
1R and tree stumps
• Extremely simple learning methods that

– Are always worth trying 
– Tell simple from real problems
– Are used as components in some more 

complex learning algorithms
• 1R (one-attribute rule)

For each attribute,
  For each value of that attribute, make a rule as follows:
    count how often each class appears
    find the most frequent class
    make the rule assign that class to this attribute-value.
  Calculate the error rate of the rules.
Choose the rules with the smallest error rate.



Tree stumps: can work as 1R



Feature Selection [sec. 7.1 in Witten, Frank]

• Attribute-vector representation: coordinates of the vector are 
referred to as attributes or features

• ‘curse of dimensionality’ – learning is search, and the search space 
increases drastically with the number of attributes

• Theoretical justification: We know from PAC theorems that this 
increase is exponential – [discuss]

• Practical justification: with divide-and-conquer algorithms the 
partition sizes decrease and at some point irrelevant attributes may 
be selected 

• The task: find a subset of the original attribute set such that the 
classifier will perform at least as well on this subset as on the 
original set of attributes



three main approaches

• Manually: often unfeasible
• Filters: use the data alone, independent of 

the classifier that will be used on this data 
(aka scheme-independent selection)

• Wrappers: the FS process is wrapped in 
the classifier that will be used on the data



Filters - discussion

• Find the smallest attribute set in which all 
the instances are distinct. Problem: cost if 
exhaustive search used

• But learning and FS are related: in a way, 
the classifier already includes the ‘good’ 
(separating) attributes. Hence the idea:

• Use one classifier for FS, then another on 
the results. E.g. use a DT, and pass the 
data on to NB. Or use 1R for DT. 



Filters cont’d: RELIEF [Kira, Rendell]

1. Initialize weight of all attrs to 0
2. Sample instances and check the similar ones. 
3. Determine pairs which are in the same class (near hits) and in 

different classes (near misses). 
4. For each hit, identify attributes with different values. Decrease their 

weight
5. For each miss, attributes with different values have their weight 

increased. 
6. Repeat the sample selection and weighing (2-5) many times
7. Keep only the attrs with positive weight 
Discussion: high variance unless the # of samples very high
Deterministic RELIEF: use all instances and all hits and misses



A different approach
• View attribute selection as a search in the space 

of all attributes
• Search needs to be driven by some heuristic 

(evaluation criterion)
• This could be some measure of the 

discrimination ability of the result of search, or
• Cross-validation, on the part of the training set 

put aside for that purpose. This means that the 
classifier is wrapped in the FS process, hence 
the name wrapper (scheme-specific selection)



Greedy search example
• A single attribute is added (forward) or deleted (backward)
• Could also be done as best-first search or beam search, or some 

randomized (e.g. genetic) search



Wrappers 
• Computationally expensive (k-fold xval at each 

search step)
• backward selection often yields better accuracy 

– x-val is just an optimistic estimation that may stop the 
search prematurely –

– in backward mode attr sets will be larger than optimal 
– Forward mode may result in better comprehensibility

• Experimentally FS does particularly well with NB 
on data on which NB does not do well
– NB is sensitive to redundant and dependent  (!) 

attributes
– Forward selection with training set performance does 

well [Langley and Sage 94]



Discretization 
• Getting away from numerical attrs
• We know it from DTs, where numerical attributes were 

sorted and splitting points between each two values 
were considered

• Global (independent of the classifier; eg. 1R in ch. 4 of 
Witten) and local (different results in ea tree node) 
schemes exist

• What is the result of discretization: a value of an nominal 
attribute

• Even if the learner cannot use the order info, this 
information could still be conveyed: a discretized 
attribute with k values is converted into k-1 binary 
attributes – for the i-th value of the discretized attr. 
encountered in the data, the first i-1 attributes := true, 
remaining := false

• Supervised and unsupervised discretization



• Fixed –length intervals (equal interval 
binning): eg (max-min)/k
– How do we know k?
– May distribute instances unevenly

• Variable-length intervals, ea containing 
the same number of instances (equal 
frequency binning, or histogram 
equalization)

Unsupervised discretization



Supervised discretization 
Example of Temperature attribute in the play/don’t 

play data
• A recursive algorithm using information measure/ 

We go for the cut point with lowest information 
(cleanest subset)

entropy



Supervised discretization cont’d
• What’s the right stopping criterion?
• How about MDL? Compare the info to transmit the 

label of ea instance before the split, with the info to 
transmit the split point = log2(N-1) bits, + label info for 
points below and info for points above; N is the 
number of instances.

• Ea. instance costs 1 bit before the split (what is its 
class), and slightly > 0 bits after a good split

• Split is useful if the info. gain for the split exceeds a 
value v(N,k,entropy of E, of E1 and E2, k1, k2) (see p. 
301 in Witten). This is the Irani, Fayyad 93 method



Principal component analysis
(an attribute engineering technique)
• Sometimes, the existing attributes 

(“coordinates, axis”) do not separate well 
into classes:

Basic idea: detect the direction 
of the largest variance in the data,
build an axis in that.
Build the other axis as orthogonal
to the first axis



• But how to generalize in multiple dimensions 
(more than 2 attributes?)

•

• Use covariance matrix of the original attributes. 
In fact, if we normalize the data by subtracting 
the mean, we have data with the mean average, 
then the covariance matrix CX = 1/n XXT

PCA cont’d
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PCA cont’d

• Find the [unit] eigenvectors (vectors that 
are left unchanged when multiplied by the 
covariance matrix) and eigenvalues 
(multiplier factors)

• Eigenvectors with largest eigenvalues are 
the principal component



PCA cont’d

• Algebraically, why the eigenvalues of 
covariance:

• we transform linearly the original data into 
the data expressed in terms of new axes 
by matrix multiplication:

• Y = PX where X is the original data, Y is 
the newly represented data

• such that CY = 1/nYYT is a diagonal matrix 
with eigenvalues as elements



PCA cont’d

• But CY = 1/nYYT = 
1/n(PX)(PX)T=P(1/nXXT)PT=PCXPT

• So we need to find eigenvalues of the 
covariance matrix to identify principal 
components


