Support Vector Machines
(SVM)

e a new classifier

o Attractive because
— Has sound mathematical foundations

— Performs very well in diverse and difficult
applications

— See paper placed on the class website



Review of basic analytical
geometry

Dot product of vectors by coordinates and with the angle

If vectors a, b are perpendicular, then (a«b) =0 (e.g. (0,
C) o (d, O) =0

A hyperplane in an n-dimensional space has the
property {x| (w « X) + b = 0}; w is the weight vector, b is
the threshold; x = (X4, ..., X;,); W= (W4, ..., W,)

A hyperplane divides the n-dimensional space into two

subspaces: one is {y| y((w « x) + b) > 0}, the other is
complementary (y| y((w « X) + b) <0)



Lets revisit the general classification problem.

We want to estimate an unknown function f, all we know

about it is the training set (X4,Y4),... (X,,Y5)

The objective is to minimize the expected error (risk)
RLE1=[1(f(x), y)dP(x, )

where | is a loss function, eg

1(f(X),y) =0O(=Yyf (X))
and ©(z) = 0 for z<0 and ©(z)=1 otherwise
Since we do not know P, we cannot measure risk

We want to approximate the true error (risk) by the
empirical error (risk): 1<
Remp[f] :Hzl(f (Xi’ Yi))
i=1



* We know from the PAC theory that conditions
can be given on the learning task so that the
empirical risk converges towards the true risk

« We also know that the difficulty of the learning
task depends on the complexity of f (VC
dimension)

* |tis known that the following relationship
between the empirical risk and the complexity
of the language (h denotes VC dimension of
the class of f) :

R[f]<R._[f]+

emp

n
Is true with probability at least 6 for n> h

\/h(ln2hn+1)—ln(6/4)
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Fig. 2. Schematie fllustration of Eq, (3). The dotted line nepre-
sents the traiming ernor (emparseal risk), the dash-dotted Jne the
upper bound on the complexdty term (confidenoe), With higher
ocomplendty the emparscal ernor decreases but the upper bound on
the risk eonfidence booomes worse, For a certain complexdty of
the function class the best expoctad nsk (solad line) & obtamed.
Thus, in practsce the goal & to find the best T between
emparacal error and complexaty.

Structural Risk
Minimization (SRM)
chooses the class
of F to find a
balance between
the simplicity of f
(very simple may
result in a large
empirical risk) and
and the empirical
risk (small may
require a class
function with a
large h)



Note:
(W -x,)+ b= +1

(W-x,)+ b= 1

=> (W-(X; - X)) = 2

W 2
|

= (il ®17%)) = [y

Figure 1. A separable classification toy problem: separate balls from diamonds. The optimal hyperplane is orthogonal
1o the shortest line connecting the convex hulls of the two classes (dotted), and intersects it half way. There is a weight
vector w and a threshold b such that y; - ((w-x;) + b) > 0. Restaling w and b such that the point(s) closest to the
hyperplane satisfy |(w-x,) + b] = 1, we obtain a form (w.b) of the hyperplane with y,((w-x;) + b) = 1. Note that the
margin, measured perpendicularly to the hyperplane, equals 2/|| w ||. To maximize the margin, we thus have to
minimize |w| subject to y;((w-X;) +b) = 1.

Points lying on the margin are called support vectors;

w can be constructed efficiently — quadratic optimization problem.




» Derivation of the optimal margin (see Ch. 3 of
the book “Ten top data mining algorithms)

« “soft margin” idea and slack variable
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Basic idea of SVM

* Linearly separable problems are easy
(quadratic), but of course most problems are not
. s.

« Take any problem and transform it into a high-
dimensional space, so that it becomes linearly
separable, but

« Calculations to obtain the separability plane can
be done in the original input space (kernel trick)



Basic idea of SVM

4 Input space { Feature space

®
L D

o

Figure 2. The idea of SY machines: map the training data
nonlinearly into a higher-dimensional feature space via
<, and construct a separating hyperplane with maximum
marqin there. This yields a nonlinear decision boundary in
input space. By the use of a kemel function, it is possible
1o compute the s2parating hyperplane without explicitly
¢arrying out the map into the feature space.



Original data is mapped into another dot product space called
feature space F via a non-linear map ®:

®:R" > F
Then linear separable classifier is performed in F
Note that the only operations in F are dot products:

K(X,y) =(D(x) e D(y))

Consider e.g.

®:R* >R’

(X0 %) = (21,2, 25) = (6, V2%, X5, X2)



Lets see that ® geometrically, and that it does what we
want it to do : transform a hard classification problem
Into an easy one, albeit in a higher dimension
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Fige 4« Two dimenssonal classificatson example, Using the seonnd
arder mamomials 73, v2r1 72 and 73 as featunes a separation in
feature space can be found yusing ai‘marlqm-plam (right). In
input space this construction corresponds to a non-tnear ellip-
soedal decsson boyndary (left) (figure from [48]).



But in general quadratic optimization in the
feature space could be very expensive

Consider classifying 16 x 16 pixel pictures,
and 5th order monomials

Feature space dimension in this example is
O((7))=10"



Here we show that the transformation from
ellipsoidal decision space to a linear one,
requiring dot product in the the feature space,
can be performed by a kernel function in the
Input space:

D(X) e D(Y) = (X7, 2%,%,, X2 ) (Y N2V, Y,, Y2) =
(%, %) (Y1, Y2))2 = (x 0 ¥)? =1 k(X, )

in general, k(x,y) =(x ¢ y)? computes in the input
space

kernels replace computation in FS by
computation in the input space

In fact, the transformation ® needs not to be
applied when a kernel is used!



Some common kernels used:

Gaussian RBF  k(x,y) = exp (_”x_y”-)

C
Polynomial  ((x-y) + #)¢
Sigmoidal  tanh(k(x-y) +6)
1
mv. nnﬂ(iqua.dric —
VIx=yIF + <
Using different kernels we in fact use different

classifiers in the input space: gaussian,
polynomial, 3-layer neural nets, ...




Simplest kernel

* Is the linear kernel (w.Xx) + b
» But this only works if the training set is
linearly separable. This may not be the

case
— For the linear kernel, or even

— In the feature space



Classification with SVMs:

« Convert each example x to ®(x)

« Perform optimal hyperplane algorithm in F; but since we
use the kernel all we need to do is to compute

n
fix) = sgn (Z Yoz (P(x) - Pix;)) + b)

=]

T
Sgn (Z Yeorz kX, x;) + b) .
=1

Il

where X;, y; are training instances, a; are computed as the
solution to the quadratic programming problem



Examples of classifiers in the input space

-

Figure 3. Example of an SV classifier found by using a radial basis function kernel (Equation 8). Circles and disks are

two classes of training examples; the solid line is the decision surface; the support vectors found by the algorithm lie
on, or between, the dashed lines. Colors code the modulus of the argument > v; - k(x.x;)+ 5 of the decision

et

function in Equation 10.



Geometric interpretation of SVM classifier

- Normalize the weight vector to 1 (|, =1) and set
the threshold b =0

* The set of all w that separate training set is
V={wlyf(x:) >0:i=1,---,n,||W||2 =1}

« But this is the Version Space

* VS has a geometric centre (Bayes Optimal
Classifier) near the gravity point

* If VS has a shape in which SVM solution is far
from the VS centre, SVM works poorly
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Fag. 5. An example of the version
space where the SVM ks fine
The oemter of mass (<) 2 som (x). :
e (<) & close to the SVM solutdon (X ). Fagure



. 6. An example of the versson space where SVM warks poaorly.
The verston space has an elongated shape and the oenter of mass
(<) & far from the SVM salutson (x). Figure taken from [72].



Applications

Text classification

Image analysis — face recognition
Bioinformatics — gene expression

Can the kernel reflect domain knowledge”?



SVM cont’d

A method of choice when examples are represented by vectors or
matrices

Input space cannot be readily used as attribute-vector (e.g. too
many attrs)

Kernel methods: map data from input space to feature space (FS);
perform learning in FS provided that examples are only used within
dot point (the kernel trick — @(X) e p(X") = k(X,X') )

SVM but also Perceptron, PCA, NN can be done on that basis
Collectively — kernel-based methods
The kernel defines the classifier

The classifier is independent of the dimensionality of the FS — can
even be infinite (gaussian kernel)

LIMITATION of SVMs: they only work for two-class problems
Remedy: use of ECOC




Applications — face detection e

INTELLIGENT SYSTEMS]

* The task: to find a rectangle containing a face in
an image applicable in face recognition,
surveillance, HCI etc. Also in medical image
processing and structural defects

« Difficult task — variations that are hard to
represent explicitly (hair, moustache, glasses)

« Cast as a classification problem: image regions
that are faces and non-faces

« Scanning the image in multiple scales, dividing it
into (overlapping) frames and classifying the
frames with an SVM:



Face detection cont'd

MNoa-faces
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Faces

SVM performing face
detection —support
vectors are faces and
non-faces

Examples are 19x19
pixels, class +1 or -1

SVM: 2nd degree
polynomial with slack
variables

Representation tricks:
masking out near-
boundary area - 361-
>283, removes noise

illumination correction:
reduction of light and
shadow

Discretization of pixel
brightness by
histogram
equalization



' | L4 F oy
i! ’ -".__
Preprocessmg

Face detection — system
architecture
Clasahicatvo using

Histogram
suppeewecton machines

Input inage Extracted window  Liglht
19 poels)  comrection  equalalro
SYM quek decard

L L 2
! —’* i -

. F N l “  pessibk-lace'mon-face

If possibk face

’

B '-.--.-_
L

N 3
" . & »
| SV compkete classifi
lazenontace

pytarmd




Bootstrapping
. using the
system on
Images
with no
faces and
storing
false
positives to
use as
negative
examples
in later
training




Performance on 2 test sets:
Set A = 313 high quality
Images with 313 faces, set B=
23 images with 155 faces
This results in >4M frames
for A and >5M frames for B.
SVM achieved recall of 97%
on A and 74% on B, with

4 and 20 false positives, resp.




SVM in text classification

Example of classifiers (the Reuters corpus — 13K
stories, 118 categories, time split)

Essential in document organization (emails!), indexing
etc. if(interest AND rate) OR (quarterly). then  conlidence (“interest™ category )
confidence (“mterest™ category) = 0.9 O03*nicresd + 0.4%rale ll_?"qu.mcrl}'

First comes from a PET; second from and SVM

Text representation: BOW: mapping docs to large
vectors indicating which word occurs in a doc; as
many dimensions as words in the corpus (many more
than in a given doc);

often extended to frequencies (normalized) of
stemmed words



Text classification

Still a large number of features, so a stop list is applied,
and some form of feature selection (e.g. based on info
gain, or tf/idf) is done, down to 300 features

Then a simple, linear SVM is used (experiments with
poly. and RDF kernels indicated they are not much
better than linear). One against all scheme is used

What is a poly (e.g. level 2) kernel representing in text
classification?

Performance measured with micro-averaged break even
point (explain)

SVM obtained the best results, with DT second (on 10
cat.) and Bayes third. Other authors report better IB
performance (findSim) than here



A ROC for the above experiments (class = “grain”)
ROC obtained by varying the threshold
threshold is learned
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How about another representation?

 N-grams = sequences of N consecutive characters, eg 3-
grams is ‘support vector’ = sup, upp, ppo, por, ..., tor

« Language-independent, but a large number of features
(>>|words]|)

« The more substrings in common between 2 docs, the
more similar the 2 docs are

« What if we make these substring non-contiguous? With
weight measuring non-contiguity? car — custard

* We will make ea substring a feature, with value
depending on how frequently and how compactly a
substring occurs in the text



The latter is represented by a decay factor A
Example: cat, car, bat, bar

C=g1 =T a1 Iei =t =¥ Q= =T
1 73 : 11
aolcat A AT A0 L L L i
v '8 s 1 (PR |
aolcar A~ U L L L AT A U
. . 1 73 1 11
ol gt (L LA N A 1 L L LA
1
!

- . v '
aolarl U U U AU L

Unnormalized K(car,cat)= 14, K(car,carg=K(cat,cat)=2 A4
+ A% normalized K(car,cat)= A%/( 2A*+ A%)= 1/(2+ \?)
Impractical (too many) for larger substrings and docs,
but the kernel using such features can be calculated
efficiently (‘substring kernel’ SSK) — maps strings (a
whole doc) to a feature vector indexed by all k-tuples



Value of the feature = sum over the occurrences of the k-tuple of a
decay factor of the length of the occurrence

Def of SSK: X is an alphabet; string = finite sequence of elems of X .
|s| = length of s; s[i:j] = substring of s. uis a subsequence of s if
there exist indices 1=(i,,... o ) With 1=iy<...< i, <[s| such that y, —sJ
forj=1,...,|u| (u=s[l] for short)

Length I(1) of of the subsequence in s is I, -1y ¥1 (spanins)
Feature space mapping ¢ for s is defined by

g(s)= Y A0

lu=s[i]
for each u X" (set of all finite strings of length n): features measure

the number of occurrences of subsequences in s weighed by their
length (A<1)

The kernel can be evaluated in O(n|s]|t|) time (see Lodhi paper)



Experimental results with SSK

The method is NOT fast, so a subset of Reuters (n=470/380) was
used, and only 4 classes: corn, crude, earn, acquisition

Compared to the BOW representation (see earlier in these notes)
with stop words removed, features weighed by
tf/idf=log(1+tf)*log(n/df)

F1 was used for the evaluation, C set experimentally

Best k is between 4 and 7

Performance comparable to a classifier based on k-grams
(contiguous), and also BOW

A controls the penalty for gaps in substrings: best precision for high
A = 0.7. This seems to result in high similarity score for docs that
share the same but semantically different words - WHY?

Results on full Reuters not as good as with BOW, k-grams; the
conjecture is that the kernel performs something similar to
stemming, which is less important on large datasets where there is
enough data to learn the ‘sameness’ of different inflections



Intro. to bioinformatics

Bioinformatics = collection, archiving,
organization and interpretation of
biological data

integrated in vitro, in vivo, In silico
Requires understanding of basic genetics

Based on

— genomics,

— proteomics,

— transriptomics



What is Bioinformatics?

* Bioinformatics is about integrating
biological themes together with the help of
computer tools and biological database.

 Itis a “New” field of Science where
mathematics, computer science and
biology combine together to study and
interpret genomic and proteomic
information



Basic biology

Information in biology: DNA

Genotype (hereditary make-up of an organism)
and phenotype (physical/behavioral
characteristics) (late 19t century)

Biochemical structure of DNA — double helix —
1953: nucleotides A, C, G, T

Progress in biology and IT made it possible to
map the entire genomes: total genetic material
of a species written with DNA code

For a human, 3*10° long
Same in all the cells of a person



What is a gene”?

Chromosome

- A A represents adenine
il »- C represents cytosine
G represents guanine
T represents thymine



What is gene expression?

Promotor

DNA

RNA.

Protein




Genome

* The whole sequence in the alphabet
AC,G,T

 Human genome: > 3B DNA pairs, only
23K are encoding for proteins (only twice
as much as a fly!)






Chambord :
I'escalier a double volée



* Interesting to see if there are genes
(functional elements of the genome)
responsible for some aspects of the
phenotype (e.g. an iliness)

— Testing
— Cure
* Genes result in proteins:

RNA (transcription)
 Gene Aprotem



We say that genes code for proteins

n simple organisms (prokaryotes), high
percentage of the genome are genes (85%)

s eukaryotes this drops: yeast 70%, fruit fly
25%, flowers 3%

Databases with gene information:
GeneBank/DDBL, EMBL

Databases with Protein information:
SwissProt, GenPept, TREMBL, PIR...




* Natural interest to find repetitive and/or
common subsequences in genome:
BLAST

* For this, it is interesting to study genetic
expression (clustering):

Gene X

Gene Yy

<

<>
deltaX

Y is activated by X

Time

 Activation + and Inhibition —



Bioinformatics application

Coding sequences in DNA encode proteins.

DNA alphabet: A, C, G, T. Codon = triplet of adjacent nucleotides,
codes for one aminoacid.

Task: identify where in the genome the coding (CDS, a coding
sequ%me) starts (Translation Initiation Sites). Potential start codon
is ATG.

Classification task: does a sequence window around the ATG
indicate a TIS?

Each nucleotide is encoded by 5 bits, exactly one is set to 1,
indicating whether the nucleotide is A, C, G, T, or unknown. So the
dimension n of the input space = 1000 for window size 100 to left
and right of the ATG sequence.

Positive and negative windows are provided as the training set

This representation is typical for the kind of problem where SVMs do
well



What is a good feature space for this problem? how about
including in the kernel some prior — domain — knowledge? Eg:

Dependencies between distant positions are not important or are
known not to exist

Compare, at each sequence position, two sequences locally in a
window of size 2|+1 around that position, with decreasing weight
away from the centre of the window:

+I
win, (x,y) = (> p;match,;(x,y))"
j=—I
Where d, is the order of importance of local (within the window)
correlations, and match _;is 1 for matching nucleotides at position
P+, 0 otherwise



* Window scores are summed over the length of
the sequence, and correlations between up to d,
windows are taken into account:

k(X,y) = (Z win,, (X, y))*

 Also it is known that the codon below the TIS is a
CDS: CDS shifted by 3 nucleotides is still a CDS

* Trained with 8000 patterns and tested with 3000



Results
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* View
e http://videolectures.net/acai05 taylor_svkm/



