
Hierarchical Procedural Knowledge Learning Through Observation using Inductive Logic
Programming, an Extended Abstract

Tolga Könik
konik@umich.edu

John E. Laird
laird@umich.edu

Artificial Intelligence Laboratory
ATL., Univ. Michigan, 1101 Beal Ave., MI, USA 48109

Creating intelligent agents that perform tasks on complex
domains is a difficult and time-consuming process. (van
Lent 2000) describes a framework to learn procedural
knowledge from behavior traces of experts who perform
tasks in domains such as Quake, a first-person perspective
computer game. Since KnoMic, van Lent’s specific im-
plementation of this framework, uses a simple attribute-
value based machine-learning algorithm, it would encoun-
ter difficulties in dealing with multiple objects of the same
kind (i.e. multiple enemy creatures) or if the structured
domain knowledge such as a playground map in Quake
domain were the essential part of choosing and imple-
menting the right strategy. We currently work on inte-
grating a learning by observation framework with induc-
tive logic programming (ILP) techniques to overcome
these difficulties.
 To reduce the complexity of the learning problem, the
task performance knowledge we want to obtain is decom-
posed into a hierarchy of operators, each of which should
encode the strategies to execute a sub-task (Figure 1). For
example in Quake domain, if the agent decides to get an
item item1 in a different room by selecting the operator
get_item(Item) with the instantiation Item= item1, to
achieve the task it could select the sub-operator
goto_door(Door), where Door should be instantiated with
the door object on the shortest path from current room to
the room where item1 is in.
 The learning by observation framework is depicted in
Figure 2. Before training starts, the expert performs tasks
on the environment using an interface, which captures the
behavior trace, a symbolic representation of the changes
in the environment as perceived from the expert’s perspec-
tive. This representation contains, in addition to numeric
sensors such as self_x_coordinate, structured sensors such
as self_current_room pointing to a room object, which is
part of a map structure of rooms, doors, items etc (Figure
4). In addition to that, the expert has to annotate time in-
tervals in the behavior trace with the names and parame-
ters of the operators he/she is executing. The interface
should provide an abstract graphical representation such
as the one in Figure 3, which could be used by the expert
to select operator parameters that correspond to objects in
the environment. This ensures that the selections of the
expert correspond to the internal object representation of
the interface. Any object that the expert might use in an-

notations as a parameter should be included in that repre-
sentation.
 In the next step, positive and negative examples are
selected for different kind of concepts that can help to de-
cide when to start and end operators. For example, a
goal_condition concept of an operator will be used by the
agent in determining when a selected operator should be
terminated. For this concept, the negative examples are
picked from regions of the trace where the expert contin-
ues to execute the operator, and the positive examples
from where the expert has terminated the operator. Simi-
larly, the positive examples of a precondition concept are
selected from states just before the operator was selected
and negative examples from states where other operators
were preferred in the same context (when the same high-
level operator is active). The examples of a concept for a
given operator are selected only from regions where the
parent operator is active. This simplifies the conditions by
excluding conditions for selecting the high-level operator.
 The background knowledge is composed of ground
clauses describing the relations that hold at each state of
the trace (i.e. contains_item(state10, room2, item13)) and
some implicit clauses that describe domain knowledge
such as how to find shortest path between two rooms. We
have tested our initial ideas on a simplified model of
Quake domain with randomly generated examples. Using
Progol 4.4 (Muggleton 2000), we have obtained the pre-
condition concept for goto_door operator (Figure 5). In
this example, the learning system was able to model the
decision using structured sensors (i.e. current_room/2),
domain knowledge (i.e. shortest_path/3), specific task
knowledge (room r1 is connected to room r2), and higher
level operators (representing context and intensions of the
expert) including the objects that are mentioned in these
(i.e. active_get_item/2). Once learning is finished, the
learned Prolog clauses will be converted to rules of a Soar
(Laird; Newell, and Rosenbloom 1987) agent, which
should then interact with the environment similar to the
way the expert does. We currently are working on building
an experimentation interface between Aleph1 and Soar
and to start conducting experiments with real expert
traces.

1 http://web.comlab.ox.ac.uk/oucl/research/areas/ machlearn/Aleph/

 Our system extends van Lent’s work (2000) by allowing
parameters in operators, structured domain knowledge,
and structured sensors. In (Klingspor; Morik, and Rieger
1996) a robot learns a hierarchy of concepts that corre-
spond to abstract world states with temporal extend. For
example it learns to detect going_through_a_door concept
based on lower level concepts such as be-
ing_in_front_of_the_door and actions such as
move_forward etc. In contrast, our system learns to select
and execute operators such as go_through_door, based on
higher-level operator concepts such as get_item. Also, we
will not use actions in the background of learning, but we
will learn when to select actions. The agents of (Matsui;
Inuzuka, and Seki 2000) and (Inuzuka; Onda, and Itoh
2000) learn under which situations their actions will be
successful by experimenting in the domain using an exter-
nal criteria of success. (Benson and Nilsson 1995) describe
a system that learns how actions of the agent change the
environment. All of these systems learn what will happen
if an agent behaves in a particular way. In contrast, our
purpose is to model the decision-making expertise of when
and how to exhibit behaviors.
 Our main motivation in this research is to improve the
performance of intelligent agents by using the strengths of
ILP algorithms that attribute-value based machine learn-
ing algorithms lack but we also hope that the complex
environments we plan to work on will create productive
challenges for ILP community.

References

Benson, S. and Nilsson, N. 1995. Inductive Learning of
Reactive Action Models. Machine Learning: Proceed-
ings of the Twelfth International Conference . San Fran-
sisco, CA: Morgan Kaufmann.

Inuzuka, N., Onda, T., and Itoh, H. 2000. Learning Robot
Control by Relational Concept Induction With Itera-
tively Collected Examples. In Advances in Robot Learn-
ing, Proceedings, Lecture Notes in Artificial Intelli-
gence 1812. Springer-Verlag Berlin.

Klingspor, V.; Morik, K. J., and Rieger, A. D. 1996.
Learning Concepts From Sensor Data of a Mobile Ro-
bot. Machine Learning. 23(2-3):305-332.

Laird, J.; Newell, A., and Rosenbloom, P. 1987. Soar: An
Architecture for General Intelligence. Artificial Intelli-
gence. 33:1-64.

Matsui, T.;Inuzuka, N.; and Seki, H. 2000. A Proposal for
Inductive Learning Agent Using First-Order Logic . In
The 10th International Conference on Inductive Logic
Programming (ILP 2000).

Muggleton, S. 2000. CProgol4.4: a Tutorial Introduction.
In Inductive Logic Programming and Knowledge Dis-
covery in Databases. Springer-Verlag.

van Lent, M. 2000. Learning Task-Performance Knowl-
edge Through Observation . Ph.D. diss. Computer Sci-
ence and Electrical Eng. Dept, Univ. Michigan.

get - item - in - room

get - item(W)

Go - through - door(D)

Goto - next - room

Go - to - door(D)

Figure 1. Hierarchical Task Decomposition

 Expert Environment Interface

Soar
Agent

Domain
Knowledge

Observation
Generator

environment

ILP Learning Knowledge
Generation

Prolog
Clauses

Soar Rules

annotations

Figure 2. Learning By Observation Framework

r1

r2
 r3

r4

d1

d2

d3

d4

d5

d6
 w4

w3

Figure 3. Map Interface

r2

r1

d1
 d2

p1
 door

connection

door
 d5

path

pathdoor

destination

path

path

p2

pathdoor

destination

r3

w3

name

“room1”

distance

distance

1

2

current - room

other sensors
 AGENT

“health”
 type

connection

item
 in - room

in - room

Figure 4. Map Structure in Quake Domain

precond_gotodoor(+STATE,_Door):-
 active_get_item(STATE, Item),
 current_room(STATE, CurrentRoom),
 shortest_path(STATE, CurrentRoom, Path),
 destination(STATE, Path, TargetRoom),
 contains_item(STATE, TargetRoom, Item),

 pathdoor(STATE, Path, Door).

Figure 5. Precondition Concept for goto_door Operator

