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Bayesian learning

• incremental, noise-resistant method
• can combine prior Knowledge (the K is 

probabilistic)
• predictions are probabilistic
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Naïve Bayes Classifier

Let us start with an example of “Bayesian inference”:…

Thomas Bayes
1702 - 1761

Courtesy of Eammon Keogh, UCR,
eamonn@cs.ucr.edu
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Bayes’ law of conditional probability:

results in a simple “learning rule”: choose 
the most likely (Maximum Aposteriori)hypothesis

hMAP = arg max
h∈H

P(D|h )P(h)

Example:
Two hypo:
(1) the patient has cancer
(2) the patient is healthy
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P(cancer) = .008
P( + |cancer) = .98
P(+|not cancer) = .03

P(not cancer) = .992
P( - |cancer) = .02
P(-|not cancer) = .97

⊕  is 98% reliable:  it returns positive in 98% of cases when the

the disease is present,  and returns 97% negative

when the disease is actually absent .  

Priors: 0.8% of the population has cancer;

We observe a new patient with a positive test. 
How should they be diagnosed?

P(+|cancer)P(cancer) = .98*.008 = .0078
P(+|not cancer)P(not cancer) = .03*.992=.0298
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Courtesy of Eammon Keogh, UCR,
eamonn@cs.ucr.edu

Naïve Bayes classifier: the very foundation
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With a lot of data, we can build a histogram. Let us 
just build one for “Antenna Length” for now…

Courtesy of Eammon Keogh, UCR,
eamonn@cs.ucr.edu
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We can leave the 
histograms as they are, 
or we can summarize 
them with two normal 
distributions.

Let us us two normal 
distributions for ease 
of visualization in the 
following slides…

Courtesy of Eammon Keogh, UCR,
eamonn@cs.ucr.edu
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p(cj | d) = probability of class cj, given that we have observed dp(cj | d) = probability of class cj, given that we have observed d

3

Antennae length is 3

• We want to classify an insect we have found. Its antennae are 3 units long. 
How can we classify it?

• We can just ask ourselves, give the distributions of antennae lengths we have 
seen, is it more probable that our insect is a Grasshopper or a Katydid.
• There is a formal way to discuss the most probable classification…

Courtesy of Eammon Keogh, UCR,
eamonn@cs.ucr.edu
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10

2

P(Grasshopper | 3 ) = 10 / (10 + 2) = 0.833

P(Katydid | 3 )         = 2 / (10 + 2) = 0.166

3

Antennae length is 3

p(cj | d) = probability of class cj, given that we have observed dp(cj | d) = probability of class cj, given that we have observed d

Courtesy of Eammon Keogh, UCR,
eamonn@cs.ucr.edu
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P(Grasshopper | 7 ) = 3 / (3 + 9) = 0.250

P(Katydid | 7 )         = 9 / (3 + 9) = 0.750

7

Antennae length is 7

p(cj | d) = probability of class cj, given that we have observed dp(cj | d) = probability of class cj, given that we have observed d

Courtesy of Eammon Keogh, UCR,
eamonn@cs.ucr.edu
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66

P(Grasshopper | 5 ) = 6 / (6 + 6) = 0.500

P(Katydid | 5 )         = 6 / (6 + 6) = 0.500

5

Antennae length is 5

p(cj | d) = probability of class cj, given that we have observed dp(cj | d) = probability of class cj, given that we have observed d

Courtesy of Eammon Keogh, UCR,
eamonn@cs.ucr.edu
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Minimum Description Length

revisiting the def. of hMAP:

we can rewrite it as:

or

But the first log is the cost of coding the data 
given the theory, and the second - the cost of 
coding the theory

hMAP = arg max
h∈H

P(D|h )P(h)

hMAP = arg max
h∈H

log 2 P(D|h) + log 2 P(h)

hMAP = arg min−
h∈H

log 2 P(D|h ) − log 2 P(h )
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Observe that: 
for data, we only need to code the 

exceptions; the others are correctly 
predicted by the theory

MAP principles tells us to choose the 
theory which encodes the data in 
the shortest manner

the MDL states the trade-off between 
the complexity of the hypo. and the 
number of errors
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Bayes optimal classifier

• so far, we were looking at the “most 
probable hypothesis, given a priori 
probabilities”. But we really want the most 
probable classification

• this we can get by combining the 
predictions of all hypotheses, weighted by 
their posterior probabilities:

• this is the bayes optimal classifier BOC:

P(v j |D) = P(vj
hi

∑ |hi )P(hi |D)

arg max
v j ∈V

P(vj
hi ∈H
∑ |hi )P(hi |D) Example of hypotheses

h1, h2, h3 with posterior probabilities
.4, .3. .3
A new instance is classif. pos. by h1 and
neg. by h2, h3 
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Bayes optimal classifier

V = {+, -}
P(h1|D) = .4, P(-|h1) = 0, P(+|h1) = 1
…

Classification is ” –”  (show details!)
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• Captures probability 
dependencies
• ea node has probability 
distribution: the task is 
to determine the join 
probability on the data
• In an appl. a model is 
designed manually and 
forms of probability 
distr. Are given
•Training set is used to 
fit the model to the data
•Then probabil. 
Inference can be carried 
out, eg for prediction

First five variables are observed, and the model is 
Used to predict diabetes

P(A, N, M, I, G, D)=P(A)*P(n)*P(M|A, n)*P(D|M, A, N)*P(I|D)*P(G|I,D)
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• how do we specify 
prob. distributions?
• discretize variables 
and represent 
probability distributions  
as a table 
•Can be approximated 
from frequencies, eg 
table P(M|A, N) requires 
24parameters
•For prediction, we want 
(D|A, n, M, I, G): we need 
a large table to do that
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• no other classifier using the same hypo. 
space e and prior K can outperform BOC

• the BOC has mostly a theoretical interest; 
practically, we will not have the required 
probabilities

• another approach, Naive Bayes Classifier 
(NBC)

under a simplifying assumption of 
independence of the attribute values given 
the class value:

∏
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To estimate this, we need  (#of possible 
values)*(#of possible instances) examples
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• in NB, the conditional probabilities are 
estimated from training data simply as 
normalized frequencies: how many 
times a given attribute value is 
associated with a given class wrt to all 
classes: 

• no search!
• example

n
nc
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Example we are trying to predict yes or no
for Outlook=sunny, Temperature=cool, 
Humidity=high, Wind=strong
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P(yes)=9/14   P(no)=5/14

P(Wind=strong|yes)=3/9 P(Wind=strong|no)=3/5 etc.

P(yes)P(sunny|yes)P(cool|yes)P(high|yes)Pstrong|yes)=.0053

P(no)P(sunny|no)P(cool|no)P(high|no)Pstrong|no)=.0206

so we will predict no
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Geometric decision boundary
• Assume a binary NB classifier f with instances 

[x1,…,xn,y], y =0 or y=1. Denote by v0 (v1) the vector of 
probabilities of all instances belonging to class 0 (1), 
respectively. 

• This expression is linear in x. Therefore the decision 
boundary of the NB classifier is linear in the feature 
space X, and is defined by f(x) = 0. 
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• Further, we can not only have a decision, but 
also the prob. of that decision:

• we rely on       for the conditional probability, 
where n is the total number of instances for a 
given class, nc is how many among them have a 
specific attribute value

• if we do not observe any values of , or very few, 
this is a problem for the  NB classifier 
(multiplications!)

• So: smoothen; see Witten p. 91

795.
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• we will use the estimate
where p is the prior estimate of probability,
m is p=1/k for k values of the attribute; m has the 
effect of augmenting the number of samples  of 
class ;
large value of m means that priors p are 
important wrt training data when probability 
estimates are computed, small – less important 

• In practice often 1 is used for mp and m

mn
mpnc

+
+
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Application: text classification
• setting: newsgroups, preferences, etc. 

Here: ‘like’ and ‘not like’ for a set of 
documents

• text representation: “bag of words”: Take 
the union of all words occurring in all 
documents. A specific document is 
represented by a binary vector with 1’s in 
the positions corresponding to words 
which occur in this document

• high dimensionality (tens of thou. of 
features)
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• We will estimate  P(wk|vj) as m-
estimate with equal priors

• incorrectness of NB for text 
classification (e.g. if ‘Matwin’ occurs, 
the previous word is more likely to 
be ‘Stan’ than any other word; 
violates independence of features) 

• but amazingly, in practice it does not 
make a big difference

||
1

vocabularyn
nk

+
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Taking into account frequencies of 
words

• In order to determine the weight of term k for the 
representation of document j, the term frequency 
inverted document frequency (tfidf) is often used. This 
function is defined as:

• tfidf(tk,dj) = #(tk, dj) * log ( |Tr| / #(tk) )
• where Tr  is the training set, #(tk, dj) is the number of 

times tk occurs in dj, and #(tk) is the number of 
documents in Tr in which tk occurs at least once (the 
document frequency of tk.) Meaning?

• To make the weights fall in the [0,1] interval and for the 
documents to be represented by vectors of equal length, 
the following cosine normalization is used:

• w k,j = tfidf(tk, dj) / sqrt(∑s=1..r (tfidf(ts,dj))2)



Geometric interpretation 

• n-dimensional space, where n = |V|
• Documents are n-dimensional vectors
• Distance (similarity) between documents –

cosine:

• distance(1 – highest, 0 – most 
independent); similarity = 1 – cos distance;30
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Measures for text classification 

Refer to the contingency table:

• Precision (Pr) = TP / (TP + FP)
• Recall (Re) = TP / (TP + FN)
Complementarity of R & P, break-even

• Also, the Fα-measure:= (1+α)P*R/(α P+R)
• For α=1, F-measure
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Bayesian algorithms for
text categorization

Naive Bayes for and against

• Naive Bayes attractive features: simple model, 
easy to implement and fast

• Naive Bayes has its share of shortcomings, 
primarily due to its strict assumptions

• If only presence/absence of word is represented, 
we have a multi-variate Bernoulli model for NB
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Naive Bayes. Next step ahead

• improving Naive Bayes by 

1. Learning better classification weights
2. Modeling text better (transforming the data)

• The final goal is to have a fast classifier 
that performs almost as well as the SVM 
(on text)
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Multinomial Naïve Bayes
(MNB)

• designed for text categorization - requires 
BOW input data 

• attempts to improve the performance of 
text classification by the incorporation the 
words frequency information 

• models the distribution of words (features) 
in a document as a multinomial distribution
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Multinomial model and classifying 
documents

• We assume the generative model: a “source” 
generates an n-word long document, from a 
vocabulary of k words (|V| = k)

• Here we usually find the hypothesis (model) 
most likely to have generated the data (whereas 
in MAP we are looking for a model most likely 
given the observed data) 

• Word occurrences are independent 
• A new document can then be modeled by a 

multinomial distribution
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Multinomial distribution
• in probability theory, the multinomial distribution is a generalization 

of the binomial distribution.

• The binomial distribution is the probability distribution of the number 
of "successes" in n independent Bernoulli trials, with the same 
probability of "success" on each trial. (n tosses of a coin)

• In a multinomial distribution, each trial results in exactly one of some 
fixed finite number k of possible outcomes, with probabilities p1, ..., 
pk (so that pi ≥ 0 for i =  1, ..., k and           = 1), and there are n 
independent trials. Then let the random variables Xi indicate the 
number of times outcome number i was observed over the n trials. 
X=(X1,…,Xk) follows a multinomial distribution with parameters n 
and p, where p = (p1, ..., pk).

∑
=

k

j
jp

1
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Multinomial Distribution
The probability mass function of the multinomial 

distribution is:

for non-negative integers 

f x1 ,…… xk ,n, p1 ,…A , pk
` a

=

Pr X 1= x1 and… and X k = xk

b c

=
n!

x1 !… xk !
ffffffffffffffffffffffffffp

1
xk …AA p

k
xk , when X

i = 1

k

xi = n

0 otherwise,

x1 ,… xk
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Multinomial parameters

Each class  

{1, 2,... }c m∈

{1, 2,... }c m∈

multinomial parameters   
(N is th size of the vocabulary) :

has a fixed set of

{ 1, 2, ..., }c c c cNθ θ θ θ=

ciθ

1
i

ciθ =∑

is the probability that word i occurs in 
documents of class c,  
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Multinomial parameters

θci =
N ci +α i

N c + α
fffffffffffffffffffffff

N ci is the number of times word i appears in 
the documents of class c

N c

iα

is the total number of word occurrences 
in class c
is a smoothing parameter

denotes the sum of theα iα
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The likelihood of a document 
in multinomial model

fi is the frequency count of feature i in document d

p d|θc

b c

=
X

i
f i

f g
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i
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fffffffffffffffffffffffffffY

i
θci

b c f i
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Classification rule for MNB 

is the class prior estimate

Threshold term :
Class c weight for word i:
(weights for the MNB decision boundary)

l MNB d
` a

= argmaxc log p θc

b c

+X
i

f i log N ci +α i

N c + α
fffffffffffffffffffffffF G

( )cp θ

wci = logθci

= argmaxc bc +X
i

f i wci

F G

bc = log p θc

b c



42

MNB (Multinomial naïve Bayes 
classifier)

• MNB model:

• where fi = # of occurrences of word wi in d
• Three independence assumptions:

– occurrence of wi is independent of occurrences of all 
the other words

– occurrence of wi is independent of itself
– |d| is independent of class of d

• MNB classifier:
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Unbalanced Training data problem 
(Skewed Data Bias)

• Skewed data – more training examples for one class then 
another 

• Problem: NB and MNB heavily favor classes with more 
training

• Fewer samples ->smaller weights

• Frequently, the class of interest is significantly smaller, and as 
a result could be underweighted. It leads to the poor 
performance of the classifier 

• Solution: Calculate score for class using statistics from all 
other classes; pick class with minimum score 
(More examples -> smaller bias)
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Complement Naïve Bayes (CNB)

• Addressed to text categorization on unbalanced 
training set

• Based on heuristic solution to modify the 
estimation and classification rules by using the 
“complement class”

• complement class to the current class includes 
all other classes except the current class  

• imbalanced class estimation is based on a more 
even amount of training data (as result, more 
stable weights estimation)
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CNB parameters

are estimated as: 

is the number of times feature i
occurred in documents of classes other 
than c

is the total number of feature 
occurrences in classes other than c

θc
fff
i =

N c
fff
i +α i

N c
fff+ α

ffffffffffffffffffffffff

ciN

cN
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Classification rule for CNB

The negative sign represents the fact that 
we want to assign to class c documents 
that poorly match the complement 
parameter estimates. 

lCNB d
` a

= argmaxc log p θc

b c

@X
i

f i log N c
fff
i +α i

N c
fff+ α

ffffffffffffffffffffffffF G
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Weight Magnitude Errors
When the magnitude of Naive Bayes' weight vector         is 

larger in one class than the others, the larger magnitude 
class may be preferred

Since the weight differences could be  partially an artifact of 
applying the independence assumption to dependent 
data, Naive Bayes gives more influence to classes that 
most violate the independence assumption

For Example: Class 1 is “Boston,” Class 2 is “San 
Francisco”. Since “San” and “Francisco” are counted 
independently,  single occurrence of “San Francisco" will 
contribute twice the weight of the occurrence of Boston. 
It leads to incorrect classification

Solution: Normalize weight vector:

wc
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Better weights: Normalization

correct for the fact that some classes have 
greater dependencies by normalizing the 
weight vectors

Weight-normalized Complement Naive 
Bayes (WCNB).

wci =
logθci

X
k

|logθck |
fffffffffffffffffffffffffffffff
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