Evaluation

- Problems
 - Accuracy: for imbalanced data (skewed class distribution)
 - Cost of errors (misclassification)
- Visualization of performance
 - ROC curves: false positive rate vs. true positive rate
 - Cost curves: Expected cost vs. misclassification cost * class distribution

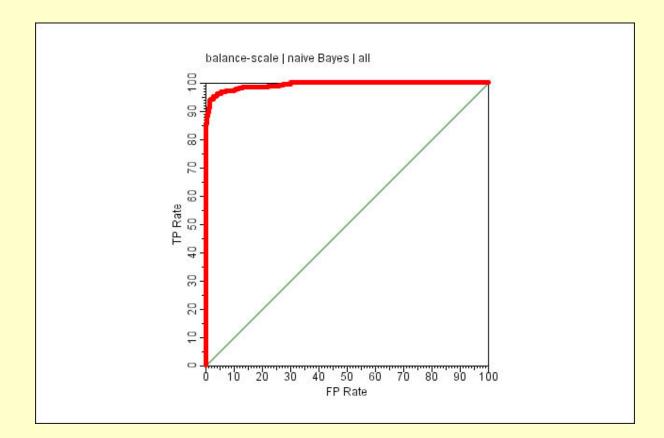
Contingency matrix

$TPR = \frac{\#TP}{\#P} = \frac{\#TP}{\#TP + \#FN}$			Predicted	
$FPR = \frac{\#FP}{\#N} = \frac{\#FP}{\#FP + \#TN}$			Positive	Negative
	True	Positive	#TP	#FN
		Negative	#FP	#TN

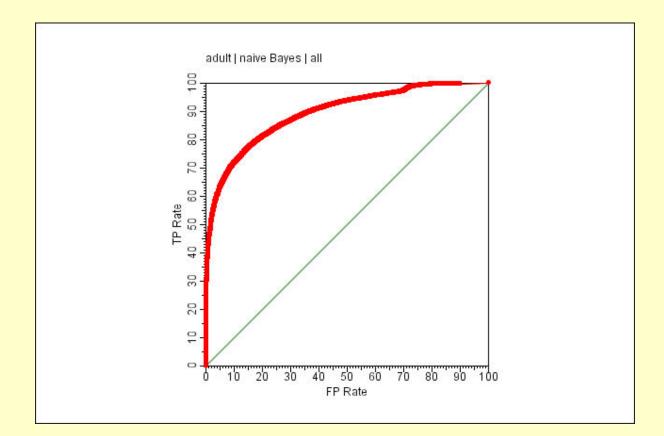
1

ROC (Receiver Operating Characteristics) curves

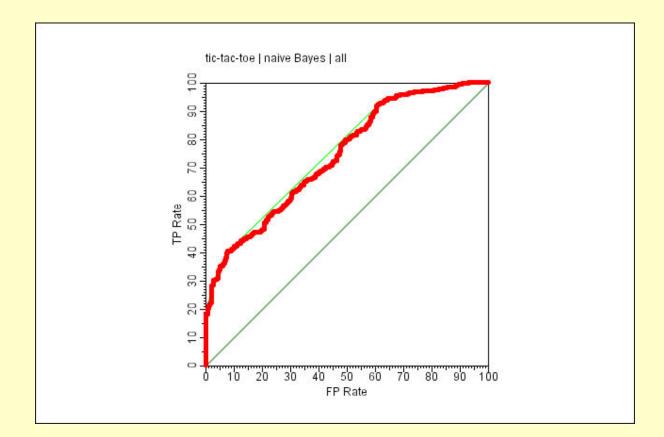
- TPR against FPR
- Classifier = point on the ROC graph
- Distribution-independent
- Ideal = <0, 1> (dominance: North-West)
- Linear interpolation: performance of a point *between* two classifiers
- Convex hull: non-dominated classifiers and interpolation between them
- Trivial=<0,0>, or <1,1> or <x,x>



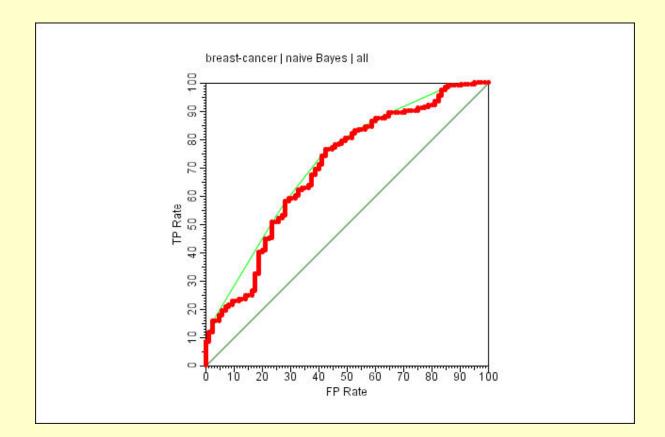
- Good separation between classes, convex curve



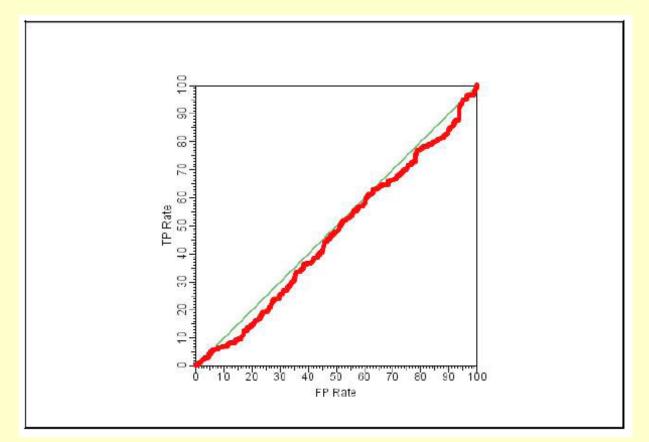
- Reasonable separation, mostly convex



- Fairly poor separation, mostly convex



- Poor separation, large and small concavities



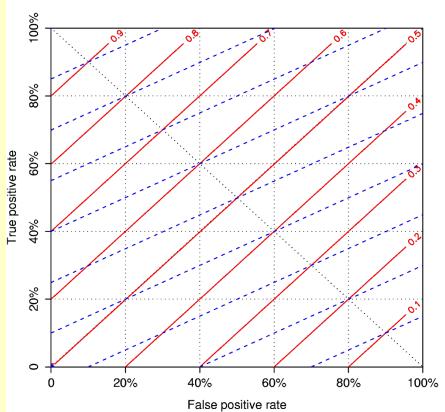
Random performance

Producing ROC curves

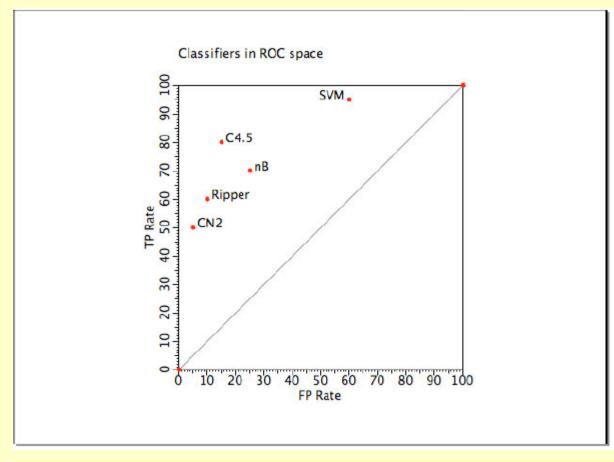
- With a threshold:
 - prediction is numerical real-valued, decision is binary: positive > θ
 - Bayesian classifier $P(data|+)/P(data|-)>\theta$
- Multiple classifiers from one algorithm
 - trained at different class ratios
 - using different misclassification costs
- The convex hull of different classifiers
 - trained on a single data set (fixed class ratio)

Iso-accuracy lines

- Red/Blue lines
 - Classifiers with the same accuracy
 - But at different distributions (pos/neg ratio)
- Intersection with diagonal tpr =1- fpr
- acc=(pos*tpr+neg*(1-fpr))/n
- acc=(pos*tpr+neg*tpr)/n
- acc/(pos+neg)/n = tpr
- acc = tpr

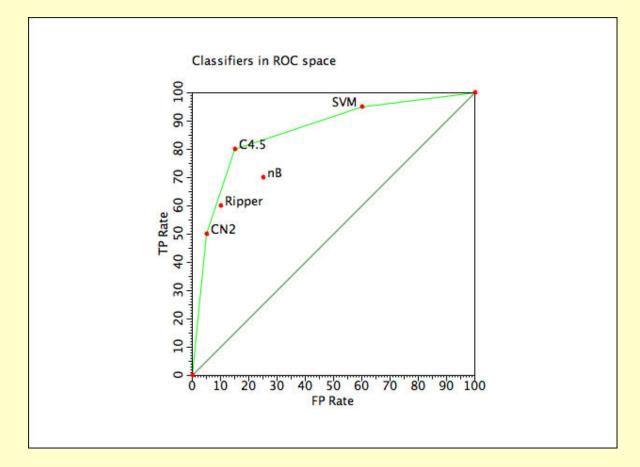


Comparing Learning Algorithms



Source: Peter Flach's tutorial on ROC curves, ICML 2004

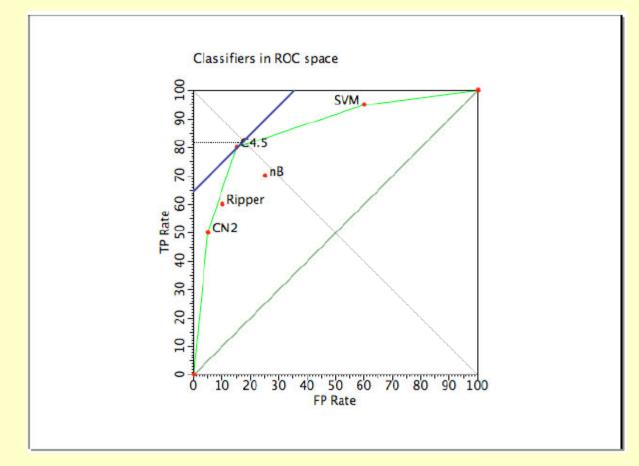
The Convex Hull



Classifiers on convex hull are optimal

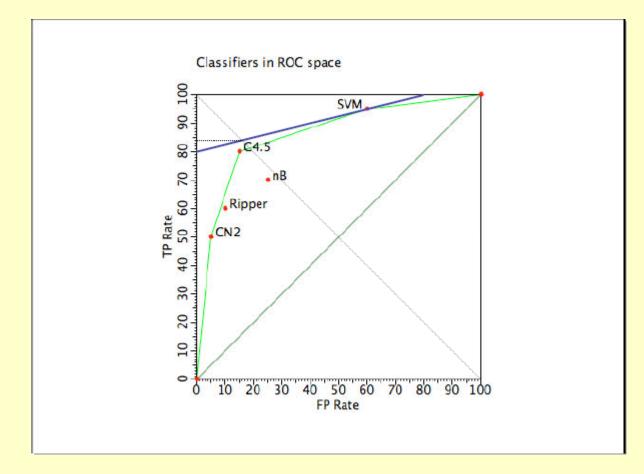
Source: Peter Flach's tutorial on ROC curves, ICML 2004

Choosing the Best



For uniform class distribution, C4.5 is optimal and achieves about 82% accuracy Source: Peter Flach's tutorial on ROC curves, ICML 2004

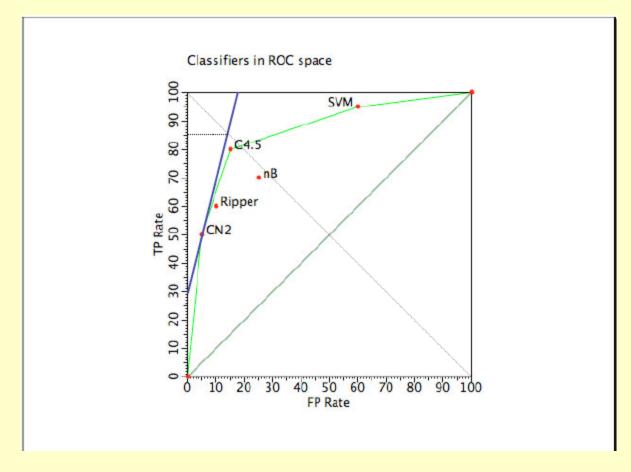
Choosing the Best



With four times as many +ves as –ves, SVM is optimal and achieves about 84% accuracy

Source: Peter Flach's tutorial on ROC curves, ICML 2004

Choosing the Best



With four times as many –ves as +ves, CN2 is optimal and achieves about 86% accuracy

Source: Peter Flach's tutorial on ROC curves, ICML 2004

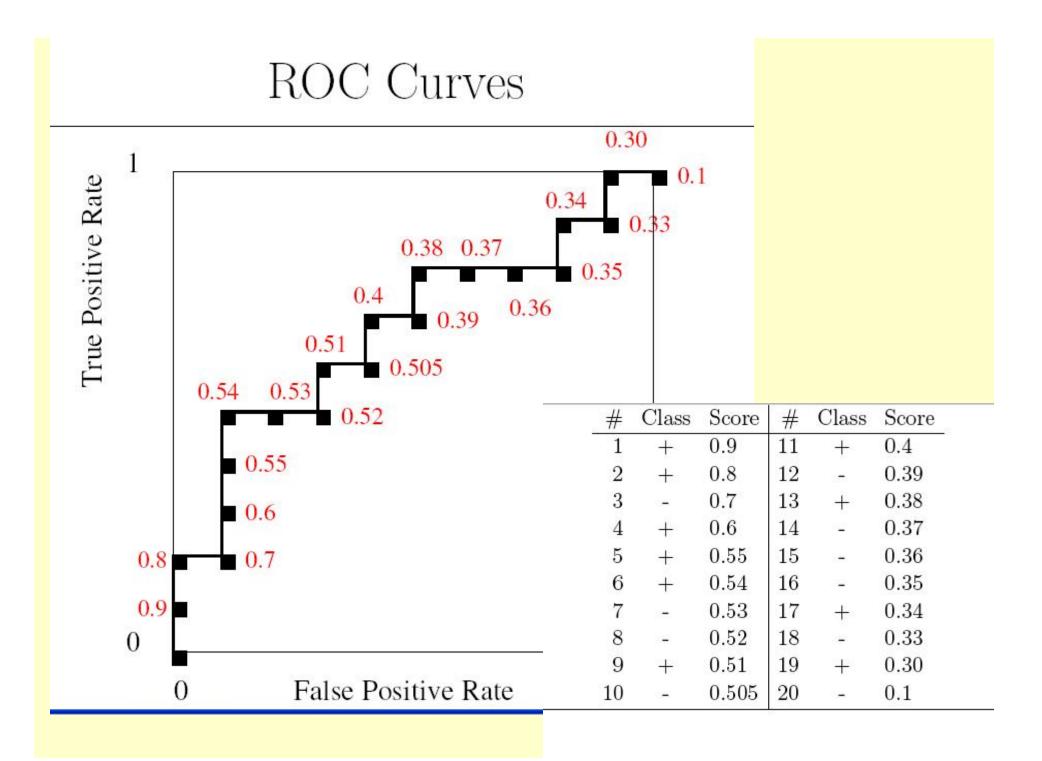
Rankers and classifiers

- A scoring classifier outputs scores f(x,+) and f(x,-) for each class
 - e.g. estimate class-conditional likelihoods P(x|+) and P(x|-)
 - scores don't need to be normalised
- f(x) = f(x,+)/f(x,-) can be used to rank instances from most to least likely positive

 e.g. likelihood ratio P(x|+)/P(x|-)
- Rankers can be turned into classifiers by setting a threshold on f(x)

Drawing ROC curves for rankers

- Naïve method:
 - consider all possible thresholds
 - in fact, only *k*+1 for *k* instances
 - construct contingency table for each threshold
 - plot in ROC space
- Practical method:
 - rank test instances on decreasing score f(x)
 - starting in (0,0), if the next instance in the ranking is +ve move 1/Pos up, if it is –ve move 1/Neg to the right
 - make diagonal move in case of ties



ROC curves for rankers

- Visualizes the quality of the ranker or probabilistic model on a test set,
 - without committing to a classification threshold
 - aggregates over all possible thresholds
- Curve slope indicates local class distribution
 - diagonal segment -> locally random behavior
- Concavities: locally worse than random behavior
 - convex hull corresponds to discretizing scores
 - can potentially do better: repairing concavities

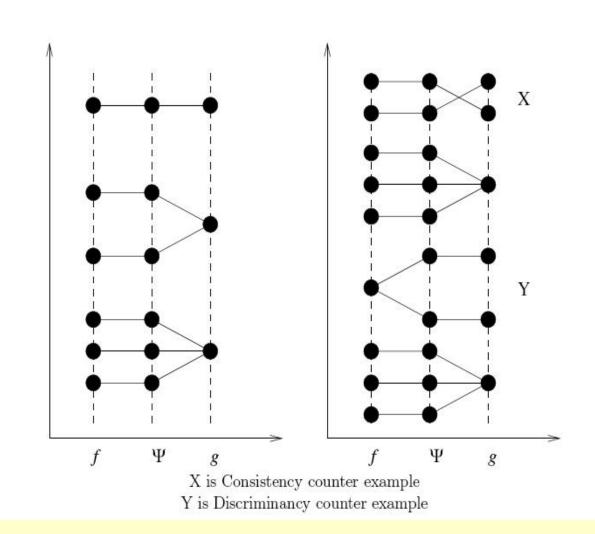
The AUC metric

- The Area Under ROC Curve (AUC) assesses the ranking in terms of separation of the classes
 - all the +ves before the –ves: AUC=1
 - random ordering: AUC=0.5
 - all the –ves before the +ves: AUC=0
- AUC for comparing learning algorithms

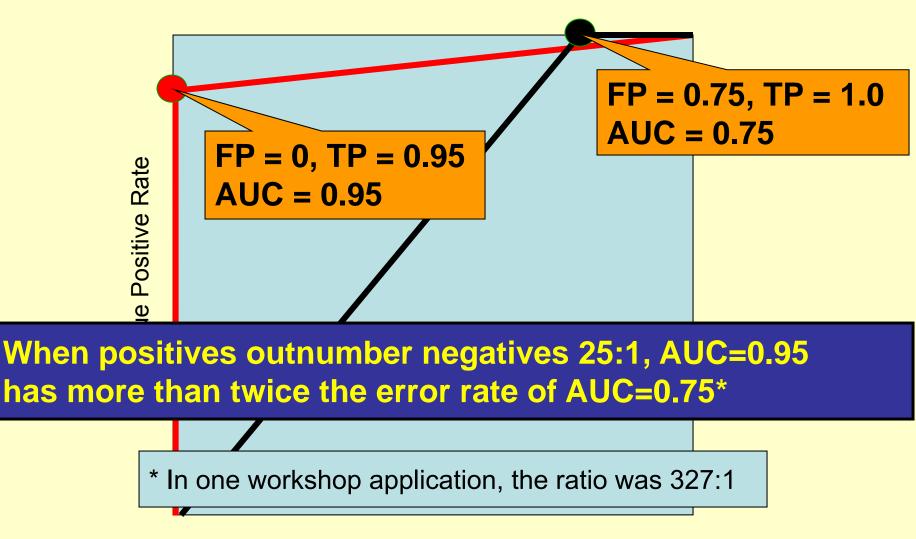
 a better measure than accuracy

AUC – why it's a good measure

- It is more discriminant than accuracy and consistent with it
- Like ROC, it is not sensitive to imbalance



Why sometimes it isn't

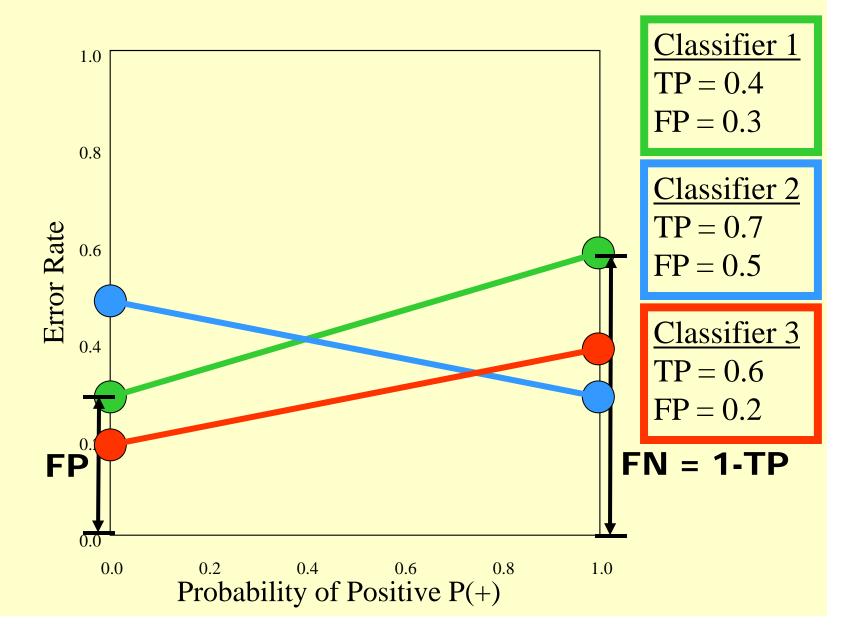


False Positive Rate

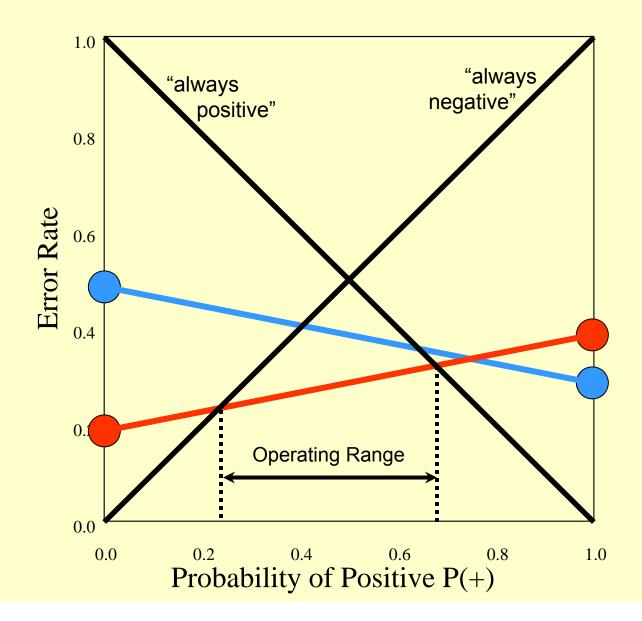
Single Values

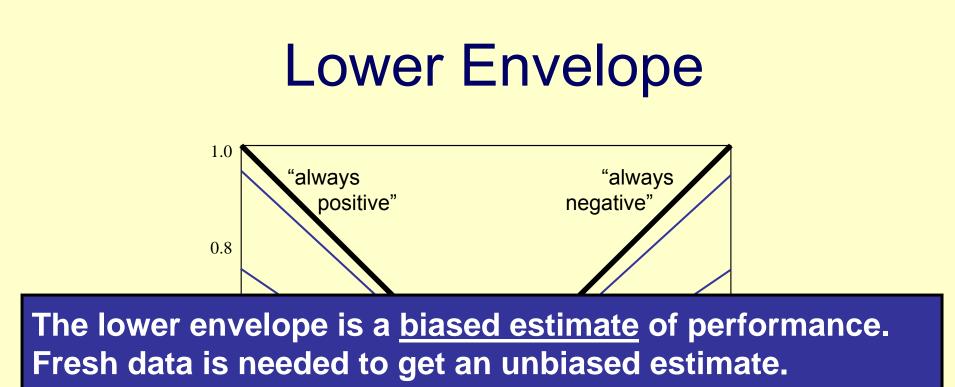
- Summarize performance
 - Easy to compare classifiers
- We know how to
 - average them,
 - compute confidence intervals,
 - test for significance, etc.
- But hide important differences

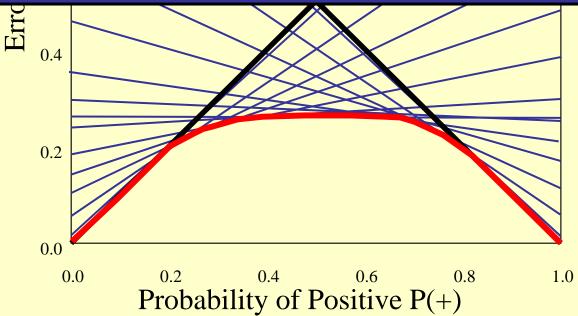
Cost Curves



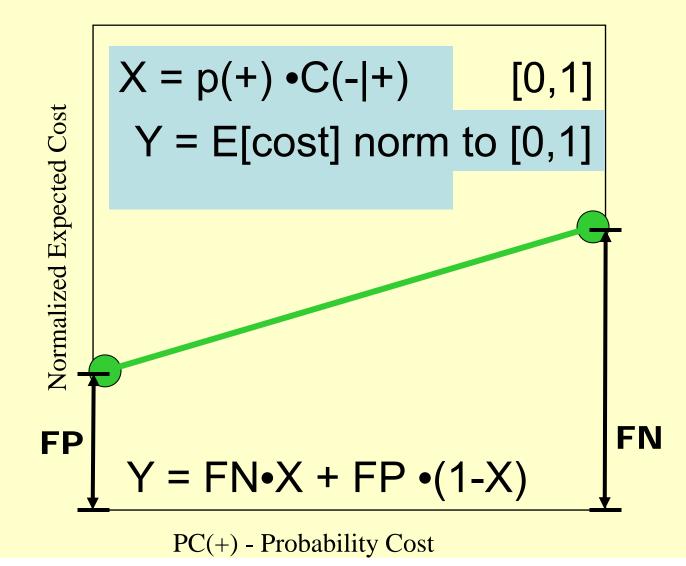
Operating Range



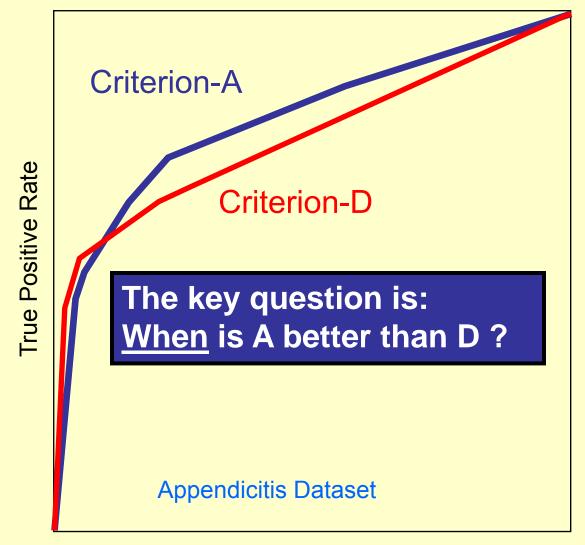




Taking Costs Into Account

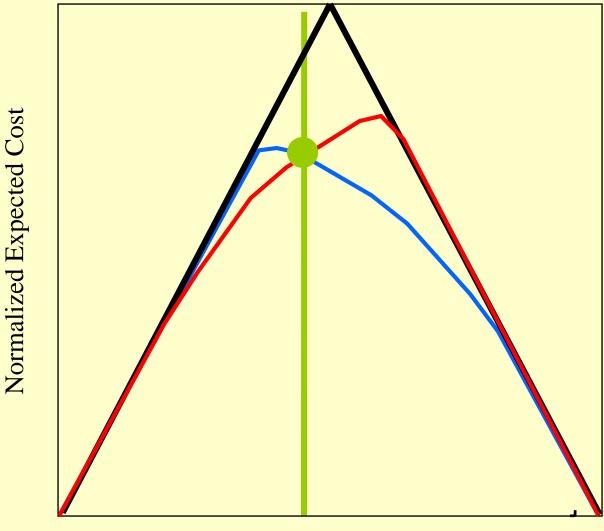


2 Splitting Criteria for C4.5



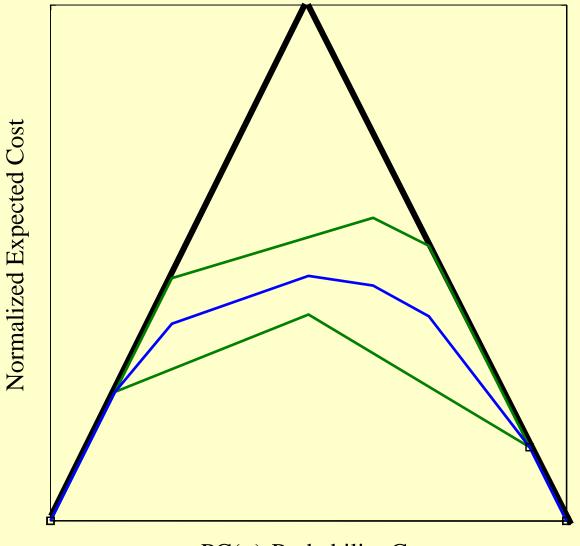
False Positive Rate

Comparing Cost Curves



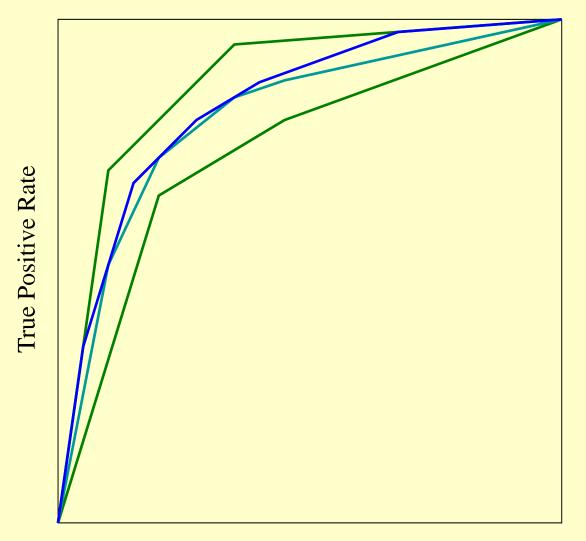
PC(+) - Probability Cost

Averaging Cost Curves



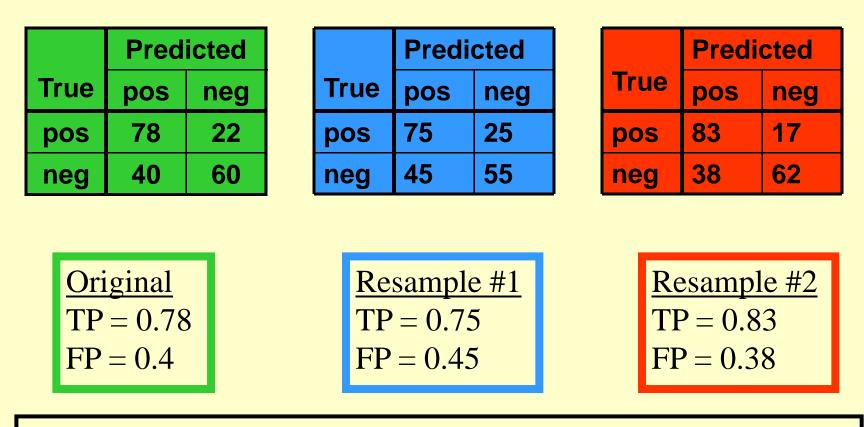
PC(+)-Probability Cost

Averaging ROC Curves



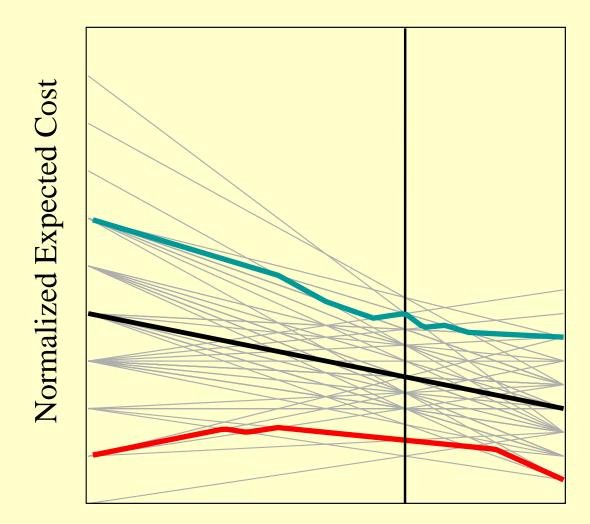
False Positive Rate

Confidence Intervals



Resample confusion matrix 10000 times and take 95% envelope

Confidence Interval Example



PC(+) - Probability Cost

Paired Resampling to Test Statistical Significance

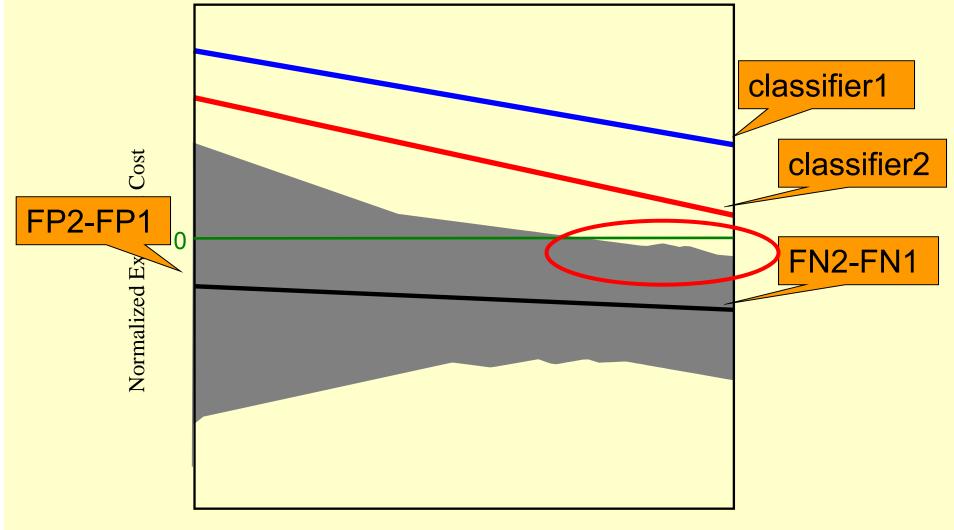
For the 100 test examples in the <u>negative</u> class:

Predicted by	Predicted by Classifier2		
Classifier1	pos	neg	
pos	30	10	
neg	0	60	

FP for classifier1: (30+10)/100 = 0.40FP for classifier2: (30+0)/100 = 0.30FP2 - FP1 = -0.10

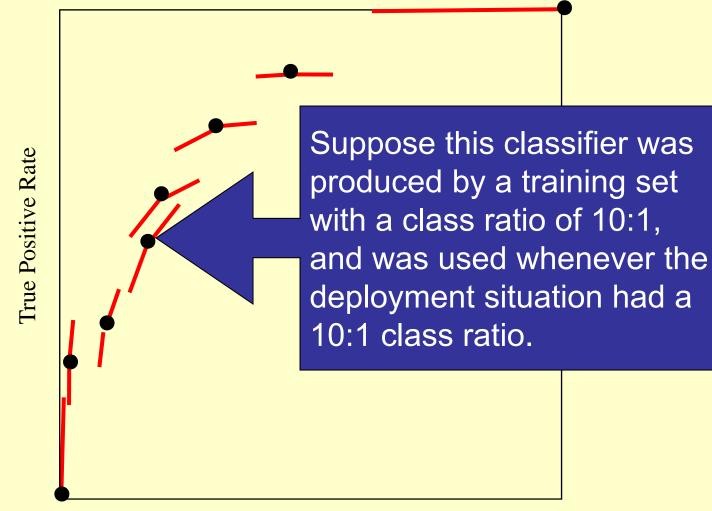
Resample this matrix 10000 times to get (FP2-FP1) values. Do the same for the matrix based on positive test examples. Plot and take 95% envelope as before.

Low correlation = Low significance



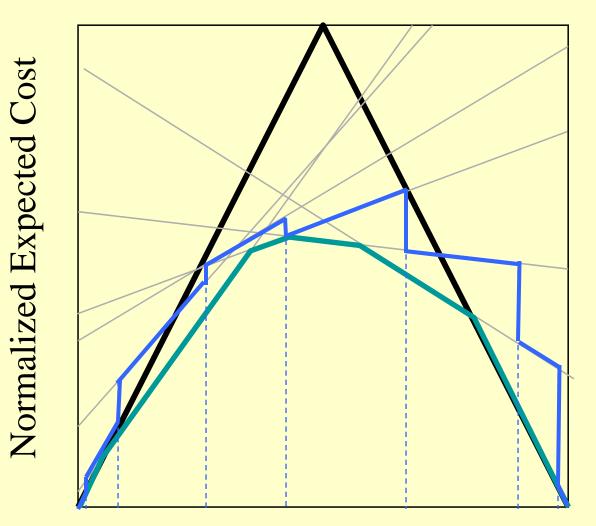
PC(+) - Probability Cost

ROC, Selection procedure



False Positive Rate

Cost Curves, Selection Procedure



PC(+) - Probability Cost

A Personal Opinion: You Decide

- ROC curves
 - Show the inherent trade-off between TPR/FPR
- AUC
 - Is better than accuracy
 - But does not show <u>when</u> one classifier is better than another.
- Cost curves enable easy visualization of
 - Average performance (expected cost)
 - Operating range
 - Confidence intervals on performance
 - Difference in performance and its significance.