
IBL and clustering

• Distance based methods
• IBL and kNN
• Clustering

– Distance based and hierarchical
– Probability-based
– Expectation Maximization (EM)



Relationship of IBL with CBR

• + uses previously processed cases to do 
problem solving on new cases

• - CBR modifies cases and uses parts of 
cases in problem solving

• - CBR focuses on indexing and retrieval



IBL – training and testing



• uniform distribution
• ea predicted concept boundary is halfway 

between a pair of adjacent pos and neg 
examples





similarity(x, y) =sqrt(f(xi, yi)),
f(xi, yi) = (xi - yi)**2 for numeric attrs, (xyi) for 

symbolic attrs.
Witten discusses extensions dealing with 

memory savings (only keep for testing 
instances that are misclassified during 
“training”), noise robustness.



Running time is a major problem with IB 
methods: the simple approach requires 
computing O(N)  distances to classify an 
instance, N = size of the training set

A much more efficient approach involves a 
smart data structure known as kD-trees 
and ball trees (Witten 4.7). With kD trees, 
finding nearest neighbours costs O(logN)



Clustering 

• Unsupervised learning task; data has no labels
• The task is to find “natural groupings” in data
• Practically important, often the first step in 

exploratory data analysis
• Comes in different variants:

– “Exclusive” clusters
– “Shared” clusters
– Probabilistic cluster membership



Clustering – k means

1. Define k- the number of clusters
2. Choose k points randomly as cluster centres
3. For any instance, assign it to the cluster whose 

centre is the closest
4. If no cluster gets modified, STOP
5. Make centroids (“instances” created by taking 

means of all instances in the cluster) new 
clusters

6. go to 3
iterative relocation











• When k-means terminates, the sum of all 
distances of points to their cluster centres 
is minimal

• This is only local, i.e. depends on the initial 
choice of k

• Efficiency problem - #iterations*k*N
• kD trees can be used to improve efficiency
• k-medoids vs k-means



Sensitivity to outliers

• Example: {1, 2, 3, 8, 9, 10, 25}
• Clustering {1, 2, 3}, {8, 9, 10, 25} vs 

clustering {1, 2, 3, 8}, {9, 10, 25}



• How to choose k?
• x-val on the minimum distance: expensive
• Iterative on k; create 2 clusters, split recursively. 

“freeze” the initial 2-clustering
• When to stop splitting? Pitfall of a non-solution 

with 1-instance clusters; remedy – MDL-based 
splitting crietrion:
– if (info. required to represent 2 new cluster centres 

and instances wrt these centres) >  (info required to 
represent 1 original cluster centre and instances wrt 
that centre) then don’t split else split



k-medoids clustering

• Instead of the mean as the cluster centre, 
use an instance

• More robust and less sensitive to outliers



Hierarchical clustering

• Grouping instances into a hierarchy (itself 
not given)

• Agglomerative clustering (bottom-up) and 
divisive clustering (top-down)



Hierarchical clustering –
example



Evaluation of clustering

• Difficult task
• Intrinsic measures exist
• Often done on classification datasets, 

which is a bit of a miss
• Human comprehensibility of clusters a 

valuable part of evaluation



Probabilistic clustering

• Finite mixture model
• Set of k probability distributions represents 

k clusters: each distribution determines the 
probability that an instance x would have a 
certain set of attribute values if it was 
known that x belongs to this cluster

• There is also a probability distribution that 
reflects the relative population sizes of 
each cluster



Finite mixture problem

• Given set of instances without knowing 
which gaussian generated which 
imnstance, determine A, A, pA, B, B (pB
= 1 – pA)



Mixed model cont’d

• Had we known from which distribution (A or B) 
a instance comes from, we could easily 
compute the two , , and p

• If we knew the five parametrs, we would assign 
a new x to cluster A if

• where

( , , )Pr[ | ] 1
Pr[ | ] ( , , )

A A

B B

f xA x
B x f x

 
 

 

2

2
( )

21( , , )
2

x

f x e

 









The EM algorithm
• Since we do not know any of the five 

parameters, we estimate and maximize:
– Start with a random assignment of the 5
– Compute cluster probabilities for each instance 

(“expected” cluster assignments)
– Use these cluster assignments to compute the 5 

parameters (“maximize” the likelihood of the 
distribution given the data)

• Note that the same algorithm, with label 
assignment instead of cluster assignment, can 
be used to assign labels to unlabeled data 
generated by a mixture model!



EM cont’d
• But when to stop?
• Essentially, when the learning curve flattens. 

Specifically, when the overall probability that the data 
comes from this model

(where the cluster probabilities are given by the f(x,,) 
starts to yield very small differences in a number of 
consecutive iterations

• in practice EM works with log-likelihoods to avoid 
multiplications 
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EM cont’d

• The framework is extended to mixtures of  k 
gaussians (two-class to k-class, but k must be 
known)

• The framework is further easily extended to 
multiple attributes, under the assumption of 
independence of attributes…

• …and further extended with dropping the 
independence assumption and replacing the 
standard deviation by the covariance matrix



EM cont’d
• Parameters: for n independent attributes, 2n 

parameters; for covariant attributes, n+n(n+1)/2 
parameters: n means and the symmetric nxn 
covariance matrix

• For (independent) nominal attributes, EM is like 
Naïve Bayes: instead of normal distribution, kv 
parameters per attribute are estimated, where v
is the number of values of the attribute:
– Expectation: determine the cluster (like the class in 

NB)
– Maximization: like estimating NB priors (attribute-

value probabilities) from data


