
Text Classi�cation using String Kernels

Huma Lodhi huma@cs.rhul.ac.uk

Department of Computer Science,

Royal Holloway, University of London,

Egham, Surrey TW20 0EX, UK

Craig Saunders craig@cs.rhul.ac.uk

Department of Computer Science,

Royal Holloway, University of London,

Egham, Surrey TW20 0EX, UK

John Sahwe-Taylor john@cs.rhul.ac.uk

Department of Computer Science,

Royal Holloway, University of London,

Egham, Surrey TW20 0EX, UK

Nello Cristianini nello@cs.rhul.ac.uk

Department of Computer Science,

Royal Holloway, University of London,

Egham, Surrey TW20 0EX, UK

Chris Watkins chrisw@cs.rhul.ac.uk

Department of Computer Science,

Royal Holloway, University of London,

Egham, Surrey TW20 0EX, UK

Editor: Leslie Pack Kaelbling

Abstract

We propose a novel approach for categorizing text documents based on the use of a special
kernel. The kernel is an inner product in the feature space generated by all subsequences
of length k. A subsequence is any ordered sequence of k characters occurring in the text
though not necessarily contiguously. The subsequences are weighted by an exponentially
decaying factor of their full length in the text, hence emphasising those occurrences that are
close to contiguous. A direct computation of this feature vector would involve a prohibitive
amount of computation even for modest values of k, since the dimension of the feature
space grows exponentially with k. The paper describes how despite this fact the inner
product can be e�ciently evaluated by a dynamic programming technique.

Experimental comparisons of the performance of the kernel compared with a stan-
dard word feature space kernel Joachims (1998) show positive results on modestly sized
datasets. The case of contiguous subsequences is also considered for comparison with the
subsequences kernel with di�erent decay factors. For larger documents and datasets the
paper introduces an approximation technique that is shown to deliver good approximations
e�ciently for large datasets.

Keywords: Kernels and Support Vector Machines, String Subsequence Kernel, Approx-
imating Kernels, Text Classi�cation

1

, , ,

1. Introduction

Standard learning systems (like neural networks or decision trees) operate on input data
after they have been transformed into feature vectors d1; : : : ; dn 2 D living in an m-
dimensional space. In such a space, the data points can be separated by a surface, clustered,
interpolated or otherwise analysed. The resulting hypothesis will then be applied to test
points in the same vector space, in order to make predictions.

There are many cases, however, where the input data cannot readily be described by
explicit feature vectors: for example biosequences, images, graphs and text documents.
For such datasets, the construction of a feature extraction module can be as complex and
expensive as solving the entire problem. This feature extraction process not only requires
extensive domain knowledge, but also it is possible to lose important information during
this process. These extracted features play a key role in the e�ectiveness of a system.

Kernel methods (KMs) are an e�ective alternative to explicit feature extraction. The
building block of Kernel-based learning methods (KMs) Cristianini and Shawe-Taylor (2000),
Vapnik (1995) is a function known as the kernel function, i.e. a function returning the
inner product between the mapped data points in a higher dimensional space. The learn-
ing then takes place in the feature space, provided the learning algorithm can be entirely
rewritten so that the data points only appear inside dot products with other data points.
Several linear algorithms can be formulated in this way, for clustering, classi�cation and
regression. The most well known example of a kernel-based system is the Support Vec-
tor Machine (SVM) Boser et al. (1992), Cristianini and Shawe-Taylor (2000), but also the
Perceptron, PCA, Nearest Neighbour, and many other algorithms have this property. The
non-dependence of KMs on dimensionality of the feature space and
exibility of using any
kernel function makes them a good choice for di�erent classi�cation tasks especially for text
classi�cation.

In this paper, we will exploit the important fact that kernel functions can be de�ned
over general sets Watkins (1999), Haussler (1999), by assigning to each pair of elements
(strings, graphs, images) an `inner product' in a feature space. For such kernels, it is not
necessary to invoke Mercer's theorem, as they can be directly shown to be inner products.
We examine the use of a kernel method based on string alignment for text categorization
problems. By de�ning inner products between text documents, one can use any of the
general purpose algorithms from this rich class. So text can be clustered, classi�ed, ranked,
etc. This paper builds on preliminary results present in Lodhi et al. (2001).

A standard approach Joachims (1998) to text categorization makes use of the classical
text representation technique Salton et al. (1975) that maps a document to a high dimen-
sional feature vector, where each entry of the vector represents the presence or absence of a
feature. This approach loses all the word order information only retaining the frequency of
the terms in the document. This is usually accompanied by the removal of non-informative
words (stop words) and by the replacing of words by their stems, so losing in
ection infor-
mation. Such sparse vectors can then be used in conjunction with many learning algorithms.
This simple technique has recently been used very successfully in supervised learning tasks
with Support Vector Machines Joachims (1998).

In this paper we propose a radically di�erent approach, that considers documents simply
as symbol sequences, and makes use of speci�c kernels. The approach does not use any

2

domain knowledge, in the sense that it considers the document just as a long sequence,
and nevertheless is capable of capturing topic information. The feature space in this case is
generated by the set of all (non-contiguous) substrings of k-symbols, as described in detail
in Section 3. The more substrings two documents have in common, the more similar they
are considered (the higher their inner product).

We build on recent advances Watkins (1999), Haussler (1999) that demonstrate how to
build kernels over general structures like sequences. The most remarkable property of such
methods is that they map documents to feature vectors without explicitly representing
them, by means of sequence alignment techniques. A dynamic programming technique
makes the computation of the kernels very e�cient (linear in the documents length).

We empirically analyse this approach and present experimental results on a set of doc-
uments containing stories from Reuters news agency, the Reuters dataset. We compare
the proposed approach to the classical text representation technique (also known as the
bag-of-words) and the n-grams based text representation technique, demonstrating that
the approach delivers state-of-the-art performance in categorization, and can outperform
the bag-of-words approach.

The experimental analysis of this technique showed that it su�ers practical limitations
for big text corpora. This establishes a need to develop an approximation strategy. Fur-
thermore, for text categorization tasks there is now a large variety of problems for which the
datasets are huge. It is therefore important to �nd methods which can e�ciently compute
the Gram matrix.

One way to reduce computation time would be to provide a method which quickly com-
putes an approximation, instead of evaluating the full kernel. Provided the approximation
of the Gram matrix can be shown not to deviate signi�cantly from that produced by the full
string kernel various kernel methods can then be applied to large text-based datasets. In
this paper we show how one can successfully approximate the Gram matrix by considering
only a subset of the features which are generated by the string kernel. We use the recently
proposed alignment measure Cristitiaini et al. (2002) to show the deviation from the true
Gram matrix. Remarkably few features are needed in order to approximate the full matrix,
and therefore computation time is greatly reduced (by several orders of magnitude). In
order to show the e�ectiveness of this method, we conduct an experiment which uses the
string subsequence kernel (SSK) on the full Reuters dataset.

2. Kernels and Support Vector Machines

This section reviews the main ideas behind Support Vector Machines (SVMs) and kernel
functions. SVMs are a class of algorithms that combine the principles of statistical learning
theory with optimisation techniques and the idea of a kernel mapping. They were introduced
in Boser et al. (1992), and in their simplest version they learn a separating hyperplane
between two sets of points so as to maximise the margin (distance between plane and
closest point). This solution has several interesting statistical properties, that make it
a good candidate for valid generalisation. One of the main statistical properties of the
maximal margin solution is that its performance does not depend on the dimensionality of
the space where the separation takes place. In this way, it is possible to work in very high
dimensional spaces, such as those induced by kernels, without over�tting.

3

, , ,

In the classi�cation case, SVMs work by mapping the data points into a high dimen-
sional feature space, where a linear learning machine is used to �nd a maximal margin
separation. In the case of kernels de�ned over a space, this hyperplane in the feature space
can correspond to a nonlinear decision boundary in the input space. In the case of kernels
de�ned over sets, this hyperplane simply corresponds to a dichotomy of the input set.

We now brie
y describe a kernel function. A function that calculates the inner product
between mapped examples in a feature space is a kernel function, that is for any mapping
� : D ! F , K(di; dj) = h�(di); �(dj)i is a kernel function. Note that the kernel computes
this inner product by implicitly mapping the examples to the feature space. The mapping
� transforms an n dimensional example into an N dimensional feature vector.

�(d) = (�1(d); : : : ; �N(d)) = (�i(d)) for i = 1; : : : ; N

The explicit extraction of features in a feature space generally has very high computational
cost but a kernel function provides a way to handle this problem. The mathematical foun-
dation of such a function was established during the �rst decade of twentieth century Mercer
(1909). A kernel function is a symmetric function,

K(di; dj) = K(dj ; di); for i; j = 1; : : : ; n:

The n � n matrix with entries of the form Kij = K(di; dj) is known as the kernel matrix.
A kernel matrix is a symmetric, positive de�nite matrix. It is interesting to note that
this matrix is the main source of information for KMs and these methods use only this
information to learn a classi�er. There are ways of combining simple kernels to obtain more
complex ones.

For example given a kernel K and a set of n vectors the polynomial construction is given
by

Kpoly(di; dj) = (K(di; dj) + c)p

where p is a positive integer and c is a constant. Clearly, we incur a small computational cost,
to de�ne a new feature space. The feature space corresponding to a degree p polynomial
kernel includes all products of at most p input features. Hence polynomial kernels create
images of the examples in feature spaces having huge numbers of dimensions.

Furthermore, Gaussian kernels de�nes feature space with in�nite number of dimension
and it is given by

Kgauss(di; dj) = exp
�
�kdi�djk

2

2�2

�

A Gaussian kernel allows an algorithm to learn a linear classi�er in an in�nite dimensional
feature space.

3. A Kernel for Text Sequences- A Step beyond Words

In this section we describe a kernel between two text documents. The idea is to compare
them by means of the substrings they contain: the more substrings in common, the more
similar they are. An important part is that such substrings do not need to be contiguous,

4

and the degree of contiguity of one such substring in a document determines how much
weight it will have in the comparison.

For example: the substring `c-a-r' is present both in the word `card' and in the word
`custard', but with di�erent weighting. For each such substring there is a dimension of
the feature space, and the value of such coordinate depends on how frequently and how
compactly such string is embedded in the text. In order to deal with non-contiguous
substrings, it is necessary to introduce a decay factor � 2 (0; 1) that can be used to weight
the presence of a certain feature in a text (see De�nition 1 for more details).
Example. Consider - as simple documents - the words cat, car, bat, bar. If we consider only
k = 2, we obtain an 8-dimensional feature space, where the words are mapped as follows:

c-a c-t a-t b-a b-t c-r a-r b-r
�(cat) �2 �3 �2 0 0 0 0 0
�(car) �2 0 0 0 0 �3 �2 0
�(bat) 0 0 �2 �2 �3 0 0 0
�(bar) 0 0 0 �2 0 0 �2 �3

Hence, the unnormalised kernel between car and cat is K(car;cat) = �4, whereas the nor-
malised version is obtained as follows: K(car,car) = K(cat,cat) = 2�4 + �6 and hence
K(car;cat) = �4=(2�4 + �6) = 1=(2 + �2). Note that in general the document will contain
more than one word, but the mapping for the whole document is into one feature space:
the catenation of all the words and the spaces (ignoring the punctuation) is considered as
a unique sequence.
Example. We can compute the similarity between the two parts of a famous line by Kant.

K(\science is organized knowledge",\wisdom is organized life")

The values for this kernel, and values of k = 1; 2; 3; 4; 5; 6 are: K1 = 0:580, K2 = 0:580,
K3 = 0:478, K4 = 0:439, K5 = 0:406, K6 = 0:370

However, for interesting substring sizes (eg k > 4) and normal sized documents, direct
computation of all the relevant features would be impractical (even for moderately sized
texts) and hence explicit use of such representation would be impossible. But it turns
out that a kernel using such features can be de�ned and calculated in a very e�cient
way by using dynamic programming techniques. We derive the kernel by starting from
the features and working out their inner product. In this case there is no need to prove
that it satis�es Mercer's conditions (symmetry and positive semi-de�niteness) since they
will follow automatically from its de�nition as an inner product. This kernel named as
string subsequence kernel (SSK) is based on work Watkins (1999), Haussler (1999) mostly
motivated by bioinformatics applications. It maps strings to a feature vector indexed by all
k tuples of characters. A k-tuple will have a non-zero entry if it occurs as a subsequence
anywhere (not necessarily contiguously) in the string. The weighting of the feature will
be the sum over the occurrences of the k-tuple of a decaying factor of the length of the
occurrence.

De�nition 1 (String subsequence kernel- SSK) Let � be a �nite alphabet. A string is
a �nite sequence of characters from �, including the empty sequence. For strings s; t,
we denote by jsj the length of the string s = s1 : : : sjsj, and by st the string obtained by

5

, , ,

concatenating the strings s and t. The string s[i : j] is the substring si : : :sj of s. We say that
u is a subsequence of s, if there exist indices i = (i1; : : : ; ijuj), with 1 � i1 < � � � < ijuj � jsj,
such that uj = sij , for j = 1; : : : ; juj, or u = s[i] for short. The length l(i) of the subsequence
in s is ijuj� i1+ 1. We denote by �n the set of all �nite strings of length n, and by �� the
set of all strings

�� =
1[
n=0

�n: (1)

We now de�ne feature spaces Fn = R�n
. The feature mapping � for a string s is given by

de�ning the u coordinate �u(s) for each u 2 �n. We de�ne

�u(s) =
X

i:u=s[i]

�l(i); (2)

for some � � 1. These features measure the number of occurrences of subsequences in the
string s weighting them according to their lengths. Hence, the inner product of the feature
vectors for two strings s and t give a sum over all common subsequences weighted according
to their frequency of occurrence and lengths

Kn(s; t) =
X
u2�n

h�u(s) � �u(t)i =
X
u2�n

X
i:u=s[i]

�l(i)
X

j:u=t[j]

�l(j)

=
X
u2�n

X
i:u=s[i]

X
j:u=t[j]

�l(i)+l(j):

A direct computation of these features would involve O(j
P
jn) time and space, since this

is the number of features involved. It is also clear that most of the features will have
non zero components for large documents. In order to derive an e�ective procedure for
computing such kernel, we introduce an additional function which will aid in de�ning a
recursive computation for this kernel. Let

K0
i(s; t) =

X
u2�i

X
i:u=s[i]

X
j:u=t[j]

�jsj+jtj�i1�j1+2;

i = 1; : : : ; n� 1;

that is counting the length from the beginning of the particular sequence through to the
end of the strings s and t instead of just l(i) and l(j). We can now de�ne a recursive
computation for K0

i and hence compute Kn,

De�nition 2 Recursive computation of the subsequence kernel.

K0
0(s; t) = 1, for all s; t;

K0
i(s; t) = 0, if min (jsj; jtj) < i;

Ki(s; t) = 0, if min (jsj; jtj) < i;

K0
i(sx; t) = �K0

i(s; t) +
X
j:tj=x

K0
i�1(s; t[1 : j � 1])�jtj�j+2;

i = 1; : : : ; n� 1;

Kn(sx; t) = Kn(s; t) +
X

j:tj=x

K0
n�1(s; t[1 : j � 1])�2:

6

Notice that we need the auxiliary function K0 since it is only the interior gaps in the
subsequences that are penalised. The correctness of this recursion follows from observing
how the length of the strings has increased, incurring a factor of � for each extra length
unit. Hence, in the formula for K0

i(sx; t), the �rst term has one fewer character, so requiring
a single � factor, while the second has jtj � j + 2 fewer characters. For the last formula the
second term requires the addition of just two characters, one to s and one to t[1 : j � 1],
since x is the last character of the n-sequence. If we wished to compute Kn(s; t) for a range
of values of n, we would simply perform the computation of K0

i(s; t) up to one less than the
largest n required, and then apply the last recursion for each Kn(s; t) that is needed using
the stored values of K 0

i(s; t). We can of course create a kernel K(s; t) that combines the
di�erent Kn(s; t) giving di�erent (positive) weightings for each n.

Once we have create such a kernel it is natural to normalise to remove any bias introduced
by document length. We can produce this e�ect by normalising the feature vectors in the
feature space. Hence, we create a new embedding �̂(s) = �(s)

k�(s)k ; which gives rise to the
kernel

K̂(s; t) =
D
�̂(s) � �̂(t)

E
=

�
�(s)

k�(s)k
�
�(t)

k�(t)k

�

=
1

k�(s)k k�(t)k
h�(s) � �(t)i =

K(s; t)p
K(s; s)K(t; t)

E�cient Computation of SSK

SSK measures the similarity between documents s and t in a time proportional to njsjjtj2,
where n is the length of the sequence. It is evident from the description of the recursion in
De�nition 2, as the outermost recursion is over the sequence length and for each length and
each additional character in s and t a sum over the sequence t must be evaluated. However
it is possible to to speed up the computation of SSK. We now present an e�cient recursive
computation of SSK that reduce the complexity of the computation to O(njsjjtj), by �rst
evaluating

K 00
i (sx; t) =

X
j:tj=x

K 0
i�1(s; t[1 : j � 1])�jtj�j+2

and observing that we can then evaluate K0
i(s; t) with the O(jsjjtj) recursion,

K0
i(sx; t) = �K 0

i(s; t) +K00
i (sx; t):

Now observe that K00
i (sx; tu) = �jujK00

i (sx; t); provided x does not occur in u, while

K00
i (sx; tx) = �

�
K 00

i (sx; t) + �K 0
i�1(s; t)

�
:

These observations together give an O(jsjjtj) recursion for computing K00
i (s; t). Hence, we

can evaluate the overall kernel in O(njsjjtj) time.

n-grams- A Language Independent Approach

n-grams is a language independent text representation technique. It transforms documents
into high dimensional feature vectors where each feature corresponds to a contiguous sub-
string. n-grams are n adjacent characters (substring) from the alphabet A. Hence, the

7

, , ,

number of distinct n-grams in a text is less than or equal to jAjn. This shows that the
dimensionality of the n-grams feature vector can be very high even for moderate values of
n. However all these n-grams are not present in a document, thus reducing the dimension-
ality substantially. For example there are 8727 unique tri-grams (excluding stop words) in
the Reuters dataset. Generally during n-grams feature vector formation all the upper-case
characters are converted into lower-case characters and space is assumed for punctuation.
The feature vectors are then normalised. This is illustrated in the following example.
Example Consider an example that compute a tri-gram, and quad-gram feature vector.
d = \support vector"
The 3-grams are sup upp ppo por ort rtG tGv Gve vec ect cto tor, while the 4-grams are
supp uppo ppor port ortG rtGv tGve Gvec ecto ctor.
where G represent a space. Systems based on this technique have been applied in situations
where the text su�ers from errors such as misspelling Cavnar (1995), Hu�man (1996). The
choice of an optimal n varies with text corpora.

E�cient Implementation

Since even with the speed up described above the computation of SSK is not cheap, more ef-
�cient techniques were needed. Our goal to evaluate the performance of SSK in conjunction
with SVM on di�erent splits of data also required some special properties in the software.
We used a simple gradient based implementation of SVMs Friess et al. (1998), Cristianini
and Shawe-Taylor (2000). The key to success of our system is a form of chunking. We start
with a very small subset of the data and gradually build up the size of the training set,
while ensuring that only points which failed to meet margin 1 on the current hypothesis
were included in the next chunk.

Since each evaluation of the kernel function requires signi�cant computational resources,
we designed the system to only calculate those entries of the kernel matrix that are actually
required by the training algorithm. This can signi�cantly reduce the training time, since
only a relatively small part of the kernel matrix is actually used by our implementation
of the SVM. The number of kernel evaluations are approximately equal to the size of the
sample times the number of support vectors.

Once computed kernel entries were all saved for reuse on di�erent splits of the data.
This property makes it possible to train a classi�er for a number of splits of data without
incurring signi�cant additional computational cost, provided there is overlap in the support
vectors for each split. The key idea is to save all the kernel entries evaluated during the
training and test phase and use the kernel matrix with computed entries to evaluate SSK
on a new split of the same data or to learn a di�erent category of the same data.

4. Experimental Results

In this section we describe the experiments, while the emphasis of the experiments is on
the understanding of how SSK works in practice. The objectives of the experiments are to

� observe the in
uence of variability of tunable parameters k (length) and � (weight)
on performance,

� advantages of combining di�erent kernels.

8

In order to accomplish these goals we conducted a series of experiments on a subset of
documents from the Reuters dataset.
Reuters Dataset

The Reuters dataset contains stories from Reuters news agency. We used Reuters-21578,
the newer version of the corpus. It was compiled by David Lewis in 1987 and is publicly
available at

http://www.research.att.com/lewis.

To obtain a training set and test set there exist di�erent splits of the corpus. We used
the Modi�ed Apte (\ModeApte") split. The \ModeApte" split comprises 9603 training
and 3299 test documents. A Reuters category can contain as few as 1 or as many as 2877
documents in the training set. Similarly a test set category can has as few as 1 or as many
as 1066 relevant documents. The experiments described in Section 7 were conducted on the
full Reuters dataset using the ModeApte split.

As mentioned above, the experiments presented in this section were performed on a
subset of the Reuters dataset. We set the size of the subset so that the computation of SSK
was no longer a concern. The size of subset of Reuters was set to 470 documents, using 380
documents for training the classi�er and evaluating the performance of the learned classi�er
on a test set of 90 documents. The next step was to choose the categories. \Earn" and
\acquisition" are most frequent categories of the Reuters dataset. The direct correspondence
between the respective words and the categories \crude" and \corn" make them potential
candidates. The splits of the data had the following sizes and numbers of positive examples
in training and test sets: numbers of positive examples in training (testing) set out of 370
(90): earn 152 (40); acquisition 114 (25); crude 76 (15); corn 38 (10).

We now describe the preprocessing stage for SSK. We removed the words that occur in
a stop list and punctuation, keeping spaces in their original places in the documents.

The performance of SSK was compared to the performance of the standard word kernel
(WK) and n-grams kernel (NGK), where WK is a linear kernel that measures the similarity
between documents that are indexed by words with t�df weighting scheme. Similarly NGK
is also a linear kernel that return a similarity score between documents that are indexed by
n-grams.

In order to learn an SVM classi�er in conjunction with WK we preprocessed the doc-
uments as described. Stop words and punctuation were removed form the documents. We
weighted the entries of the feature vectors by using a variant of t�df, log(1+ tf)� log(n=df),
weighting scheme. Here tf represents term frequency while df is used for document fre-
quency and n is the total number of documents. The documents are normalised so that
each document has equal length.

We now describe the preprocessing stage for n-grams feature vectors. For consistency,
we removed stop words and punctuation. Each document in the collection is transformed
into a feature vector, where each entry of the feature vector represents the number of times
the corresponding substring occurs in the document. Note that the feature vectors are
normalised.

For evaluation the F1 performance measure given by 2pr=(p+r), where p is the precision
and r is the recall, has been used. Note that then F1 measure gives equal weighting
to both precision and recall. The parameter C was tuned by conducting very preliminary

9

, , ,

experiments on one split of data for one category. Note that the the value of C was set using
standard WK and the chosen value was used for all the kernels and for all the categories.

4.1 E�ectiveness of Varying Sequence length

The e�ectiveness of a text-categorization system based on SSK can be controlled by the
free parameters, \length of a subsequence k" and \ weight decay parameter �". In order to
understand the role of SSK for text categorization, it is important to study the performance
of a classi�er such as SVM in conjunction with SSK by varying k and �. Note that for
each new value of these parameters, we obtain a new kernel and in turn the resultant
kernel matrix contains of new information. We studied the e�ect of varying parameters
by adopting the experimental methodology as described. For the �rst set of experiments
we kept the value of one parameter � �xed and learned a classi�er for di�erent values of
k. We conducted another set of experiments to observe how the performance is a�ected
by varying the parameter �. Finally we empirically studied the advantages of combining
di�erent kernels. This section describes the �rst set of experiments.

For these experiments the value of weight decay parameter was set to 0.5, and sequence
length was varied. SSK was compared to NGK, where the n-grams length was also varied
over a range of values. The e�ectiveness of SSK was also compared with the e�ectiveness of
WK. Tables 1 and 2 describe the results of these experiments, where precision, recall and
F1 numbers are shown for all three kernels. Note that these results are averaged over 10
runs of the algorithm.

From these results, we �nd that the performance of the classi�er varies with respect to
varying sequence length. SSK can be more e�ective for smaller or moderate substrings as
compare to larger substrings. As results show, an optimal size of sequence length can be
found in a region that is not very large. For each category the F1 numbers (with respect to
SSK) seem to peak at a sequence length between 4 to 7. It seems that shorter or moderate
non-contiguous substrings are able to capture the semantics better than the longer non-
contiguous substrings. In practice, the size of sequence length can be set by a validation
set for each category.

Tables 1 and 2 also present the results of NGK and WK. We �rst focus on the per-
formance of an SVM classi�er with NGK and compare the role of NGK with SSK for
text categorization. It is interesting to note that generalisation performance of both the
techniques is comparable, where NGK works on contiguous substrings and SSK works on
non-contiguous substrings. The results show that the generalisation performance of an SVM
classi�er in conjunction with NGK is higher for short substrings and for longer substrings
the performance of NGK is worse.

The classical text representation technique (WK) was also compared with SSK. It is
worth noting that the performance of SSK is better that WK for each category. The size
of the dataset can be one factor responsible for the degradation in the performance of WK,
but these results show that SSK is an e�ective technique and it can perform comparably to
other techniques irrespective to the size of the dataset.

10

Category Kernel Length F1 Precision Recall
Mean SD Mean SD Mean SD

earn SSK 3 0.925 0.036 0.981 0.030 0.878 0.057
4 0.932 0.029 0.992 0.013 0.888 0.052
5 0.936 0.036 0.992 0.013 0.888 0.067
6 0.936 0.033 0.992 0.013 0.888 0.060
7 0.940 0.035 0.992 0.013 0.900 0.064
8 0.934 0.033 0.992 0.010 0.885 0.058
10 0.927 0.032 0.997 0.009 0.868 0.054
12 0.931 0.036 0.981 0.025 0.888 0.058
14 0.936 0.027 0.959 0.033 0.915 0.041

NGK 3 0.919 0.035 0.974 0.036 0.873 0.062
4 0.943 0.030 0.992 0.013 0.900 0.055
5 0.944 0.026 0.992 0.013 0.903 0.051
6 0.943 0.030 0.992 0.013 0.900 0.055
7 0.940 0.035 0.992 0.013 0.895 0.064
8 0.940 0.045 0.992 0.013 0.895 0.063
10 0.932 0.032 0.990 0.015 0.885 0.053
12 0.917 0.033 0.975 0.024 0.868 0.053
14 0.923 0.034 0.973 0.033 0.880 0.055

WK 0.925 0.033 0.989 0.014 0.867 0.057
acq SSK 3 0.785 0.040 0.863 0.060 0.724 0.064

4 0.822 0.047 0.898 0.045 0.760 0.068
5 0.867 0.038 0.914 0.042 0.828 0.057
6 0.876 0.051 0.934 0.043 0.828 0.080
7 0.864 0.045 0.920 0.046 0.816 0.063
8 0.852 0.049 0.918 0.051 0.796 0.064
9 0.820 0.056 0.903 0.053 0.756 0.089
10 0.791 0.067 0.848 0.072 0.744 0.083
12 0.791 0.067 0.848 0.072 0.744 0.083
14 0.774 0.042 0.819 0.067 0.736 0.043

NGK 3 0.791 0.043 0.842 0.061 0.748 0.053
4 0.873 0.031 0.896 0.037 0.852 0.038
5 0.882 0.038 0.912 0.041 0.856 0.051
6 0.880 0.045 0.923 0.041 0.844 0.072
7 0.870 0.050 0.904 0.047 0.844 0.085
8 0.857 0.044 0.897 0.039 0.824 0.071
10 0.830 0.045 0.887 0.063 0.784 0.071
12 0.806 0.066 0.850 0.062 0.768 0.079
14 0.776 0.060 0.814 0.061 0.744 0.076

W-K 0.802 0.072 0.843 0.067 0.768 0.090

Table 1: The performance (F1, precision, recall) of SVM with SSK, NGK and WK for
Reuters categories earn and acq. Results illustrate the e�ect of the variability of
subsequence length on performance. The results are averaged over 10 runs of the
techniques. We also report standard deviation.

11

, , ,

Category Kernel Length F1 Precision Recall
Mean SD Mean SD Mean SD

crude SSK 3 0.881 0.077 0.931 0.101 0.853 0.129
4 0.905 0.090 0.980 0.032 0.853 0.143
5 0.936 0.045 0.979 0.033 0.900 0.078
6 0.901 0.051 0.990 0.031 0.834 0.079
7 0.872 0.050 0.963 0.052 0.800 0.078
8 0.828 0.066 0.935 0.062 0.747 0.088
10 0.764 0.098 0.919 0.095 0.660 0.111
12 0.709 0.111 0.901 0.095 0.593 0.127
14 0.761 0.106 0.897 0.066 0.680 0.146

NGK 3 0.907 0.060 0.993 0.021 0.840 0.100
4 0.935 0.041 0.961 0.053 0.913 0.063
5 0.937 0.048 0.968 0.045 0.913 0.083
6 0.908 0.041 0.958 0.037 0.867 0.070
7 0.904 0.054 0.957 0.048 0.860 0.080
8 0.869 0.060 0.921 0.062 0.827 0.090
10 0.811 0.090 0.903 0.083 0.740 0.111
12 0.737 0.098 0.870 0.130 0.647 0.104
14 0.884 0.171 0.944 0.094 0.847 0.222

W-K 0.904 0.043 0.910 0.082 0.907 0.064
corn SSK 3 0.665 0.169 0.940 0.077 0.540 0.190

4 0.783 0.103 0.924 0.086 0.690 0.137
5 0.779 0.104 0.886 0.094 0.700 0.125
6 0.749 0.096 0.919 0.098 0.640 0.117
7 0.643 0.107 0.897 0.095 0.510 0.120
8 0.569 0.099 0.893 0.097 0.430 0.116
10 0.582 0.107 0.912 0.097 0.440 0.126
12 0.618 0.086 0.883 0.114 0.490 0.110
14 0.702 0.114 0.860 0.123 0.610 0.152

NGK 3 0.797 0.068 0.911 0.081 0.720 0.114
4 0.841 0.071 0.904 0.107 0.800 0.105
5 0.847 0.103 0.912 0.092 0.800 0.141
6 0.815 0.089 0.939 0.060 0.730 0.134
7 0.767 0.117 0.953 0.078 0.650 0.143
8 0.706 0.125 0.912 0.094 0.590 0.160
10 0.646 0.113 0.890 0.970 0.520 0.132
12 0.675 0.131 0.931 0.092 0.540 0.143
14 0.813 0.174 0.933 0.125 0.740 0.232

W-K 0.762 0.099 0.833 0.065 0.710 0.137

Table 2: The performance (F1, precision, recall) of SVM with SSK, NGK and WK for
Reuters categories crude and corn. Results illustrate the e�ect of the variability
of subsequence length on performance. The results are averaged over 10 runs of
the techniques. We also report standard deviation.

12

4.2 E�ectiveness of Varying Weight Decay Factor

In this set of experiments, we analyse the e�ect of varying � on the generalisation perfor-
mance of an SVM learner that manipulates the information encoded in a string subsequence
kernel. SSK weights the substrings according to their proximity in the text. The higher
values of � place more weights to non-contiguous substrings and vice versa. In other words
this is the parameter that controls the penalisation of the interior gaps in the substrings.
SSK was compared to NGK and WK. We once again evaluate the performance of these
techniques by averaging the results over 10 runs of the algorithm. A series of experiments
was conducted to study the performance of a text-categorization system based on SSK by
widely varying the weight decay parameter. The results of this set of experiments are de-
scribed in Tables 3 and 4. The average F1, precision and recall are given and note that
these tables also show the standard deviations. The value of k was set to 5. It was a di�cult
choice, since as shown in the preceding section di�erent categories obtained a highest value
of F1 at di�erent lengths. However, the main objective of the experiments described in this
section was to analyse the behaviour of SSK by varying �.

It is interesting to note that precision peaks at a higher value (� = 0:7) for all the
categories except one (corn). For corn the peak is achieved at � = 0:3 and note that once
a category has achieved maximum value, further increase in value of � can degrade the
e�ectiveness of a system substantially. Furthermore, the gain in precision is substantial
for most of the categories. The gain in recall is not obtained at higher values of �, peak
is obtained at low value (� = 0:03) for all categories except one that achieves a peak at a
slightly higher value (� = 0:05). We also note that for higher values of � there is substantial
loss in recall. We now brie
y analyse the improvement in F1 numbers, with varying �. It
seems that F1 numbers reach a maximum at a value (that is not very high) and then falls
to minimum at the highest value of �.

Polysemy is a characteristic of the English language. It seems that the technique SSK
deals with this problem, as SSK returns a high similarity score if the documents share
more non-contiguous substrings. A text-categorization system based on SSK can correctly
classify the document that share same but semantically di�erent words. This phenomenon
is evident from the results.

We now compare the performance of SSK with other techniques. Note that the length
of n-grams was set to 5 for this comparison. The results show that the e�ectiveness of
an SVM classi�er in conjunction with SSK is as good as the generalisation performance of
an SVM classi�er in conjunction with NGK. The results also show that the performance of
SSK can be better than NGK for some cases, though the gain in performance does not seem
substantial. It is worth noting that the SSK is able to achieve higher values of precision
when compared to NGK.

4.3 E�ectiveness of Combining Kernels

As in the preceding sections, here we describe a series of experiments to study the choice
of a kernel. We observe the in
uence of combining kernels on generalisation performance
of an SVM classi�er. In other words, we empirically study the e�ect of adding respective
inner products for di�erent subsequence lengths and weights. Text collection and evaluation
measures remain the same for these experiments.

13

, , ,

Category Kernel � F1 Precision Recall
Mean SD Mean SD Mean SD

earn NGK 0 0.944 0.026 0.992 0.013 0.903 0.051
SSK 0.01 0.946 0.028 0.992 0.013 0.905 0.052

0.03 0.946 0.028 0.992 0.013 0.905 0.052
0.05 0.944 0.026 0.992 0.013 0.903 0.051
0.07 0.944 0.026 0.992 0.013 0.903 0.051
0.09 0.944 0.026 0.992 0.013 0.902 0.051
0.1 0.944 0.026 0.992 0.013 0.903 0.051
0.3 0.943 0.029 0.992 0.013 0.900 0.055
0.5 0.936 0.0130 0.992 0.014 0.888 0.067
0.7 0.928 0.040 0.994 0.012 0.873 0.062
.9 0.914 0.050 0.989 0.020 0.853 0.075

W-K 0.925 0.014 0.989 0.014 0.867 0.057

acq NGK 0 0.882 0.038 0.912 0.041 0.856 0.051
SSK 0.01 0.873 0.040 0.910 0.040 0.840 0.050

0.03 0.878 0.040 0.908 0.040 0.852 0.057
0.05 0.882 0.037 0.912 0.040 0.856 0.054
0.07 0.873 0.044 0.910 0.041 0.840 0.063
0.09 0.863 0.043 0.908 0.041 0.824 0.063
0.1 0.871 0.043 0.903 0.038 0.844 0.069
0.3 0.870 0.040 0.911 0.051 0.836 0.061
0.5 0.867 0.038 0.914 0.042 0.828 0.067
0.7 0.805 0.050 0.935 0.046 0.712 0.078
0.9 0.735 0.073 0.850 0.064 0.652 0.092

WK 0.802 0.033 0.843 0.067 0.768 0.057

Table 3: The performance (F1, precision, recall) of SVM with SSK, NGK and WK for
Reuters categories earn and acq. Results illustrate the impact of varying � on
performance of SSK. The results are averaged over 10 runs of the techniques. We
also report standard deviation.

14

Category Kernel � F1 Precision Recall
Mean SD Mean SD Mean SD

crude NGK 0 0.937 0.048 0.968 0.045 0.913 0.083
SSK 0.01 0.937 0.048 0.968 0.045 0.913 0.083

0.03 0.941 0.041 0.968 0.045 0.920 0.069
0.05 0.945 0.041 0.974 0.044 0.920 0.069
0.07 0.945 0.041 0.974 0.044 0.920 0.069
0.09 0.927 0.052 0.987 0.027 0.880 0.098
0.1 0.947 0.039 0.980 0.032 0.920 0.069
0.3 0.948 0.030 0.980 0.032 0.920 0.052
0.5 0.936 0.045 0.979 0.033 0.900 0.078
0.7 0.893 0.363 0.993 0.022 0.813 0.062
0.9 0.758 0.861 0.810 0.134 0.727 0.106

W-K 0.904 0.043 0.910 0.082 0.907 0.064

corn NGK 0 0.847 0.103 0.912 0.092 0.800 0.141
SSK 0.01 0.845 0.098 0.920 0.081 0.790 0.137

0.03 0.845 0.098 0.920 0.081 0.790 0.137
0.05 0.834 0.086 0.921 0.081 0.780 0.123
0.07 0.827 0.088 0.920 0.081 0.760 0.126
0.09 0.834 0.083 0.920 0.081 0.770 0.116
0.1 0.827 0.088 0.920 0.081 0.760 0.126
0.3 0.825 0.087 0.931 0.084 0.750 0.127
0.5 0.779 0.104 0.886 0.094 0.700 0.125
0.7 0.628 0.109 0.861 0.088 0.510 0.137
0.9 0.348 0.185 0.824 0.238 0.240 0.165

W-K 0.762 0.099 0.833 0.065 0.710 0.137

Table 4: The performance (F1, precision, recall) of SVM with SSK, NGK and WK for
Reuters categories crude and corn. Results illustrate the impact of varying � on
performance of SSK. The results are averaged over 10 runs of the techniques. We
also report standard deviation.

15

, , ,

Category k1 k2 F1 Precision Recall
Mean SD Mean SD Mean SD

earn 3 0 0.925 0.036 0.981 0.030 0.878 0.057
4 0 0.932 0.029 0.992 0.013 0.888 0.052
5 0 0.936 0.036 0.992 0.013 0.888 0.067
6 0 0.936 0.033 0.992 0.013 0.888 0.060
3 4 0.935 0.029 0.981 0.024 0.895 0.052
4 5 0.937 0.030 0.992 0.013 0.890 0.056
5 6 0.938 0.034 0.992 0.013 0.893 0.062

acq 3 0 0.785 0.040 0.863 0.060 0.724 0.064
4 0 0.822 0.047 0.898 0.045 0.760 0.068
5 0 0.867 0.038 0.914 0.042 0.828 0.057
6 0 0.876 0.051 0.934 0.043 0.828 0.080
3 4 0.827 0.028 0.866 0.034 0.792 0.037
4 5 0.857 0.036 0.918 0.027 0.804 0.051
5 6 0.866 0.044 0.925 0.043 0.816 0.066

crude 3 0 0.881 0.077 0.931 0.101 0.853 0.129
4 0 0.905 0.090 0.980 0.032 0.853 0.143
5 0 0.936 0.045 0.979 0.033 0.900 0.078
6 0 0.901 0.051 0.990 0.031 0.834 0.079
3 4 0.932 0.048 0.958 0.071 0.913 0.070
4 5 0.936 0.049 0.981 0.042 0.90 0.090
5 6 0.916 0.062 0.986 0.03 0.86 0.101

corn 3 0 0.665 0.169 0.940 0.077 0.540 0.190
4 0 0.783 0.103 0.924 0.086 0.690 0.137
5 0 0.779 0.104 0.886 0.094 0.700 0.125
6 0 0.749 0.096 0.919 0.098 0.640 0.117
3 4 0.769 0.080 0.904 0.092 0.680 0.113
4 5 0.776 0.090 0.904 0.093 0.69 0.120
5 6 0.761 0.080 0.908 0.088 0.660 0.966

Table 5: The performance (F1, precision, recall) of SVM with combined kernels for Reuters
categories earn, acq, corn and crude. The SSK for di�erent lengths have been
combined. The results are averaged and standard deviation is also given.

16

Combining Kernels of Di�erent Lengths

The �rst set of experiments considered a kernel matrix with the entries the sum of the
respective entries of string subsequence kernels of di�erent lengths. More Formally

K =
�
K(di; dj)

�
1�i;j�n

=
�
K1(di; dj

�
+K2(di; dj)

�
1�i;j�n

= K1 +K2

where K1 is string subsequence kernel matrix for length k1 and K2 is for length k2. The
value of the weight decay parameter � was set to 0.5 for this set of experiments. Kernels
for lengths 3 and 4, 4 and 5, 5 and 6 were combined. The results are reported in Table 5.
For illustration the results for length 3, 4, 5, and 6 are also given. The results show that
this technique of combining kernels has a potential to improve the performance of a system.
The performance of an SVM with a combined SSK can be better than the performance
of an SVM with any of the individual kernel. This is evident from the value of F1 for
a combination of length 3 and 4 for the category \crude". However in some scenarios
the combination of kernels appears of no gain showing that both the kernels give similar
information. Note that all the results presented in this section are averaged over 10 samples
of the data.
Combining NGK and SSK

We now present the experiments by adding the respective entries in a string subsequence
kernel matrix and an n-grams kernel matrix. We set the length for both the kernels to 5,
and for SSK the value of � was set to 0.5. The results of this set of experiments are shown
in Table 6. We not only combined the SSK and NGK but we also observed the in
uence of
combining weighted entries of respective kernel matrices. The entries of NGK were weighted
more as compare to SSK, formally

K = wngNGK + wskSSK:

Unfortunately this set of experiments does not yield any improvement in the generalisation
performance of an SVM classi�er.
Combining SSK with di�erent �'s

Another set of experiments was conducted to evaluate the e�ect of combining SSK for
di�erent �'s. The results are reported in Table 7. The length of the subsequence was
set to 5 and two values (0.05 and 0.5)of � were combined. The results showed that this
methodology of adding respective entries of string subsequence kernels for di�erent �'s and
using the resultant kernel matrix with an SVM does not improve the performance of the
system substantially.

5. Approximating Kernels

When constructing a Gram matrix, the computational cost is often high. This may be due
to either the need for a large number of kernel evaluations (i.e. there is a large training set)
or due to the high computational cost of evaluating the kernel itself. In some circumstances,
both points may be true.

Assume we have some training points (xi; yi) 2 X�Y , and some kernel function K(x; z)
corresponding to a feature space projection � : X 7! F such that K(x; z) = h�(x); �(x)i.
Consider a set S of vectors S = fsi 2 Xg. If the cardinality of S is equal to the dimension-

17

, , ,

Category wng wsk F1 Precision Recall
Mean SD Mean SD Mean SD

earn 1 0 0.944 0.026 0.992 0.013 0.903 0.051
0 1 0.936 0.013 0.992 0.014 0.888 0.067

0.5 0.5 0.944 0.026 0.992 0.013 0.903 0.051
0.6 0.4 0.941 0.029 0.992 0.013 0.898 0.055
0.7 0.3 0.941 0.029 0.992 0.013 0.898 0.055
0.8 0.2 0.944 0.030 0.992 0.013 0.903 0.060
0.9 0.1 0.943 0.0260 0.992 0.013 0.900 0.050

acq 1 0 0.882 0.038 0.912 0.041 0.856 0.051
0 1 0.867 0.038 0.914 0.042 0.828 0.067

0.5 0.5 0.865 0.035 0.917 0.045 0.820 0.051
0.6 0.4 0.878 0.031 0.908 0.036 0.852 0.046
0.7 0.3 0.868 0.047 0.909 0.040 0.832 0.073
0.8 0.2 0.875 0.033 0.913 0.050 0.844 0.058
0.9 0.1 0.875 0.040 0.910 0.040 0.844 0.058

crude 1 1 0.937 0.048 0.968 0.045 0.913 0.083
0 1 0.936 0.045 0.979 0.033 0.900 0.078

0.5 0.5 0.940 0.0360 0.987 0.027 0.900 0.072
0.6 0.4 0.937 0.040 0.980 0.032 0.900 0.072
0.7 0.3 0.934 0.057 0.994 0.020 0.887 0.105
0.8 0.2 0.928 0.057 0.981 0.042 0.887 0.104
0.9 0.1 0.926 0.063 1.000 0.000 0.867 0.104

corn 1 0 0.847 0.103 0.912 0.092 0.800 0.141
0 1 0.779 0.104 0.886 0.094 0.700 0.125

0.5 0.5 0.843 0.095 0.929 0.085 0.750 0.127
0.6 0.4 0.836 0.091 0.943 0.085 0.760 0.126
0.7 0.3 0.827 0.098 0.916 0.083 0.760 0.126
0.8 0.2 0.831 0.093 0.930 0.084 0.760 0.126
0.9 0.1 0.849 0.092 0.943 0.084 0.780 0.123

Table 6: The performance (F1, precision, recall) of SVM with combined kernels for Reuters
categories earn, acq, corn and crude. The SSK and NGK are combined. The
results are averaged and standard deviation is also given.

18

Category �'s F1 Precision Recall
1 2 Mean SD Mean SD Mean SD

earn 0.05 0.0 0.944 0.026 0.992 0.013 0.903 0.051
0.5 0.0 0.936 0.013 0.992 0.014 0.888 0.067
.05 0.5 0.949 0.024 0.991 0.013 0.911 0.044

acq 0.05 0.0 0.882 0.037 0.912 0.040 0.856 0.054
0.5 0.0 0.867 0.038 0.914 0.042 0.828 0.067
0.05 0.5 0.869 0.041 0.921 0.042 0.824 0.063

crude 0.05 0.0 0.945 0.041 0.974 0.044 0.920 0.069
0.5 0.0 0.936 0.045 0.979 0.033 0.900 0.078
0.05 0.5 0.940 0.039 0.980 0.032 0.907 0.071

corn 0.05 0.0 0.834 0.086 0.921 0.081 0.780 0.123
0.5 0.0 0.779 0.104 0.886 0.094 0.700 0.125
0.05 0.05 0.818 0.088 0.930 0.085 0.740 0.126

Table 7: The performance (F1, precision, recall) of SVM with combined kernels for Reuters
categories earn, acq, corn and crude. The SSK for di�erent �'s have been com-
bined. The results are averaged and standard deviation is also given.

ality of the space F and the vectors �(si) are orthogonal (i.e. K(si; sj) = C�ij)1, then the
following is true:

K(x; z) =
1

C

X
si2S

K(x; si)K(z; si): (3)

This follows from the fact that �(x) = 1
C

P
si2S

K(x; si)�(si) and �(z) =
1
C

P
sj2S

K(x; sj)�(sj),
so that

K(x; z) =
1

C2

X
si;sj2S

K(x; si)K(z; sj)C�ij

=
1

C

X
si2S

K(x; si)K(z; si):

If instead of forming a complete orthonormal basis, the cardinality of the set ~S is less than
the dimensionality of X or the vectors si are not fully orthogonal, then we can construct
an approximation to the kernel K:

K(x; z)�
X
si2~S

K(x; si)K(z; si): (4)

In this paper we propose to use the above fact in conjunction with an e�cient method
of choosing ~S to construct a good approximation of the kernel function. If the set ~S is

1. Where �ij = 1 if i = j and 0 otherwise.

19

, , ,

carefully constructed, then the production of a Gram matrix which is closely aligned to the
true Gram matrix can be achieved with a fraction of the computational cost. A problem at
this stage is how to choose the set ~S and how to ensure that the vectors si are orthogonal.

5.1 Choosing a subset of features

There are many possible ways to choose a set ~S. Heuristics may include simply selecting a
random subset as in Williams and M.Seegar (2001), or listing all possible features and then
selecting the top few according to frequency. Recently the Gram-Schmidt procedure has
also been applied to kernel matrices in order to choose orthogonal features Sch�olkopf and
Smola (2000). Other approaches may include selecting data points from the training set
which are close to being orthonormal, or using a generative model to form ~S. Whichever
method is chosen, the result is a low rank approximation of the Gram matrix K. This is
also the aim of techniques such as principal components analysis or latent semantic kernels.

We are going to use a heuristic based on explicitly generating an orthogonal and complete
set of data, and from these choosing the best points according to a given criteria, so ~S � S

where S is orthogonal and complete. Suppose that the set ~S has size l with each entry having
n0 characters. In this case the evaluation of the feature vector will require O(nn0lt) for the
string kernel of length n and a document of length t. The computation of the approximate
string kernel would therefore require O(nn0lt) as compared with O(nt2) required by the
direct menthod. Provided n0l < t this will represent a saving. The improvement is greater
if we evaluate a kernel matrix for a training set of size m, documents each of length t. Since
this requires O(mnn0lt+ lm2) as opposed to O(m2nt2) required for a direct evaluation of all
the entries. In this case savings will be made if l < nt2 and n0l < mt. We should therefore
choose n0 small and control the size of l. We enforce both of these inequalities in Section
6 when using the string kernel on the Reuters data set. Before we discuss a particular
implementation of this method however, we must �rst discuss a method of measuring the
similarity of two Gram matrices.

5.2 Similarity of Gram Matrices

In order to discover how many features are needed to obtain a good approximation of
the true Gram matrix, we need a measure of similarity between Gram matrices. In this
paper we use the notion of alignment Cristitiaini et al. (2002) which was recently proposed.
In the paper the following inner product is used between Gram matrices hK1; K2iF =Pm

i;j=1K1(xi; xj)K2(xi; xj).
The measure of alignment between two matrices is then given as follows:

De�nition 3 Alignment The (empirical) alignment of a kernel k1 with a kernel k2 with
respect to the sample S is the quantity

Â(S; k1; k2) =
hK1; K2iFp

hK1; K1iF hK2; K2iF
;

where Ki is the kernel matrix for the sample S using kernel ki.

This is the measure which we will use here. If the matrices are fully aligned (i.e. they are
the same) then the alignment measure is 1, see Cristitiaini et al. (2002) or Cristianini et al.
(2001) for details of kernel alignment.

20

6. Approximating the string kernel

In this section we show the usefulness of the technique by approximating the SSK. The high
computational cost of SSK makes it a good candidate for our approach.

6.1 Obtaining the approximation

As mentioned above, the string kernel has time complexity of O(njsjjtj), where n is the
length of sub-sequences which we are considering, and s and t are the length of the docu-
ments involved. For datasets such as the Reuters data set, which contains approximately
9600 training examples and 3200 test examples with an average length of approximately
2300 characters, the string kernel is too expensive to apply on large text collections.

Our heuristic for obtaining the set ~S is as follows:

1. We choose a substring size n.

2. We enumerate all possible contiguous strings of length n.

3. We choose the x strings of length n which occur most frequently in the dataset and
this forms our set ~S.

Notice that by de�nition all such strings of length n are orthogonal (i.e. K(si; sj) = (�ij)
for some constant C when used in conjunction with the string kernel of degree n. Using all
features is therefore exactly equivalent to the string kernel, whereas using a subset gives an
approximation. This is far quicker than calculating the dot product between documents.
We would expect the most frequent features to result in a good approximation of the
kernel, as we are discarding the less informative features. It is possible that some of the
frequent features may be non-informative however, and a possibility for improving this naive
approach would be to use mutual information as part of the selection process.

6.2 Selecting the subset

To show how the string kernel can be approximated, and to decide on the number of features
which need to be used, we conducted the following experiment. First of all we generated all
possible 273 = 19683 3-grams (26 letters and 1 space) and computed the k = 3 string kernel
between each of these 3-grams and the �rst 100 documents in the Reuters dataset. Note
that each of these kernel evaluations is very cheap, as one of the \documents" has only 3
characters. We then calculated the Gram matrix for the 100 documents using these features
and a linear dot product, and also using the full string kernel. The alignment between the
two matrices was 1; empirically con�rming that the two are equivalent. We then extracted
all contiguous 3-grams present in the �rst 100 documents (there are 10099) and computed
the alignment using these features, the result was 0.999989 which is very close to complete
alignment. We then computed the alignment when using the top 10000-200 features (in
steps of 200) and then from 200-5 features in steps of 5. In order to obtain a comparison
we repeated the experiment using the most infrequent 3-grams, and features selected at
random. The results are shown in �gure 1. As can be seen from the graph, only a small
number of features are required to generate a good alignment. By simply using the top 5
features we obtain an alignment score of 0.966, whereas the top 200 features gives a score of

21

, , ,

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.5

0.6

0.7

0.8

0.9

1

Frequent
Infrequent
Random

Figure 1: Alignment scores (against the Gram matrix generated by the full string kernel)
when using the most frequent, infrequent and random selection of features.

0.992. Even when using the most infrequent features in the database, the alignment score
still rapidly approaches 1 as we increase the number of features, and as expected using
random features places us in between these two results. We have therefore shown that even
by using a small number of features < 200 we can achieve a good approximation of the
string kernel. The full Gram matrices for large datasets can now be e�ciently generated
and used with any kernel algorithm.

7. Experimental Results

In order to evaluate the proposed approach we conducted experiments based on the \ModApte"
split of the Reuters-2178 dataset. The only pre-processing run on the dataset before ex-
perimentation was the removal of common stop-words. We ran an approximation of the
string kernel with k = 3; 4; 5 on the full Reuters data set. In order to compare our results to
current techniques, we used a bag of words approach. We also used the software SVM light

Joachims (1999) to run the experiments once the bag of words and approximation features
had been generated. Performance of the proposed technique was compared with n-grams.
For n-grams as pre-processing the stop words were removed. We conducted experiments for
n = 3; 4; 5. Note that for all the experiments described in this section we used the SVM light

package. Table 8 summarises the results obtained from the preliminary experiments, the
top row of the table indicates the number of features used in the approximation. Note that
the preliminary experiments were conducted for k = 5 For the ship category, the number of
features use in the approximation has a direct a�ect on the generalisation error. Category
corn also present the similar performance. When used in conjunction with the earn and acq
categories though, the results are stable. This suggests the possibility of using a heuristic
which increases the number of features used until the increase in alignment is negligible.

22

1000 3000

earn 0.97 0.97
acq 0.88 0.85
ship 0.10 0.53
corn 0.15 0.65

Table 8: Comparing di�erent numbers of features in the approximation to the SSK on 4
categories of the Reuters dataset.

Category WK NGK Approximated SSK
n k

3 4 5 3 4 5

earn 0.982 0.982 0.984 0.974 0.970 0.970 0.970

acq 0.948 0.919 0.932 0.887 0.850 0.880 0.880

money-fx 0.775 0.744 0.757 0.692 0.700 0.760 0.740

grain 0.930 0.852 0.840 0.758 0.800 0.820 0.800

crude 0.880 0.857 0.848 0.640 0.820 0.840 0.840

trade 0.761 0.774 0.779 0.767 0.700 0.730 0.730

interest 0.691 0.708 0.719 0.503 0.630 0.660 0.690

ship 0.797 0.657 0.626 0.321 0.610 0.650 0.530

wheat 0.870 0.803 0.797 0.629 0.780 0.790 0.820

corn 0.895 0.761 0.610 0.459 0.630 0.630 0.680

Table 9: F1 numbers for SVM with WK, NGK and SSK for top-ten Reuters categories.

The relationship between the quality of alignment and generalisation error could then be
investigated to see if a good correlation exists. For our next set of experiments we set the
number of features to 3000. The result of this set of experiments are given in Table 9. We
have given F1 numbers for all three techniques. This table shows that the results that are
comparable to WK and NGK. In order to gauge the e�ciency of the approach, remember
that the string kernel takes O(njsjjtj) time. Using n = 5 and an approximate word length
of 2000 characters, with a training set of 9603 documents (as in the Reuters dataset) this
number becomes 9603� 9603� 5 � 2000� 2000 � 1:8x1015 to naively generate the Gram
matrix. For the approximation approach however, using 100 features (i.e. strings of length
3) we have 9603� 100� 5� 3� 2000 � 2:8x1010 which is considerably faster.

8. Conclusions

The paper has presented a novel kernel and its approximation for text analysis. The per-
formance of the string subsequence kernel was empirically tested by applying it to a text
categorization task. This kernel can be used with any kernel-based learning system, for
example in clustering, categorization, ranking, etc. In this paper we have focused on text
categorization, using a Support Vector Machine.

23

, , ,

Although the kernel does not incorporate any knowledge of the language being used
(apart from in the removal of stop words), it does capture semantic information, to the
extent that it can outperform state of the art systems on some data.

This paper builds on preliminary results presented obtained with this technique Lodhi
et al. (2001). This is most likely due to the extreme computational cost of accessing such
a feature space without using the kernel trick. For a given sequence length k the features
are indexed by all strings of length k. Direct computation of all the relevant features
would be impractical even for moderately sized texts and k. We have used a dynamic
programming style computation for computing the kernel directly from the input sequences
without explicitly calculating the feature vectors. This has been possible since we have used
a kernel-based learning machine.

The experiments indicate that our algorithm can provide an e�ective alternative to
the more standard word feature based kernel used in previous SVM applications for text
classi�cation Joachims (1998). We were also able to compare them with results obtained
using a string kernel that only considered contiguous strings, thus providing a continuum
of varying the parameter � to 0. The kernel for contiguous strings was also combined with
the non-contiguous kernel to examine to what extent di�erent features were being used in
the classi�cation.

In addition di�erent lengths of strings were considered and a comparison made of the
results obtained on Reuters data using a range of di�erent values.

In order apply the proposed approach on large datasets, we derived a fast algorithm that
approximates the exact string kernel. We have also introduced a method for approximating
kernels based on using a subset of orthogonal features. This allows the fast construction
of kernel Gram matrices. We have shown that by using all features we arrive exactly at
the string kernel solution, however we have also shown that good approximations can be
obtained by using a relatively small number of features. In order to illustrate this technique
we conducted an extensive set of experiments. We provided experimental results using the
string kernel which is known to be computationally expensive. Using the approximation
however, we were able to achieve results on the full Reuters dataset which were comparable
to those produced by the bag of words approach.

The results on the full Reuters dataset were, however, less encouraging. In most cases
the word kernel and contiguous n-grams kernel outperformed the string kernel. This led us
to conjecture that the excellent results on smaller datasets demonstrate that the kernel is
performing something similar to stemming, hence providing semantic links between words
that the word kernel must view as distinct. This e�ect is no longer so important in large
datasets where there is enough data to learn the relevance of the terms.

It is an open question to see whether ranking the features according to positive and
negative examples and introducing a weighting scheme will improve results. Also once a
good approximation to the Gram matrix is produced, it can easily be used with other kernel
methods (e.g. for clustering, principal components analysis, etc.). The relationship between
the quality of the approximation and the generalisation error achieved by an algorithm also
needs to be explored. One could also consider using the fast approximation with very few
features to obtain a very coarse Grammatrix. A preliminary estimate of the support vectors
could then be obtained, and the entries for these vectors could then be re�ned. This could
give rise to a fast form of chunking for large datasets.

24

The paper has provided a fairly thorough testing of the use of string kernels for text
data, in particular considering the e�ect of varying the lengths, the value of the decay
parameter, and combinations of di�erent kernels. It has also developed an approximation
strategy that enables one to apply the approach to large datasets. Future work will consider
the extension of the techniques to strings of syllables and words as well as to types of data
other than text.

References

B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin
classi�ers. In D. Haussler, editor, Proceedings of the 5th Annual ACM Workshop on
Computational Learning Theory, pages 144{152, Pittsburgh, PA, 1992. ACM Press.

W. B. Cavnar. Using an n-gram based document representation with a vector processing
retrieval model. In TREC 3, 1995.

N. Cristianini, A. Elisseef, and J. Shawe-Taylor. On optimizing kernel alignment. Technical
Report NC-TR-01-087, Neurocolt, 2001.

N. Cristianini and J. Shawe-Taylor. An introduction to Support Vector Machines. Cambridge
University Press, Cambridge, UK, 2000.

N. Cristitiaini, A. Elissee�, J. Shawe-Taylor, and J. Kandola. On kernel-target alignment.
In to appear in NIPS '01, 2002.

T. Friess, N. Cristianini, and C. Campbell. The kernel-adatron: a fast and simple training
procedure for support vector machines. In J. Shavlik, editor, Proceedings of the Interna-
tional Conference on Machine Learning, 1998.

D. Haussler. Convolution kernels on discrete structures. Technical Report UCSC-CRL-99-
10, University of California in Santa Cruz, Computer Science Department, 1999.

S. Hu�man. Acquaintance: Language-independent document categorization by n-grams. In
TREC 4, 1996.

T. Joachims. Text categorization with support vector macgines: learning with many relevant
features. In European Conference on Machine Learning (ECML), 1998.

T. Joachims. Making large-scale svm learning practical. In B. Sch�olkopf and C. Burges A.
Smola, editors, Advances in Kernel Methods-Support Vector Learning. MIT-Press, 1999.

H. Lodhi, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text classi�cation using string
kernels. In Neural Information Processing Systems (NIPS), pages 563{569. MIT Press,
2001.

J. Mercer. Functions of positive and negative type and their connection with the theory of
integral equations. Philos. Trans. Ray, Soc. Lodon, A, (209):415{446, 1909.

G. Salton, A. Wong, and C. Yang. A vector space model for automatic indexing. Commu-
nications of the ACM, 18(11), 1975.

25

, , ,

B. Sch�olkopf and A. Smola. Sparse greedy matrix approximation for machine learning. In
International Conference on Machine Learning, 2000.

V. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag, New York, 1995.

C. Watkins. Dynamic alignment kernels. Technical Report CSD-TR-98-11, Royal Holloway,
University of London, Department of Computer Science, 1999.

C. Williams and M.Seegar. Using the Nystr�om method to speed up kernel machines. In
Neural Information Processing Systems. MIT Press, 2001.

26

