9. Data mining

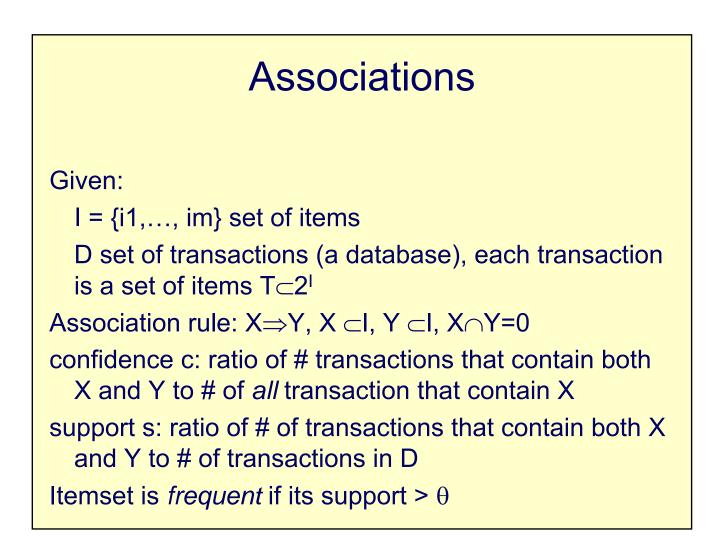
- definition
- basic concepts
- applications
- challenges

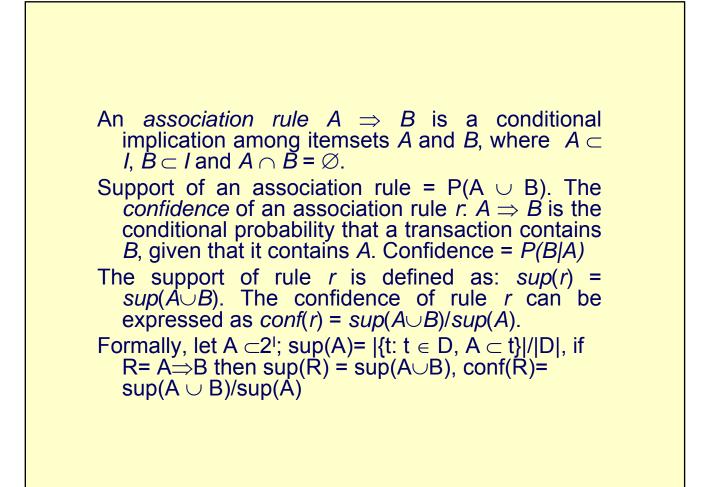
Definition - Data Mining

- extraction of [unknown] patterns from data for actionability
- · combines methods from:
 - databases
 - machine learning
 - visualization
- involves large datasets
- consists of:
 - stating the [business] question
 - data collection and (instance) selection
 - preprocessing
 - transformation
 - model building
 - interpretation/evaluation/deployment

Model building

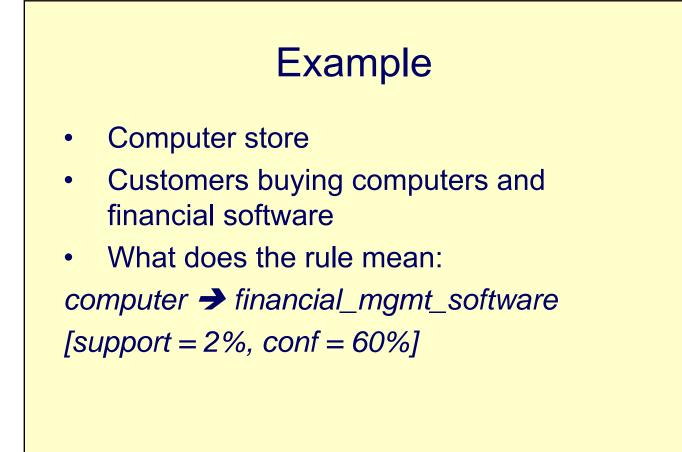
- Supervised
 - (mainly classification)
 - Also ranking, estimation
- Unsupervised
 - Associations
 - Clustering





Itemsets and association rules

- Itemset = set of items
- k-itemset = set of k items
- Finding association rules in databases:
 - Find all frequent (or large) itemsets (those with support > min_s
 - Generate rules that satisfy minimum confidence



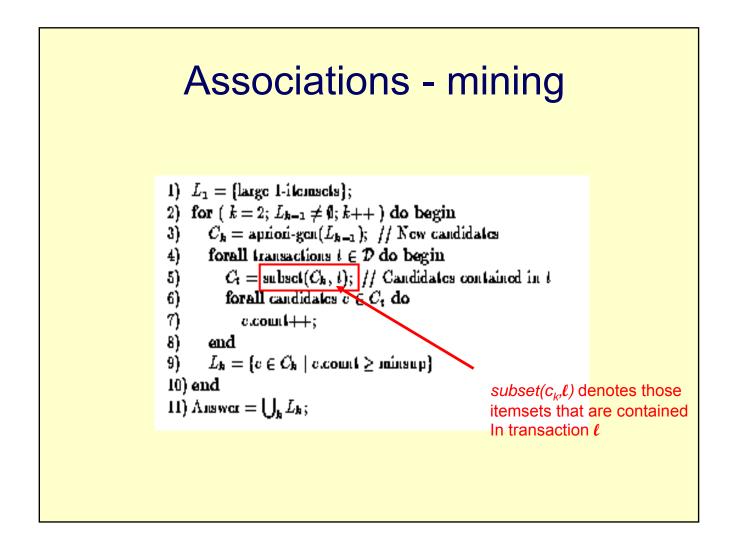
Associations - mining

```
Given D, generate all assoc rules with c, s > thresholds min<sub>c</sub>, min<sub>s</sub> (items are ordered, e.g. by barcode)
```

```
Idea:
```

find all itemsets that have transaction support > min_s : large itemsets

Apriori property All [non-empty] subsets of a frequent itemset must be frequent Based on the fact that an itemset *i* that is NOT frequent has support < min_s But inserting an additional item *A* in *i* will not increase the support of *i* ∪ *A*



Candidate generation

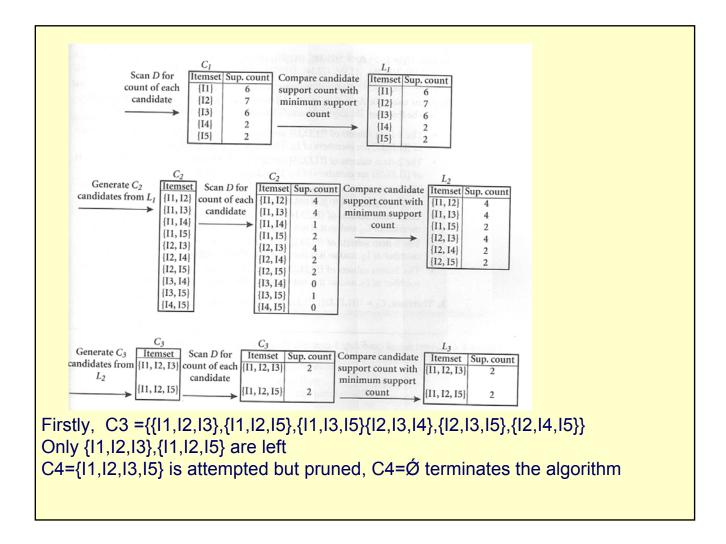
 $C_k = apriori-gen(L_{k-1})$

insert into C_k select p.item₁, p.item₂, ..., p.item_{k-1}, q.item_{k-1} from L_{k-1} p, L_{k-1} q where p.item₁ = q.item₁, ..., p.item_{k-2} = q.item_{k-2}, p.item_{k-1} < q.item_{k-1};

Next, in the *prune* step, we delete all itemsets $c \in C_k$ such that some (k-1)-subset of c is not in L_{k-1} :

forall itemsets $c \in C_k$ do forall (k-1)-subsets s of c do if $(s \notin L_{k-1})$ then delete c from C_k ; Select from *k-1-*frequent itemsets two overlapping subsets, add the differences

$\begin{array}{c} \overline{\text{TID}} \underline{\text{List of item}_\text{IDs}} \\ \overline{\text{T100}} 11, 12, 15 \\ \overline{\text{T200}} 12, 14 \\ \overline{\text{T300}} 12, 13 \\ \overline{\text{T400}} 11, 12, 14 \\ \overline{\text{T500}} 11, 13 \\ \overline{\text{T600}} 12, 13 \\ \overline{\text{T700}} 11, 13 \\ \overline{\text{T800}} 11, 12, 13, 15 \\ \overline{\text{T900}} 11, 12, 13 \end{array} \\ From Han, \\ Kamber, "Data \\ Mining", p. 232 \\ \mathcal{I} = \{I1, \dots, I5\} \\ min_s = 2 \end{array}$
--



From itemsets to association rules For ea. frequent itemset / generate all the partitions of / into s, *I*-s Attempt a rule s → *I*-s iff support_count(*I*)/support_count(s) > min_c e.g. for min_c = 0.5, what rules do we get? [conf(r) = sup(A∪B)/sup(A)]