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Creating intelligent agents that perform tasks on complex 
domains is a difficult and time-consuming process. (van 
Lent 2000) describes a framework to learn procedural 
knowledge from behavior traces of experts who perform 
tasks in domains such as Quake, a first-person perspective 
computer game. Since KnoMic, van Lent’s specific im-
plementation of this framework, uses a simple attribute-
value based machine-learning algorithm, it would encoun-
ter difficulties in dealing with multiple objects of the same 
kind (i.e. multiple enemy creatures) or if the structured 
domain knowledge such as a playground map in Quake 
domain were the essential part of choosing and imple-
menting the right strategy.  We currently work on inte-
grating a learning by observation framework with induc-
tive logic programming (ILP) techniques to overcome 
these difficulties.  
 To reduce the complexity of the learning problem, the 
task performance knowledge we want to obtain is decom-
posed into a hierarchy of operators, each of which should 
encode the strategies to execute a sub-task (Figure 1). For 
example in Quake domain, if the agent decides to get an 
item item1 in a different room by selecting the operator 
get_item(Item) with the instantiation Item= item1, to 
achieve the task it could select the sub-operator 
goto_door(Door), where Door should be instantiated with 
the door object on the shortest path from current room to 
the room where item1 is in. 
 The learning by observation framework is depicted in 
Figure 2. Before training starts, the expert performs tasks 
on the environment using an interface, which captures the 
behavior trace, a symbolic representation of the changes 
in the environment as perceived from the expert’s perspec-
tive. This representation contains, in addition to numeric 
sensors such as self_x_coordinate, structured sensors such 
as self_current_room pointing to a room object, which is 
part of a map structure of rooms, doors, items etc (Figure 
4). In addition to that, the expert has to annotate time in-
tervals in the behavior trace with the names and parame-
ters of the operators he/she is executing. The interface 
should provide an abstract graphical representation such 
as the one in Figure 3, which could be used by the expert 
to select operator parameters that correspond to objects in 
the environment. This ensures that the selections of the 
expert correspond to the internal object representation of 
the interface. Any object that the expert might use in an-

notations as a parameter should be included in that repre-
sentation.  
 In the next step, positive and negative examples are 
selected for different kind of concepts that can help to de-
cide when to start and end operators. For example, a 
goal_condition concept of an operator will be used by the 
agent in determining when a selected operator should be 
terminated. For this concept, the negative examples are 
picked from regions of the trace where the expert contin-
ues to execute the operator, and the positive examples 
from where the expert has terminated the operator. Simi-
larly, the positive examples of a precondition concept are 
selected from states just before the operator was selected 
and negative examples from states where other operators 
were preferred in the same context (when the same high-
level operator is active). The examples of a concept for a 
given operator are selected only from regions where the 
parent operator is active. This simplifies the conditions by 
excluding conditions for selecting the high-level operator.  
 The background knowledge is composed of ground 
clauses describing the relations that hold at each state of 
the trace (i.e. contains_item(state10, room2, item13) ) and 
some implicit clauses that describe domain knowledge 
such as how to find shortest path between two rooms. We 
have tested our initial ideas on a simplified model of 
Quake domain with randomly generated examples. Using 
Progol 4.4 (Muggleton 2000), we have obtained the pre-
condition concept for goto_door operator (Figure 5). In 
this example, the learning system was able to model the 
decision using structured sensors (i.e. current_room/2), 
domain knowledge (i.e. shortest_path/3), specific task 
knowledge (room r1 is connected to room r2), and higher 
level operators (representing context and intensions of the 
expert) including the objects that are mentioned in these 
(i.e. active_get_item/2). Once learning is finished, the 
learned Prolog clauses will be converted to rules of a Soar 
(Laird; Newell, and Rosenbloom 1987) agent, which 
should then interact with the environment similar to the 
way the expert does. We currently are working on building 
an experimentation interface between Aleph1 and Soar 
and to start conducting experiments with real expert 
traces.  
                                                
1 http://web.comlab.ox.ac.uk/oucl/research/areas/ machlearn/Aleph/ 



 Our system extends van Lent’s work (2000) by allowing 
parameters in operators, structured domain knowledge, 
and structured sensors. In (Klingspor; Morik, and Rieger 
1996) a robot learns a hierarchy of concepts that corre-
spond to abstract world states with temporal extend. For 
example it learns to detect going_through_a_door concept 
based on lower level concepts such as be-
ing_in_front_of_the_door and actions such as 
move_forward etc. In contrast, our system learns to select 
and execute operators such as go_through_door, based on 
higher-level operator concepts such as get_item.  Also, we 
will not use actions in the background of learning, but we 
will learn when to select actions. The agents of (Matsui; 
Inuzuka, and Seki 2000) and (Inuzuka; Onda, and Itoh 
2000) learn under which situations their actions will be 
successful by experimenting in the domain using an exter-
nal criteria of success. (Benson and Nilsson 1995) describe 
a system that learns how actions of the agent change the 
environment. All of these systems learn what will happen 
if an agent behaves in a particular way. In contrast, our 
purpose is to model the decision-making expertise of when 
and how to exhibit behaviors.  
 Our main motivation in this research is to improve the 
performance of intelligent agents by using the strengths of 
ILP algorithms that attribute-value based machine learn-
ing algorithms lack but we also hope that the complex 
environments we plan to work on will create productive 
challenges for ILP community. 
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Figure 1. Hierarchical Task Decomposition 
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Figure 2. Learning By Observation Framework 
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Figure 3. Map Interface 
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Figure 4. Map Structure in Quake Domain 
 

precond_gotodoor(+STATE,_Door):-   
  active_get_item(STATE, Item), 
  current_room(STATE, CurrentRoom), 
  shortest_path(STATE, CurrentRoom, Path),     
  destination(STATE, Path, TargetRoom),    
  contains_item(STATE, TargetRoom, Item), 

   pathdoor(STATE, Path, Door). 

Figure 5. Precondition Concept for goto_door Operator 


