ment; two instances related to a given occurrence of a problem will be more

related than two instances related to two di�erent problems. Considering the

fact that the number of occurrences of component replacement is signi�cantly

less then the total number of instances, random sampling is very likely to gener-

ate training and validation sets that contain data related to the same occurrence

of component replacement. The end result will be an over optimistic evaluation

of the performance of the model.

A simple solution to this problem consists of splitting the data such that the

training instances come from a sub-group of occurrences of component replace-
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ment and validation instances come from another sub-group of replacement

occurrences. This splitting is easily achieved using the Problem Id attribute

added during the Data Gathering process.

A more robust estimate could be obtained by adapting the cross-validation

method so that it accounts for the above splitting constraint. The process is as

follow:

1. Split the data into batches (one for each failure case). This is done using

the parameter Problem Id.

2. Keep one batch for validation and train using all other batches. Repeat

this step until each batch has been used for testing once.

3. Get �nal evaluation from validation results over the di�erent runs.

We have implemented this approach using the SAS system and MLC++ [6]. The

term LOBO (leave-one-batch-out) has been used to describe a similar evaluation

method in [7]. We have been using this method to evaluate the performance of

a variety of learning algorithms for di�erent aircraft components.

6.1 Evaluation function

In the previous section, we explained a method to come up with a fair estimate

for the performance of a model, but we did not explain the actual performance

criteria we are trying to optimize. In machine learning research, the reliability

of a classi�er is often summarized by either its error-rate or accuracy. The

error-rate is de�ned as the expected probability of misclassi�cation. That is

the number of classi�cation errors over the total number of test instances. The

accuracy is 1 � error-rate. When some errors are more costly than others,
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one would prefer minimizing the misclassi�cation cost instead of the error rate.

Recent work on evaluation of classi�er reliability proposed the use of ROC

(Receiver Operating Characteristics) curves [8]. Other related metrics from the

information retrieval community are the precision and recall. In this context,

the recall is de�ned as the ratio of relevant documents retrieved for a given

query over the number of relevant documents in the database, and the precision

is the ratio of relevant documents retrieved over the total number of documents

retrieved.

Unfortunately, all of these metrics fail to capture two important aspects

of our application. The �rst one is the relation between the usefulness of a

prediction and the time that separates it from the replacement. A too early

warning about a potential failure will lead to a non-optimal use of the component

while a too late advice may not let enough time for proper planing of the repair.

What we need for this application is an evaluation method that takes into

account the timeliness of the alerts. The second aspect is related to the coverage

of potential failures. Because the learned model would be used to classify each

report coming from the aircraft into one of the two possible categories (the

component needs to be replaced or not), there is a potential for a model to

generate several alerts before the component was replaced. More alerts may

sometimes mean a higher con�dence in the prediction. However, it is clear

that we prefer a model that can generate at least one alert for most of the

component failures, than a model that generates several alerts for only few

failure cases. In oder words, the coverage of the model is very important because

we want to minimize the number of unexpected failures. To take into account

this preference, we need an overall scoring metric that considers the distribution
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of the alerts over the various failure cases. The next section presents a reward

function to take into account the timeliness of the alerts while the following

section introduces a new scoring metric that addresses the coverage issue.

6.2 Reward function

The criterion we have developed is based on the notion of reward. Predicting the

correct outcome for an instance generates a reward. In its basic form, reward

thresholds are �xed values (between 0 and 1), one threshold being de�ned for

each possible class (or membership) value. In our application, we have extended

this framework to accept: i) varying reward thresholds for di�erent instances

and ii) any real number as reward threshold. In particular, for each component

of interest, we de�ne a function that computes the reward for prediction of

a positive instance based on the number of days between the time at which

the instance is generated and the actual time of the replacement. Figure 4

presents the graph of such a function. For this example, the maximum gain

is obtained when predicting the need for replacement between 5 and 40 days

prior to the replacement of the component. We also observed that predicting a

need for replacement of the component outside that target period may lead to

a negative reward threshold since such a prediction corresponds to a misleading

advice. According to this function, false positive predictions are penalized by a

reward of -1.5 in comparison to a reward of 1.0 for true positive predictions.

We note that the target period for the reward function does not need to be

the same as the labeling period, but the two are de�nitely related. In general, we

�rst determine the target period for the reward function according to the user

requirements and then we �x the labeling period. For instance, if the user says

that predictions for a given component should be within 1-3 weeks in advance
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Figure 4: Example of a reward function for prediction of positive instances.

then we set the target period for the reward function between -7 to -21 days.

Then we experiment with various labeling periods around this target period and

take the one that leads to the best result. Setting the labeling period as the

target period is often a good strategy.

The reward function illustrated in Figure 4 follows a piecewise �rst order

polynomial model. Such a model is convenient because it is comprehensible

for domain people and su�ciently complex to capture the relevant information.

There are several ways to improve the precision of the function. One possibility

is to use higher order polynomials instead of straight lines. As another possi-

bility, one could try to smooth the overall function. However, domain experts

often think that the increase in complexity is not justi�ed.

6.3 Scoring metric

The above reward assignment method accounts for the timeliness of the alerts.

However, to evaluate the coverage of a model, we also need to look at the

distribution of the alerts over the di�erent failure cases. The overall performance

metric we propose to evaluate a model is:

score = (

pX

i=1

scorei) � (NbrDetected=NbrOfCases)SignOfSumOfScores (1)
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where p is the number of positive predictions made by the model on validation

instances during the application of the LOBO evaluation method, scorei is

the score from the reward function for the ith instance classi�ed as positive,

NbrDectected is the number of replacement cases for which we have at least 1

positive prediction in the target interval (e.g -30 to -5 days), NbrOfCases is the

total number of replacement occurrences we have for the given component, and

SignOfSumOfScores is the sign of the �rst term in the expression. The term

(NbrDetected=NbrOfCases)SignOfSumOfScores is introduced in the evaluation

function in order to favor models that optimize the recall1. Let us observe that

the value of
Pp

i=1 scorei makes the �nal score sensitive to precision of the model.

7 Does it work? Experimental results

In the previous sections we presented solutions to fundamental issues in applying

data mining techniques to predict the need for aircraft component replacement.

A possible approach to evaluate the proposed solutions would be to compare

each solution individually with alternative methods proposed in the literature.

This is not realistic in our application for various reasons. First, we are ad-

dressing problems for which it is very di�cult to �nd comparable methods in

the literature. For instance, to our knowledge no one has proposed methods

for data gathering and data labeling that can substitute the ones we proposed.

Moreover, it is important to note that the proposed methods are very related.

Therefore, evaluating solutions individually would not necessarily shed light on

the usefulness of the overall approach proposed. These observations lead us to

a di�erent evaluation strategy in which we globally evaluate the potential of

1The term (NbrDetected=NbrOfCases)SignOfSumOfScores is set to zero when
NbrDetected = 0 and SignOfSumOfScores is negative
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the proposed approach by applying it in a large-scale experiment. In this ex-

periment, we test the potential of the approach to learn models for 16 aircraft

engine components.

Since the aim was not to develop optimal models, we decided to simplify the

process in various ways. First, we did apply pre-processing techniques usually

required in order to optimize the results such as: cleaning the data by removing

outliers, normalization of the data, creation of new parameters, and selection

of the best subset of parameters (the same subset of attributes has been used

for all learning approaches and all components). We only used one potentially

useful dataset. There are at least 4 other relevant datasets that could have

been used to infer models for these components. Moreover, the same settings

have been used for the various parameters (i.e. m = 100,n = 30, and k = 20).

Optimization of these parameters could have signi�cantly improved the results.

For each of the 16 components, we have been using three di�erent data

mining techniques to learn the desired models: decision tree with C4.5 [9],

Instance-Based (one nearest-neighbor) and Naive Bayes both implemented in

MLC++ [6]. The evaluation has been performed using the methods described

in Section 6. We used the same reward function for all components. The selected

reward function is very similar to the one presented in Figure 4.

Table 1 presents the results obtained from this large-scale experimentation.

The �rst column presents the part identi�cation. For each part, we ran the

three data mining approach as indicated in the second column. The third col-

umn indicates the number of folds used during the cross-validation experiment.

As explained in Section 6, the number of folds used is equal to the number of

occurrences of replacement we have found during the data gathering step. Fi-
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nally, the fourth column shows the overall score of each model on the testing

data. This score comes from the formula presented in Section 6.3.

Even if the data mining process has been substantially simpli�ed during

this experiment, we observe very interesting results. First, we note that we

got at least one positive score for 112 components out of the 16 under study.

This result clearly demonstrates the potential of the approach. Second, from

the scores we can see that no classi�er outperforms the other two for all com-

ponents. This supports the idea that experiments with several data mining

approaches are generally required in order to �nd the most suitable approach

for the problem addressed. In our experiment, it is just like we have investigated

16 di�erent tasks (one for each component) and each of these is likely to have

its own \optimal" con�guration in terms of techniques and parameter settings.

It is therefore reasonable to think that these already promising results could be

further improved.

An interesting aspect of the results obtained from the various classi�cation

techniques used is that the misclassi�cation errors seem to be independent. In

fact, correlation analysis of the predictions obtained from the three classi�ers

used lead to the conclusion that the di�erent approaches tend to make mistakes

on di�erent cases. This observation is very important because it indicates a po-

tential for improving the performance by combining predictions from the various

classi�ers. One should also remember that valuable models can also be devel-

oped using the other potentially relevant dataset(s) available and, therefore,

further enhance the overall performance of the model.

2excluding the score value of 0:2 obtained for part 12
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Part Id Approach Nbr of folds Score
part 1 ib 16 16.9

c4.5-rules 16 -33.8667
naive-bayes 16 -103.383

part 2 ib 25 16.1133
c4.5-rules 25 6.468
naive-bayes 25 -111.813

part 3 ib 17 -22.5
c4.5-rules 17 -34.5857
naive-bayes 17 -75.6533

part 4 ib 36 140.195
c4.5-rules 36 89.5222
naive-bayes 36 -18.6225

part 5 ib 27 48.2733
c4.5-rules 27 9.87677
naive-bayes 27 -11.3261

part 6 ib 19 77.2133
naive-bayes 19 48.8168
c4.5-rules 19 15.5684

part 7 ib 31 10.1678
c4.5-rules 31 -1.67809
naive-bayes 31 -45.5741

part 8 c4.5-rules 41 -13.6536
naive-bayes 41 -32.4486
ib 41 40.2209

part 9 naive-bayes 12 9.9267
c4.5-rules 12 2.98223
ib 12 12.6

part 10 ib 28 42.16
naive-bayes 28 0.52143
c4.5-rules 28 -3.06133

part 11 naive-bayes 2 0.00
c4.5-rules 2 -2.1467
ib 2 -5.5667

part 12 c4.5-rules 16 0.2
ib 16 -4.3733
naive-bayes 16 -80.96

part 13 ib 53 48.088
naive-bayes 53 1.45456
c4.5-rules 53 -110.593

part 14 naive-bayes 40 -15.2416
ib 40 -18.8133
c4.5-rules 40 -43.8596

part 15 c4.5-rules 26 9.12
naive-bayes 26 2.98458
ib 26 -69.68

part 16 ib 31 99.0959
c4.5-rules 31 9.40712
naive-bayes 31 -40.0467

Table 1: Prediction results for 16 components from 3 data mining approaches
obtained using one dataset. High score values mean good performance.
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8 Related work

In terms of the tasks addressed, the closest works are found in the area of Re-

liability Analysis. These works concentrate on the development of models to

assess the reliability of individual units or complex systems. The models devel-

oped may then be used to predict the probability that a speci�c component(or

system) will fail within a given period of time. Predicting the failure of a com-

ponent is obviously very similar to the prediction of the need for replacement

of a component.

In reliability analysis, the data is usually obtained through a planned ex-

periment in which one observes the evolution of a sample of units and record

the failure times. The analysis almost always starts by �tting the failure time

values to a known probability distribution. Knowledge about this distribution

is then used to infer models to predict the time to failure of similar units. The

approach introduced in this paper di�ers considerably from this process. First,

the data available in our application does not come from an experiment and we

have no control on the variables measured and on the quality of the data re-

ceived. As a consequence, major pre-processing work (as explained in Sections 4

and 5) had to performed in order to retrieve the desired data for the analysis.

Second, the parameter time from replacement does not play such an important

role during the modeling step. On the other hand, we extensively use it during

pre-processing of the data. This was required in order to compensate for the fact

that most data mining approaches are not designed to bene�t from time infor-

mation. Finally, the evaluation methods are also di�erent. In our application,

we rely on a novel metric that meets speci�c domain requirements to evaluate

the models. In reliability analysis, the evaluation is mostly based on traditional
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statistical measures such as mean-squared error. Crowder et al. [10] present an

up-to-date account of the analysis of reliability data. Researchers in the area of

Survival Analysis make use of techniques similar to the ones �nd in reliability

analysis, but mainly in the context of medical and biological applications [11].

There has been research on applying data mining techniques to identify

problems with aircraft gas turbine (e.g. [12, 13, 14]). These works are, however,

limited to the identi�cation of current problem(s) with the engine and do not

try to predict potential problems in advance. The data used is also di�erent;

our approach makes use data obtained during normal operation of the engines

while the above works are based on data acquired in engine test cells. The

applicability of the results is therefore very di�erent.

9 Conclusion and further work

We have presented an application in which data mining techniques are applied

on operational and maintenance data. Our work has been data-driven. Hav-

ing decided the kind of model to be developed (a classi�er), we have focused

on addressing the complex characteristics of the data. Our data is hetero-

geneous (di�erent data sets, some data is numerical, some is text, and some

needs to be interpreted as messages in natural language). The data is also

time-sensitive (most of it comes with a time-stamp which is relevant for model

building). Moreover, the data is unprepared for the development of the model:

it lacks class labels or ranking. Finally, it was clear from the outset that ad-

equate methods for the evaluation of models for this kind of application were

lacking.

The contribution of this paper is therefore in the areas of data gathering,
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data labeling, and in its novel approach to evaluation. In data gathering, we

show how a simple process based on the use of o�-the-shelf NLP tools can help

with data cleaning and integration. In data labeling, we propose an empirical,

time-sensitive approach which trades o� the proximity of an alarm to the time

of replacement against the requirement of a reasonable number of training in-

stances. In evaluation, we suggest an evaluation function which combines the

timeliness of an alarm, the recall of positive training instances, as well as their

precision.

In the course of this project, we have produced several di�erent models

(alarm systems) for our application. Originally, we expected to experiment

with di�erent models and choose the one with the best performance. However,

our work to date has shown that it is more appropriate to consider model fusion.

We are currently working on model fusion, combining all or some of the models

in order to improve the performance of the resulting classi�er. In this work, we

are exploring some of the ideas on the ensembles of classi�ers [15]. Since, as

mentioned in Section 6 , the errors of di�erent classi�ers are uncorrelated, we

expect an improved performance from a set of combined classi�ers.
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