
Probability Estimation Trees
(PETs)

• Error rate does not consider the probability of
the prediction, so in PET

• Instead of predicting a class, the leaves give a
probability

• Very useful when we do not want just the class,
but examples most likely to belong to a class
(e.g. direct marketing)

• No additional effort in learning PET compared to
DTs

• Requires different evaluation methods

Continuous attributes

• a simple trick: sort examples on the values
of the attribute considered; choose the
midpoint between ea two consecutive
values. For m values, there are m-1
possible splits, but they can be examined
linearly

• It’s a kind of discretization (see later in
class)

• cost?

Geometric interpretation of decision trees:
axis-parallel area

truefalse

false

false

false

data: two numerical attributes x1 and x2

true
true

true

Pruning

• Overfitting: getting away from training data
• Predictive performance (on data not seen

during training)
• Pruning: discarding 1 or more subtrees

and replacing them with leaves
• pruning causes the tree to misclassify

some training cases. But it may improve
performance on validation data

Error-based pruning: suppose error rate can be
predicted. Then moving bottom-up consider
replacing each subtree with a leaf, or its most
frequently used branch. Do it if the replacement
decreases the error rate

One practical way to measure the post-pruning
error rate is to measure the error on a hold-out
set (eg 10% of data). This hold-out set would be
used for pruning purposes only

Weka’s way to estimate the error rate:
• measure the actual error on the training set;
• treat it as a random variable;
• estimate standard deviation of this variable assuming a

binomial distribution;
• take the lower bound for a given confidence level: eg for

a 95% confidence, the error rate is observed error –
1.96* standard deviation)

From trees to rules:
traversing a decision tree from root to leaf

gives a rule, with the path conditions as
the antecedent and the leaf as the class

rules can then be simplified by removing
conditions that do not contribute to
discriminate the nominated class from
other classes

rulesets for a whole class are simplified by
removing rules that do not contribute to
the accuracy of the whole set

b > b1b > b1

a > a1a > a1

a < a2a < a2

yy

−−(1)(1)

++(2)(2)

nn

++(3)(3)−−(4)(4)

Decision rules can be obtained from decision treesDecision rules can be obtained from decision trees

(1)(1)if b>b1 then class is if b>b1 then class is --

(2)(2)if b <= b1 and a > a1 then if b <= b1 and a > a1 then
class is +class is +

(3)(3)if b <= b1 and a < a2 then class is +if b <= b1 and a < a2 then class is +

(4)(4)if b <= b1 and a2 <= a <= a1 then if b <= b1 and a2 <= a <= a1 then
class is class is --

notice the inference involved in rule (3)notice the inference involved in rule (3)

Empirical evaluation of accuracy
in classification tasks

• The confusion matrix
• Accuracy

Computing accuracy: in practice
– partition the set E of all labeled examples

(examples with their classification labels) into
a training set X1 and a testing (validation) set
X2. Normally, X1 and X2 are disjoint

– use the training set for learning, obtain a
hypothesis H, set acc := 0

– for ea. element t of the testing set,
apply H on t; if H(t) = label(t) then acc :=

acc+1
– acc := acc/|testing set|

Testing - cont’d
• Given a dataset, how do we split it between the training

set and the test set?
• cross-validation (n-fold)

– partition E into n groups
– choose n-1 groups from n, perform learning on their

union
– repeat the choice n times
– average the n results
– usually, n = 3, 5, 10

• another approach - learn on all but one example, test
that example.
“Leave One Out”

Role of examples in learning

• Positive examples are used to generalize a
hypothesis (or search for a more general
hypothesis)

• Negative examples are used to specialize the
hypothesis we have learned from the positive
ones (or search for a more specific one)

• The search is constrained by the language in
which we express the hypothesis

,

() ((), ())
Xx X D

R h l h x f x dx
∈

= ∫

•And the search criterion is to minimize the
empirical risk

Where f is the true hypothesis, h is the learned
(selected) hypothesis
The distribution DX is important! (eg learning to
recognize taxis in NY vs Ottawa)

The language of the hypotheses
must be adequate for the concept

we learn:
• A concept is a partition of the space of all

instances (consider the number of
concepts for, e.g. 800 examples)

• The shape (i.e. language) of the concept
determines how much we generalize:

• If the language is not adequate, l will be a
very poor approximation of h:

true concept

Bias-variance compromise

• Bias: the difference between h and f due to
the language of H and F

• Variance (estimation error): due to inability
of finding h*, the best h in H

H

F

{hS}S

h h*

variance

bias

total error

f

fnoise

Example of bias and variance

• Learning the sex of a person
• Particularly simple language bias: a

“hyperplane”. For a single attribute, this is
just one number (point on a line)

P(woman|height) P(man|height)

t

• Bias is very bad: relatively poor choice of H
leads to poor discrimination between the two
classes

• Variance is good: for different samples, i.i.d.
(independently and identically distributed)
samples will result is same shape gaussians

• Imagine instead that we have 50 physical
attributes of people. Bias is low: there may exist
a perfectly discriminant function in this highly
dimensional space. But variance is bad: for a
limited sample we may not find the best
hyperplane

Example of bias and variance

Bias-variance compromise

Richness of H

total error

error

variance

bias

minimum of
the total error

Approximate learning

X

h1

h2

suppose h1 is true and h2
is not. But if h1⊕h2 is still
small, h2 is considered a
good approximation of h1

let P be an unchanging probability distribution over X. Then

error(h1, h2) = ∑u ∈ h1⊕h2 P(u)

Bias

There are 2|U| possible concepts over U -
why?

Bias = means to restrict that space
1. restricted hypothesis bias = syntactic

restriction (e.g. a concept description is a
Boolean conjunction)

2. preference bias - e.g. prefer the simples
hypothesis (Occam’s razor)

PAC learning

• Assumptions: m training examples, labeled
according to their mbshp in a concept C, and
drawn independently from U according to some
unknown distr. P(u). Goal: find a hypo. h
∈ Η consistent with all m training examples.
Assuming such h can be found, what is the
probability that it has error greater than ε

• let Hbad = {h1, …hl} be the set of hypo that have
error > ε

• If the probability that, after m examples some
element of Hbad is consistent with all training
examples, is SMALL, then with high probability
all the remaining hypotheses consistent with
training examples have error < ε

• consequently, any consistent hypo is probably
approximately correct

PAC learning cont’d

• consider h1 ∈ Hbad. what is the probability that h1is consistent
with 1 t.e.? For that the t.e. has to be outside the error area.
The probability of hitting such a t.e. is no more than 1- ε

• with all m t.es: (1- ε)m

• what is the prob. that after m t.e. some elem of Hbadhas not
been eliminated? It is ≤ |Hbad| (1- ε)m ≤
|H| (1- ε)m ≤ δ

• resolving for m, we get m ≥ 1/ ε (ln1/ δ + ln|H|)

• so we have the following
• Theorem: let H be a set of hypo over U, S be a set

of m te drawn independently according to P(u). If
h is consistent with all te in S and

m ≥ 1/ ε (ln1/ δ + ln|H|)
then the probability that h has error > ε is < δ.
• observe that we can control δ and ε by changing

the number of examples!
• example: consider that the hypo language

consists of conjunctions of n Boolean variables
(attributes). Then

m ≥ 1/ ε (ln1/ δ + n*ln|3|)

PAC cont’d

• In general, to show PAC learnability, we
must show that
– polynomial number of examples is sufficient to

PAC learn
– Show an algorithm that uses poly. time per

example

PAC - cont’d
Some useful classes:
• k-term-DNF: k term disjunction where ea. term is a

conjunction of Bool. vars of unlimited size; H is poly. size
but learning is non-poly: -

• k-DNF: disjunction of any number of conjunctive terms,
ea conjunct limited to k vars – but + with Oracle

• k-CNF: conjunction of any number of clauses (disj.
terms), ea clause has at most k variables + surprising as
k-CNF ⊇ k-term-DNF

• DNF: any Bool. expression in disjunctive normal form -
//

Sizes of hypo spaces:

k-term-DNF: 2O(kn)

k-DNF: 2O(n**k)

k-CNF: 2O(n**k)

DNF: 22**n

The first three are potentially PAC-
learnable in poly time (= number of
examples) if we have a poly-time per
example procedure

• but how do we move into infinite hypo spaces?
There is a way of characterizing expressive
power of a hypo space.

• a set of hypo completely fits an example set E if
for every possible way of labeling elements of E
pos and neg there exists a hypo H that will
produce that labeling. The size of the largest set
of examples that H can completely fit is call the
VC (Vapnik-Chervonenkis) dimension of H.

• for example, suppose we’re ‘learning’ single
closed intervals over the real line (ie hypo have
form [a,b]).

• suppose E = {3, 4}. How many ways of labeling
elems of E as pos or neg? Is there an interval
that will produce that labeling?

• Hint (closed intervals on the real line) can
completely fit the set E.

• but consider E’={2,3,4}. So what is the VC
dimension of Hint ?

• linear separability of sets of points = VC
dimension of simple neural networks

Theorem (Blumer et al. 89): a space of hypo H is
PAC learnable iff it has finite VC dimension. Any
PAC learning algo for H must examine

O(1/ε[ln 1/δ + VC(H)] examples).

• Boolean conjunction, k-DNF, and k-
CNF are poly learnable, but k-term-
DNF is NP-hard! Even though it is a
proper subset of k-CNF.

• implications for the change of
representation

• same true for k-3NNs, ie three layer
NNs with exactly k hidden units.
There’s a conjecture that k’-3NN
learnability where k’ < p(k), p some
polynomial, could be true.

• the PAC theorem says that we may learn an
expo. # of hypotheses from a poly # of
examples!This is sample complexity. But there is
also computational complexity, ie worst-case
computation time req’d to producre a hypo from
a sample of given size.

So, we say (Valiant) that a hypo. space is poly-
learnable iff

• only a poly # of examples is req’d, as a function
of n, ε and δ

• a consistent hypo in H can be found in poly time
in n, ε and δ

connection betw. VC dimension and
the PAC theorem:

suppose H is finite, VC(H) = d. There
is a set of d instances I that H
completely fits. That requires 2**d
distinct hypotheses, so
|H|≥ 2∗∗d.

so VC(H) ≤ log(H)

A lattice of learning models

PAC(NO, PAC(NO, --,, ?)?)

PAC+MQ(NO, ?, YES)PAC+MQ(NO, ?, YES)

UNIFORM+MQ(NO, YES, YES)UNIFORM+MQ(NO, YES, YES)

UNIFORM(NO, ?, ?)UNIFORM(NO, ?, ?)

NNNN DNFDNF DTDT

Cryptographic toolsCryptographic tools

