Ensembles of learners

e not alearning technique on its own, but a
method in which a family of [“weakly”] learning
agents (simple learners) is used for learning

* based on the fact that multiple classifiers that
disagree with one another can be together more
accurate than its component classifiers

 If there are L classifiers, each with an error rate <
1/2, and the errors are independent, then the
prob. that the majority vote is wrong is the area
under binomial distribution for more than L/2
hypotheses
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Figure 1. The Probability That Exactly ¢ (of 21) Hypotheses Will
Make an Error, Assuming Each Hypothesis Has an Error Rate of 0.3
and Makes Its Errors Independently of the Other Hypotheses.




Boosting - idea
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FIGURE 10.1. Schematic of AdaBoost. Classifiers are trained on weighted ver-
sions of the dataset, and then combined to produce a final prediction.

From “Elements of Statistical learning”, Hastie, Tibshirani,
Friedman [HTF]



Boosting as ensemble of
learners

 The very idea: focus on ‘difficult’ parts of
the example space

 Train a number of classifiers

« Combine their decision in a weighed
manner



Boosting - illustration

S — training set of size m; h; are weak
hypotheses, I.e. only ¢ better than chance (50%)
on the training set

Learn hl on a subset S1 of size ml1 <m

Learn h2 on a subset S2 of size m2 chosen from
S-S1,; at least half of the examples of S2 are
misclassified by hl

Learn h on m3 examples from S-S1-S2 for which
h1l and h2 disagree

Final hypothesis h=majority-vote(h1,h2,h3)



 On the left, S and the subset S1 (circled
Instances)

e On the right, S1 and hl



e On the left, S-S1 and hl

* On the right, subset S2 (circled instances)
of S-S1 most informative for hl;



 Onthe left, S2 and a separating hyperplane h2

e Inthe middle, set S3 = S-S1-S2 and hypothesis h3
learned on S3;

e Ontheright, S and h = the combination of the 3
hypotheses hl, h2, h3



 \WWe could recursively iterate with 9, 27, ...
subsets

 Instead we will smooth that recursion by
replacing a discrete “characteristic”
function of a subset (values O or 1) with a
distribution on the whole training set.



e Boosting: the sample Is drawn according
to a distribution, and that distribution
emphasizes the examples misclassified
In the previous iteration. Then a vote Is

taken.

e All that's needed Is a weak learner
“Learn” (error = 0.5 —¢)

e Learn has to take into account the
weights of examples, given to it in the
form of a distribution



Input: a set §, of m Jabeled examples: § = {(2,1:),i=1,2,...,m)},
labels g, € ¥V = {1,..., K}
Learn {a learning algorithm)

a constant L.
[1) initialize for all i: w, (i) :=1/m inthialize the weights
{2) for £ = 1to L do
[3] for all i: pe(s) := wel1)/ (Y, we(i)) compute normalized weights
[4] he := Learn(p:) cell Learn with normalized weights.
[5] € = E'. pelithe{z:) # wi] calculate the ervor af hy
[ if ¢ > 1/2 then
g - L:=£-1
(9] exit

[10] Be = et /{1 ~ ¢4)
[11] for all : weqy (f) := w;(i)ﬁ:'lh‘(")"”‘] compule new wesghts

Output: hs(z) = a.rgg,axz (log )[hc{t) y]
¥

Figure 2. The aDAR0OOST.M1 Algorithm,
The formula |[E]] is 1 if E is true and O otherwise.




e Let's make sure we understand the
makeup of the final classifier:

* We apply the subsequent hypotheses with
the learned coefficients and get a class
prediction for each hypothesis h,, count
the vote for each class, choose the winner



 AdaBoost (Adaptive Boosting) uses
the probability distribution. Either the
learning algorithm uses it directly, or
the distribution Is used to produce
the sample.

e See

for a demo.
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Figure 3. Comparison of ADABOOST.M1 (applied to c4.5) with ¢4.5 by Itself.

Each point represents 1 of 27 test domains. Points lying above the diagonal line
exhibit lower error with ApaBoost.M1 than with ¢4.5 alone. Based on data from
Freund and Schapire (1996). As many as 100 hypotheses were constructed.




Bagging

[Breiman] is to learn multiple hypotheses from different
subset of the training set, and then take majority vote.

In fact, it iIs a general procedure to estimate a property of
the training set

The idea:

— Sample N times (N~10**2) from the training set

— Each sample is drawn randomly with replacement (a bootstrap).
Each bootstrap contains, on avg., 63.2% of the training set (see
[HTB] for explanation as to why 0.632

— Learn a classifier on each sample
— Make the classifiers vote



Original Tree Bootstrap Tree
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FIGURE 8.9. Bagging trees on simulated dataset. Top left panel shows original
tree. Five trees grown on bootstrap samples are shown.

Bagging —
example

Data: 30 instances, 2 classes, 5
features w/Gaussian distr. with
pairwise correlation 0.95

Class generated according to
Pr(Y=1|x1<=0.5)=0.2,
Pr(Y=1[|x1>0.5)=0.8. NB error = 0.2
test set of size 2000 from the same
population
Classifier built on the training and
on each of 200 bootstraps; no
pruning
Predicted class indicated inside
each node; misclassification and
node size under each node
Notice how the trees are different:
— Different splitting features
— Different cutpoints

High variance (small change in
data results in very different trees)



Test Error
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» Bagging reduces
high variance of
iIndividual trees
and so improves
performance on
test set



Random Forests (fom zhuowen Tu, UCLA)

Random forests (RF) are a combination of tree predictors

Each tree depends on the values of a random vector
sampled independently

The generalization error depends on the strength of the
Individual trees and the correlation between them

Using a random selection of features yields results
favorable to AdaBoost, and are more robust w.r.t. noise



The Random Forest Algorithm

Given a training set S
For i=11to k do:
Build subset Si by sampling with replacement from S
Learn tree Ti from Si
At each node:
Choose best split from random subset of F features
Each tree grows to the largest depth, and no pruning

Make predictions according to majority vote of the set of k trees.

from Zhuowen Tu, UCLA



Features of Random Forests

It is unexcelled in accuracy among current algorithms.
It runs efficiently on large data bases.

It can handle thousands of input variables without variable
deletion.

It gives estimates of what variables are important in the
classification.

It generates an internal unbiased estimate of the
generalization error as the forest building progresses.

It has an effective method for estimating missing data and
maintains accuracy when a large proportion of the data
are missing.

It has methods for balancing error in unbalanced data
sets. from Zhuowen Tu, UCLA



... Compared with Boosting

e |tis more robust.

e |t is faster to train (no reweighting, each split is on a small
subset of data and feature).

« Can handle missing/partial data.

* |s easier to extend to online version.
cons:

* The feature selection process is not explicit.
o Feature fusion is also less obvious.

« Has weaker performance on small size training data.

from Zhuowen Tu, UCLA



From From Trees to Forests and Rule Sets
- A Unified Overview of Ensemble Methods
, Santa Clara University
, Elder Research, Inc.

Appendix 1

Visualizing Bagging and AdaBoost (2-dimensional, 2-class example)
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From From Trees to Forests and Rule Sets
- A Unified Overview of Ensemble Methods

Ap pendix 1 , Santa Clara University
. e _ . , Elder Research, Inc.
Decision boundary of a single tree
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From From Trees to Forests and Rule Sets
- A Unified Overview of Ensemble Methods
, Santa Clara University

App(}n di\ 1 , Elder Research, Inc.
100 bagged trees leads to smoother boundary
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From From Trees to Forests and Rule Sets
- A Unified Overview of Ensemble Methods
, Santa Clara University
, Elder Research, Inc.

Appendix 1

AdaBoost, after one iteration (CART splits, larger points have great weight)
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From From Trees to Forests and Rule Sets
- A Unified Overview of Ensemble Methods
, Santa Clara University

Appendix 1 , Elder Research, Inc.
After 3 iterations of AdaBoost
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From From Trees to Forests and Rule Sets
- A Unified Overview of Ensemble Methods

Appendix 1 , Santa Clara University
| " , Elder R h, Inc.
After 20 1terations of AdaBoost e Research, Ine
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From From Trees to Forests and Rule Sets
- A Unified Overview of Ensemble Methods
, Santa Clara University

IAppendlx 1 , Elder Research, Inc.
Decision boundary after 100 1terations of AdaBoost
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Other ensemble topics-
Stacking

— Ensemble learns a set of models C1,...,Cn
collect the output of each model on a new
Instance into a new set of data. For each
Instance X In the original training set, this data
set represents every model's prediction of that
Instance's class (x-val’ed) with its true
classification.

— This i1s a new learning problem: C1(x),...Cn(x),
C(X).



Other ensemble topics-
Random trees

« Random decision tree algorithm constructs
multiple decision trees randomly:.

 the algorithm picks a "remaining" feature
randomly at each node expansion without
any purity function check. Categorical
feature used only once in a path. Each
time the continuous feature is chosen, a
random threshold is selected.

Wei Fan, IBM,
http://www.weifan.info/software.htm#Random%?20DecisionTree



e Each node splits the data. A node becomes
empty or there are no more examples to split in
the current node, or the depth of tree exceeds
some limits.

« Each node of the tree records class distributions.
A node expansion is unnecessary, if none of its
descendents have significantly different class
distribution from this node.

o Classification is always done at the leaf node

level.

distri
multi
distri

Each tree outputs a class probabillity
pution. The class distribution outputs from
nle trees are averaged as the final class

pution output



Error-correcting Output Codes
(ECOC)

 Method of combining classifiers from a two-class
problem to a k-class problem

« Often when working with a k-class problem k one-
against-all classifiers are learned, and then
combined using ECOC

« Consider a 4-class problem, and suppose that
there are 7 classifiers, and classes are coded as
follows:



Suppose an instance €a is
classified as 1011111 (mistake in
the 2" classifier).

But the this classification is the
closest to class a in terms of edit
distance (Hamming dist. are 1, 3,
3, 5, for classes a, b, c, d). Also
note that class encodings in col.
1 are not error correcting (any
string other than 4 given has
same distance to two classifiers)

class class
encoding
a 1000 1111111
b 0100 0000111
c 0010 0011001
d 0001 0101010




ECOC cont'd

What makes an encoding error-correcting?

Depends on the distance between encodings: an encoding with distance d
between encodings may correct up to (d-1)/2 errors (why?)

In col. 1, d=2, so this encoding may correct O errors
In col. 2, d=4, so single-bit errors will be corrected

This example describes row separation; there must also be column
separation (=1 in col. 2); otherwise two classifiers would make identical
errors; this weakens error correction



ECOC cont'd

* For a small number of classes, exhaustive
codes (all combinations of classifiers’
outputs without complements, all Os and
all 1s) as in col. 2 are used

o See the [Dietterich, Bakiri 95] paper on
how to design good error-correcting codes

e Gives good results In practice, eg with
SVM, decision trees, backprop NNs



Ensembles - conclusion

Some of the best methods in terms of
performance (boosting of decision tree
stamps, random forest)

Can deal with large datasets, both in terms
of # of instances and # of attributes

Do not require setting parameters

Although invented for binary problems,
generalize to multiclass thru one-vs-all +
ECOC



Transduction (aka semi-supervised
learning)

 \WWe have limited set of labeled data and a
very large set of unlabeled data. Can the
unlabaled examples be used to train a

better classifier than from the labeled data
alone?

 Games example

EML-R. Heidelbera. 24 11 08
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Co-training
* Proposed by Blum and Mitchell (1998)

— Powerful idea rooted in cognitive
science/pedagogy:

— Train two learning algorithms with a labeled
sample using two independent and
sufficient views of features (“ two students”).

— Use each learning result to predict unlabeled
examples and expand training set for the
other (“students learn from each other”).



o Setting: X = X, xX,— Xs are the views

* Views are sufficient: for an instance x =
(X1, X,) with label ¢, we have f,(x;) = f, (X,)
=f(x)=1¢

* Views are conditionally independent given
the class: p(x,| c) = p(Xx,| ¢)



Two views In co-training

o Co-training assumption: two independent
and sufficient views

 Example: the task of classification for CS

faculty web pages

— View 1: Page text. Words in home pages, such as
research interests, teaching courses, etc.

— View2: Hyperlink text. Words in hyperlinks that
point to that page.

EML-R. Heidelbera. 24 11 08

=40



Related work

e (Balcan et. al. 2005) relaxed the assumption
of two independent and sufficient views to an
expansion of underlying data distribution.

* (Nigam & Ghani, 2000) showed dependent
views may lead to successful co-training, but
Inferior to independent views.

 (Wang & Zhou, 2007) showed two arbitrary
classifiers with large difference can be
successful in co-training.

EML-R. Heidelbera. 24 11 08
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lllustriation of co-training process

—
\

R
i Viewl View?2 i

Classifierl | [Classifler2

Replenish

0000

EML-R. Heidelbera. 24 11 08



Co-training algorithm

Given:

L : Set of labeled training examples

U : set of unlabeled examples

V1.V2: two views on data

hl,h2: two classifiers trained on two views of L

u : the number of unlabeled examples initially sampled into U’ from U

p : the number of positive examples labeled and selected by hl or h2 from U’
n : the number of negative examples labeled and selected by hl or h2 from U’

Create a pool U’ of examples by choosing u examples at random from U
while iteration number < k do

Use L to train two classifiers h1l and h2 from V1 and V2

Use hl to label all instances in U and select p positive and n negative
most confidently predicTed instances from U’

Use h2 to label all instances in U" and select p positive and n negative
most confidently predicted instances from U’

U'—U" —{2p + 2n examples selected by hl and h2}

L — L + {2p + 2n instances selected by hl and h2}

Randomly choose 2p 4+ 2n examples from U to replenish U’

endwhile

EML-R. Heidelbera. 24 11 08



Co-training — discussion

 The assumption of independence of views

* Two scenarios for co-training:
— As a classifier
— As a labeler



Active learning

= The transductive setting

= The learner chooses the best unlabeled
Instances to be labeled

= The best performance: Query By
Committee:

= A committee of classifiers
= Classify unlabeled instances

= Choose the instances on which there Is
most disagreement among the
committee

«45



Sampling techniques in active

learning

e Some sampling approaches in active
learning to improve over random sampling

— (Tong & Koller, 2000) used a sampling
strategy by minimizing the version space.

— (Freund et al., 1997) sampled unlabeled
Instances that member classifiers of a
committee disagree most: QBC

— (Saar-Tsechansky & Provost, 2001) sampled
unlabeled instances according to variances of
probability estimated by multiple models.

=46



Can active learning sampling
technigques be applied to co-
training?
 The answer is “No”.

— Co-training is a passive learning process.

— Active learning usually selects most
unconfidently predicted instances, which are
very likely to be misclassified in co-training.

* \We have to design new sampling method
for co-training.

=47



