Ensembles of learners

- not a learning technique on its own, but a method in which a family of [“weakly”] learning agents (simple learners) is used for learning
- based on the fact that multiple classifiers that disagree with one another can be together more accurate than its component classifiers
- if there are L classifiers, each with an error rate < 1/2, and the errors are independent, then the prob. that the majority vote is wrong is the area under binomial distribution for more than L/2 hypotheses
Figure 1. The Probability That Exactly ℓ (of 21) Hypotheses Will Make an Error, Assuming Each Hypothesis Has an Error Rate of 0.3 and Makes Its Errors Independently of the Other Hypotheses.
Boosting - idea

From “Elements of Statistical learning”, Hastie, Tibshirani, Friedman [HTF]
Boosting as ensemble of learners

- The very idea: focus on ‘difficult’ parts of the example space
- Train a number of classifiers
- Combine their decision in a weighed manner
Boosting - illustration

- S – training set of size m; h_i are weak hypotheses, i.e. only ε better than chance (50%) on the training set.
- Learn h_1 on a subset S_1 of size $m_1 < m$.
- Learn h_2 on a subset S_2 of size m_2 chosen from $S-S_1$; at least half of the examples of S_2 are misclassified by h_1.
- Learn h on m_3 examples from $S-S_1-S_2$ for which h_1 and h_2 disagree.
- Final hypothesis $h=\text{majority-vote}(h_1,h_2,h_3)$.
• On the left, S and the subset S_1 (circled instances)
• On the right, S_1 and h_1
• On the left, $S-S1$ and $h1$
• On the right, subset $S2$ (circled instances) of $S-S1$ most informative for $h1$;
• On the left, S_2 and a separating hyperplane h_2
• In the middle, set $S_3 = S - S_1 - S_2$ and hypothesis h_3 learned on S_3;
• On the right, S and $h = the$ combination of the 3 hypotheses h_1, h_2, h_3
• We could recursively iterate with 9, 27, … subsets
• instead we will smooth that recursion by replacing a discrete “characteristic” function of a subset (values 0 or 1) with a distribution on the whole training set.
• Boosting: the sample is drawn according to a distribution, and that distribution emphasizes the examples misclassified in the previous iteration. Then a vote is taken.

• All that’s needed is a weak learner “Learn” (error = 0.5 – ε)

• Learn has to take into account the weights of examples, given to it in the form of a distribution
Input: a set S, of m labeled examples: $S = \{(x_i, y_i), i = 1, 2, \ldots, m\}$, labels $y_i \in Y = \{1, \ldots, K\}$
Learn (a learning algorithm)
a constant L.

[1] initialize for all i: $w_1(i) := 1/m$ \hspace{1cm} initialize the weights
[2] for $\ell = 1$ to L do
[3] \hspace{.5cm} for all i: $p_\ell(i) := w_\ell(i)/(\sum_i w_\ell(i))$ \hspace{1cm} compute normalized weights
[4] \hspace{.5cm} $h_\ell := \text{Learn}(p_\ell)$ \hspace{1cm} call Learn with normalized weights.
[5] \hspace{.5cm} $\epsilon_\ell := \sum_i p_\ell(i)[h_\ell(x_i) \neq y_i]$ \hspace{1cm} calculate the error of h_ℓ
[6] \hspace{.5cm} if $\epsilon_\ell > 1/2$ then
[7] \hspace{1cm} \hspace{.5cm} $L := \ell - 1$
[8] \hspace{1cm} \hspace{.5cm} exit
[9] \hspace{.5cm} \hspace{.5cm} $\beta_\ell := \epsilon_\ell/(1 - \epsilon_\ell)$
[10] \hspace{.5cm} \hspace{.5cm} for all i: $w_{\ell+1}(i) := w_\ell(i)\beta_\ell^{-1}[h_\ell(x_i) \neq y_i]$ \hspace{1cm} compute new weights

Output: $h_f(x) = \arg\max_{y \in Y} \sum_{\ell=1}^L \left(\log \frac{1}{\beta_\ell} \right) [h_\ell(x) = y]$

Figure 2. The adaboost.m1 Algorithm.

The formula $[\lvert E \rvert]$ is 1 if E is true and 0 otherwise.
• Let’s make sure we understand the makeup of the final classifier:
• We apply the subsequent hypotheses with the learned coefficients and get a class prediction for each hypothesis \(h_\ell \), count the vote for each class, choose the winner
• AdaBoost (Adaptive Boosting) uses the probability distribution. Either the learning algorithm uses it directly, or the distribution is used to produce the sample.

Figure 3. Comparison of ADABOOST.M1 (applied to C4.5) with C4.5 by Itself.

Each point represents 1 of 27 test domains. Points lying above the diagonal line exhibit lower error with ADABOOST.M1 than with C4.5 alone. Based on data from Freund and Schapire (1996). As many as 100 hypotheses were constructed.
Bagging

• [Breiman] is to learn multiple hypotheses from different subset of the training set, and then take majority vote.
• In fact, it is a general procedure to estimate a property of the training set
• The idea:
 – Sample N times (N~10**2) from the training set
 – Each sample is drawn randomly with replacement (a bootstrap). Each bootstrap contains, on avg., 63.2% of the training set (see [HTB] for explanation as to why 0.632
 – Learn a classifier on each sample
 – Make the classifiers vote
Bagging – example

- Data: 30 instances, 2 classes, 5 features w/Gaussian distr. with pairwise correlation 0.95
- Class generated according to \(\text{Pr}(Y=1|x_1\leq0.5)=0.2, \) \(\text{Pr}(Y=1|x_1>0.5)=0.8. \) NB error = 0.2
- Test set of size 2000 from the same population
- Classifier built on the training and on each of 200 bootstraps; no pruning
- Predicted class indicated inside each node; misclassification and node size under each node
- Notice how the trees are different:
 - Different splitting features
 - Different cutpoints
- High variance (small change in data results in very different trees)

Figure 8.9. Bagging trees on simulated dataset. Top left panel shows original tree. Five trees grown on bootstrap samples are shown.
Results

- Green line = test error from majority vote
- Bagging reduces high variance of individual trees and so improves performance on test set
Random Forests (from Zhuowen Tu, UCLA)

- Random forests (RF) are a combination of tree predictors.
- Each tree depends on the values of a random vector sampled independently.
- The generalization error depends on the strength of the individual trees and the correlation between them.
- Using a random selection of features yields results favorable to AdaBoost, and are more robust w.r.t. noise.
The Random Forest Algorithm

Given a training set S

For $i = 1$ to k do:

 Build subset S_i by sampling with replacement from S

 Learn tree T_i from S_i

 At each node:

 Choose best split from random subset of F features

 Each tree grows to the largest depth, and no pruning

Make predictions according to majority vote of the set of k trees.

from Zhuowen Tu, UCLA
Features of Random Forests

• It is unexcelled in accuracy among current algorithms.
• It runs efficiently on large data bases.
• It can handle thousands of input variables without variable deletion.
• It gives estimates of what variables are important in the classification.
• It generates an internal unbiased estimate of the generalization error as the forest building progresses.
• It has an effective method for estimating missing data and maintains accuracy when a large proportion of the data are missing.
• It has methods for balancing error in unbalanced data sets.

from Zhuowen Tu, UCLA
Compared with Boosting

Pros:
- It is more robust.
- It is faster to train (no reweighting, each split is on a small subset of data and feature).
- Can handle missing/partial data.
- Is easier to extend to online version.

Cons:
- The feature selection process is not explicit.
- Feature fusion is also less obvious.
- Has weaker performance on small size training data.

from Zhuowen Tu, UCLA
Appendix 1
Visualizing Bagging and AdaBoost (2-dimensional, 2-class example)
Appendix 1
Decision boundary of a single tree
Appendix 1
100 bagged trees leads to smoother boundary
Appendix 1

AdaBoost, after one iteration (CART splits, larger points have great weight)
Appendix 1
After 3 iterations of AdaBoost

From From Trees to Forests and Rule Sets - A Unified Overview of Ensemble Methods
Giovanni Seni, Santa Clara University
John Elder, Elder Research, Inc.
Appendix 1
After 20 iterations of AdaBoost
Appendix 1
Decision boundary after 100 iterations of AdaBoost
Other ensemble topics - Stacking

- Ensemble learns a set of models C_1, \ldots, C_n collect the output of each model on a new instance into a new set of data. For each instance x in the original training set, this data set represents every model's prediction of that instance's class (x-val'ed) with its true classification.

- This is a new learning problem: $C_1(x), \ldots C_n(x), C(x)$.
Other ensemble topics-
Random trees

- Random decision tree algorithm constructs multiple decision trees randomly.
- The algorithm picks a "remaining" feature randomly at each node expansion without any purity function check. Categorical feature used only once in a path. Each time the continuous feature is chosen, a random threshold is selected.

Wei Fan, IBM,
http://www.weifan.info/software.htm#Random%20DecisionTree
• Each node splits the data. A node becomes empty or there are no more examples to split in the current node, or the depth of tree exceeds some limits.

• Each node of the tree records class distributions. A node expansion is unnecessary, if none of its descendents have significantly different class distribution from this node.

• Classification is always done at the leaf node level. Each tree outputs a class probability distribution. The class distribution outputs from multiple trees are averaged as the final class distribution output.
Error-correcting Output Codes (ECOC)

- Method of combining classifiers from a two-class problem to a k-class problem
- Often when working with a k-class problem k one-against-all classifiers are learned, and then combined using ECOC
- Consider a 4-class problem, and suppose that there are 7 classifiers, and classes are coded as follows:
• Suppose an instance \(\epsilon a \) is classified as 1011111 (mistake in the 2\(^{nd}\) classifier).

• But the this classification is the closest to class a in terms of edit distance (Hamming dist. are 1, 3, 3, 5, for classes a, b, c, d). Also note that class encodings in col. 1 are not error correcting (any string other than 4 given has same distance to two classifiers)

<table>
<thead>
<tr>
<th>class</th>
<th>class encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>1111111</td>
</tr>
<tr>
<td>b</td>
<td>0100</td>
</tr>
<tr>
<td></td>
<td>0000111</td>
</tr>
<tr>
<td>c</td>
<td>0010</td>
</tr>
<tr>
<td></td>
<td>0011001</td>
</tr>
<tr>
<td>d</td>
<td>0001</td>
</tr>
<tr>
<td></td>
<td>0101010</td>
</tr>
</tbody>
</table>
ECOC cont’d

• What makes an encoding error-correcting?
• Depends on the distance between encodings: an encoding with distance d between encodings may correct up to $(d-1)/2$ errors (why?)
• In col. 1, $d=2$, so this encoding may correct 0 errors
• In col. 2, $d=4$, so single-bit errors will be corrected
• This example describes row separation; there must also be column separation (=1 in col. 2); otherwise two classifiers would make identical errors; this weakens error correction
ECOC cont’d

• For a small number of classes, exhaustive codes (all combinations of classifiers’ outputs without complements, all 0s and all 1s) as in col. 2 are used
• See the [Dietterich, Bakiri 95] paper on how to design good error-correcting codes
• Gives good results in practice, eg with SVM, decision trees, backprop NNs
Ensembles - conclusion

• Some of the best methods in terms of performance (boosting of decision tree stamps, random forest)

• Can deal with large datasets, both in terms of # of instances and # of attributes

• Do not require setting parameters

• Although invented for binary problems, generalize to multiclass thru one-vs-all + ECOC
Transduction (aka semi-supervised learning)

• We have limited set of labeled data and a very large set of unlabeled data. Can the unlabeled examples be used to train a better classifier than from the labeled data alone?

• Games example
Co-training

• Proposed by Blum and Mitchell (1998)
 – Powerful idea rooted in cognitive science/pedagogy:
 – Train two learning algorithms with a labeled sample using two independent and sufficient views of features (“two students”).
 – Use each learning result to predict unlabeled examples and expand training set for the other (“students learn from each other”).
• Setting: $X = X_1 \times X_2$ – X_is are the views

• Views are sufficient: For an instance $x = (x_1, x_2)$ with label ℓ, we have $f_1(x_1) = f_2(x_2) = f(x) = \ell$

• Views are conditionally independent given the class: $p(x_1 \mid c) = p(x_2 \mid c)$
Two views in co-training

• Co-training assumption: two independent and sufficient views
• Example: the task of classification for CS faculty web pages
 – View 1: Page text. Words in home pages, such as research interests, teaching courses, etc.
 – View2: Hyperlink text. Words in hyperlinks that point to that page.
Related work

- (Balcan et. al. 2005) relaxed the assumption of two independent and sufficient views to an expansion of underlying data distribution.
- (Nigam & Ghani, 2000) showed dependent views may lead to successful co-training, but inferior to independent views.
- (Wang & Zhou, 2007) showed two arbitrary classifiers with large difference can be successful in co-training.
Illustration of co-training process
Co-training algorithm

Given:
\(L \): Set of labeled training examples
\(U \): set of unlabeled examples
\(V1, V2 \): two views on data
\(h1, h2 \): two classifiers trained on two views of \(L \)
\(u \): the number of unlabeled examples initially sampled into \(U' \) from \(U \)
\(p \): the number of positive examples labeled and selected by \(h1 \) or \(h2 \) from \(U' \)
\(n \): the number of negative examples labeled and selected by \(h1 \) or \(h2 \) from \(U' \)

Create a pool \(U' \) of examples by choosing \(u \) examples at random from \(U \)

while iteration number \(< k\) do
Use \(L \) to train two classifiers \(h1 \) and \(h2 \) from \(V1 \) and \(V2 \)
Use \(h1 \) to label all instances in \(U' \) and select \(p \) positive and \(n \) negative most confidently predicted instances from \(U' \)
Use \(h2 \) to label all instances in \(U' \) and select \(p \) positive and \(n \) negative most confidently predicted instances from \(U' \)
\(U' \leftarrow U' - \{2p + 2n \text{ examples selected by } h1 \text{ and } h2\} \)
\(L \leftarrow L + \{2p + 2n \text{ instances selected by } h1 \text{ and } h2\} \)
Randomly choose \(2p + 2n \) examples from \(U \) to replenish \(U' \)
endwhile
Co-training – discussion

• The assumption of independence of views
• Two scenarios for co-training:
 – As a classifier
 – As a labeler
Active learning

- The transductive setting
- The learner **chooses** the best unlabeled instances to be labeled
- The best performance: Query By Committee:
 - A committee of classifiers
 - Classify unlabeled instances
 - Choose the instances on which there is most disagreement among the committee
Sampling techniques in active learning

• Some sampling approaches in active learning to improve over random sampling
 – (Tong & Koller, 2000) used a sampling strategy by minimizing the version space.
 – (Freund et al., 1997) sampled unlabeled instances that member classifiers of a committee disagree most: QBC
 – (Saar-Tsechansky & Provost, 2001) sampled unlabeled instances according to variances of probability estimated by multiple models.
Can active learning sampling techniques be applied to co-training?

• The answer is “No”.
 – Co-training is a passive learning process.
 – Active learning usually selects most unconfidently predicted instances, which are very likely to be misclassified in co-training.

• We have to design new sampling method for co-training.