Privacy and Data Mining: New Developments and Challenges

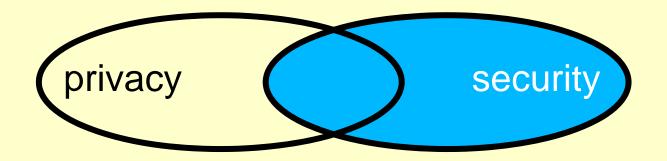
- Why privacy??
- Classification of Privacy-preserving Data Mining research (PPDM)
- Examples of current PPDM work
- Challenges

Why privacy and data mining?...

- Like any technology can be used for « good » and « bad » purposes …
- It's Computer Science that has developed these tools, so...
- A moral obligation to develop solutions that will alleviate [potential] abuses and problems

Privacy

- "fuzzy", over-general concept
 - legal
 - economic
- Security?



Privacy

- Freedom from being watched ("to be left alone")
- ...being able to control who knows what about us, and when [Moor]

Privacy

- A CS « perspective»
 - -I am a database
 - -Privacy is the ability to control the *views*
- Threats to privacy due to:
 - -The Internet
 - Distributed databases
 - Data mining
- « greased » data

...more precisely

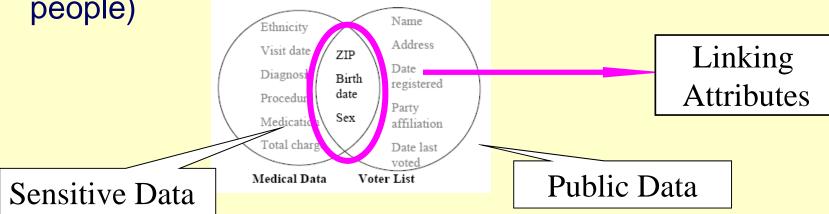
- Privacy preservation: what does that mean?
- Given a table of instances (rows), we cannot associate any instance with a given person
- Naive anonymization...
- ...is not sufficient, due to pseudoidentifiers

L. Sweeney published this « attack » in 2001:

anoymized (de-linked) health records of all 135,000 employees+families of the state of Massachussetts was placed on-line

Electoral list of Cambridge, MA – bought for \$20 (54 805)

people)



- 69% records are unique wrt birthdate, ZIP; 87% are unique wrt to bday, ZIP, sex...
- Governor's health records were identified
- ...naive anonymization is not sufficient

Other privacy fiascos

- AOL search engine queries published
 2006
- Netflix publicly released a data set containing movie ratings of 500,000 Netflix subscribers between December 1999 and December 2005.
- By matching no more than 8 movie ratings and approximate dates, 96% of subscribers can be uniquely identified.

In statistics

- Statistical Disclosure Control
- A table is published, and the whole table has to be protected
- Risk/quality dilemma
- SDC ignores the use of the table
 - Classification
 - Associations
 - Distributed data

Privacy-preserving Data Mining PPDM

- Data sharing
- Data publishing
- Cloud
- Two main dimensions:
 - What is being protected: data, results?
 - Data centralized or distributed?

PPDM - dimensions

	Data centralized	Data distributed
Protecting the data	•generalization/suppression [Sweeney] •randomization [Du]/perturbation [Aggrawal]	 Horizontal/vertical: SMC-based [Clifton], Homomorphic encryption [Wright], [Zhang Matwin]
Protecting the results	k-anonymization of results :[Gianotti/Pedreschi]	[Jiang, Atziori], [Felty, Matwin]

Privacy Goal: k-Anonymity

- Quasi-identifier (QID): The set of re-identification attributes.
- *k*-anonymity: Each record cannot be distinguished from at least *k-1* other records in the table wrt *QID*. [Sween98]

Raw patient table					
Job Sex Age Disease					
Engineer	Male	36	Fever		
Engineer	Male	38	Fever		
Lawyer	Male	38	Hepatitis		
Musician	Female	30	Flu		
Musician	Female	30	Hepatitis		
Dancer	Female	30	Hepatitis		
Dancer	Female	30	Hepatitis		

3-anonymous patient table					
Job Sex Age Diseas					
Professional	Male	[36-40]	Fever		
Professional	Male	[36-40]	Fever		
Professional	Male	[36-40]	Hepatitis		
Artist	Female	[30-35]	Flu		
Artist	Female	[30-35]	Hepatitis		
Artist	Female	[30-35]	Hepatitis		
Artist	Female	[30-35]	Hepatitis		

Homogeneity Attack on *k*-anonymity

 A data owner wants to release a table to a data mining firm for classification analysis on Rating

Job	Country	Child	Bankruptcy	Rating	# Recs
Cook	US	No	Current	0G/4B	4
Artist	France	No	Current	1G/3B	4
Doctor	US	Yes	Never	4G/2B	6
Trader	UK	No	Discharged	4G/0B	4
Trader	UK	No	Never	1G/0B	1
Trader	Canada	No	Never	1G/0B	1
Clerk	Canada	No	Never	3G/0B	3
Clerk	Canada	No	Discharged	1G/0B	1
				Total:	24

- Inference: {Trader,UK} → fired
- Confidence = 4/5 = 80%
- An inference is sensitive if its confidence > threshold.

p-Sensitive k-Anonymity

- for each equivalence class EC there is at least p distinct values for each sensitive attribute
- Similarity attack occurs
 when the values of sensitive
 attribute in an EC are
 distinct but have similar
 sensitivity.

Age	Country	Zip Code	Health Condition
<30	America	142**	HIV
<30	America	142**	HIV
<30	America	142**	Cancer
<30	America	142**	Cancer
>40	Asia	130**	Hepatitis
>40	Asia	130**	Phthisis
>40	Asia	130**	Asthma
>40	Asia	130**	Heart Disease
3*	America	142**	Flu
3*	America	142**	Flu
3*	America	142**	Flu
3*	America	142**	Indigestion

2-Sensitive 4-Anonymity

I-Diversity

- every equivalence class in this table has at least *l well* represented values for the sensitive attribute
- **Distinct** *I*-diversity: the number of distinct values for a sensitive attribute in each equivalence class to be at least *l*.
- *l* -Diversity may be difficult and <u>unnecessary</u> to achieve and it may cause a <u>huge information</u> <u>loss.</u>

	Non-Sensitive			Sensitive
	Zip Code	Age	Nationality	Condition
1	1305*	≤ 40	*	Heart Disease
4	1305*	≤ 40	*	Viral Infection
9	1305*	≤ 40	*	Cancer
10	1305*	≤ 40	*	Cancer
5	1485*	> 40	*	Cancer
6	1485*	> 40	*	Heart Disease
7	1485*	> 40	*	Viral Infection
8	1485*	> 40	*	Viral Infection
2	1306*	≤ 40	*	Heart Disease
3	1306*	≤ 40	*	Viral Infection
11	1306*	≤ 40	*	Cancer
12	1306*	≤ 40	*	Cancer

3-diverse data [4]

t-closeness

- An equivalence class EC is said to have t-closeness if the distance between the distribution of a sensitive attribute in this class and the distribution of the attribute in the whole table is no more than a threshold t. [5].
- It solves the attribute disclosure problems of Idiversity, i.e. skewness attack and similarity attack, [6]

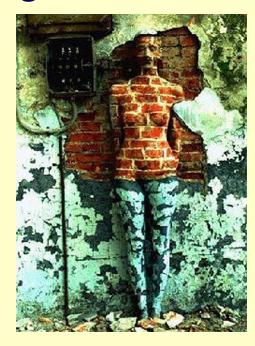
	ZIP Code	Age	Salary	Disease
1	4767*	≤ 40	3K	gastric ulcer
3	4767*	≤ 40	5K	stomach cancer
8	4767*	≤ 40	9K	pneumonia
4	4790*	≥ 40	6K	gastritis
5	4790*	≥ 40	11K	flu
6	4790*	≥ 40	8K	bronchitis
2	4760*	≤ 40	4K	gastritis
7	4760*	≤ 40	7K	bronchitis
9	4760*	≤ 40	10K	stomach cancer

0.167-closeness w.r.t. salary and

0.278-closeness w.r.t. Disease[5]

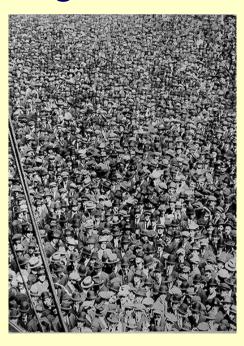
Two basic approaches

camouflage



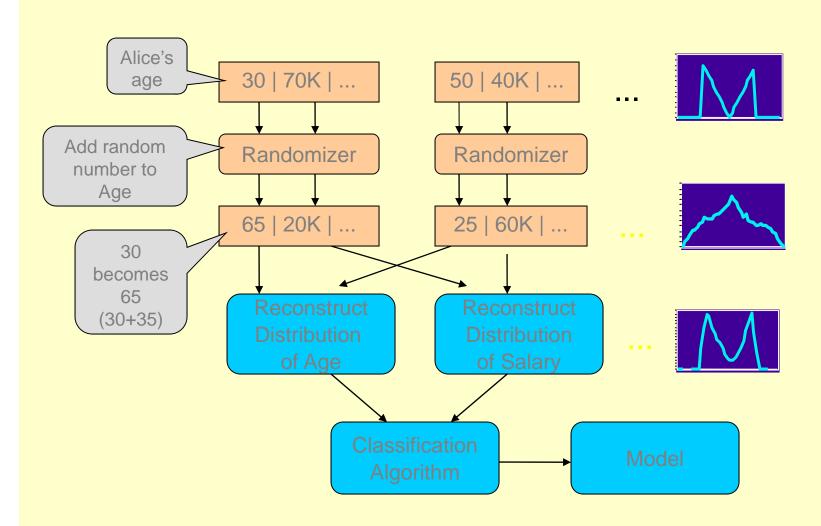
Data modification/perturbation

hiding in the crowd



k-anonymization

Randomization

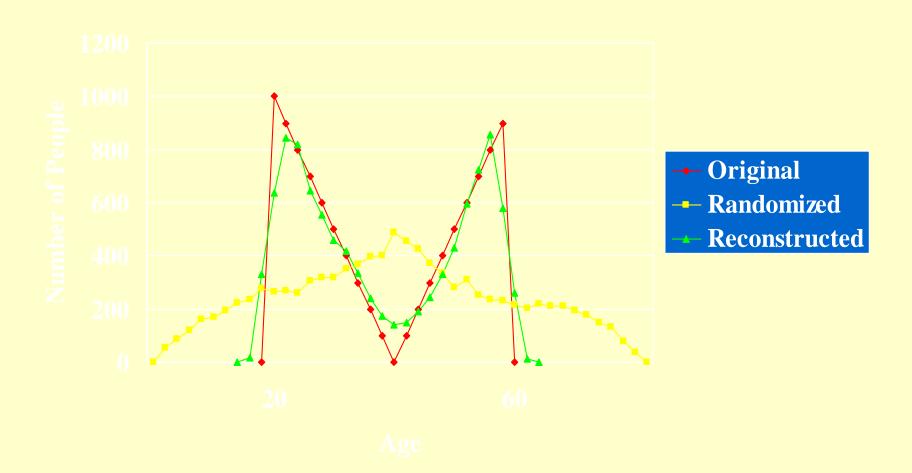


Reconstruction (linking)

- initial (confidential) values $x_1, x_2, ..., x_n$ have an (uknown) distribution X
- For protection, we perturb them with values $y_1, y_2, ..., y_n$ with a *known* distribution Y
- given
 - $x_1 + y_1, x_2 + y_2, ..., x_n + y_n$
 - distribution Y

Find an estimation of the distribution X.

Works well



Privacy measure

If in the perturbed data, we can identify an original value x in an interval $[x_1, x_2]$ with probability c%, we have a c% confidence in the privacy of x

	confidence				
	50% 95% 99.9%				
Discretization	0.5 x W	0.95 x W	0.999 x W		
Uniform	0.5 x 2α	0.95 x 2α	0.999 x 2α		
Gaussian	1.34 x σ	3.92 x σ	6.8 x σ		

example

- Salary 20K 150K
- 95% confidence
- 50% privacy for uniform distr.
- $2\alpha = 0.5*130$ K / 0.95 = 68K
- For a high level of confidence, discretization hurts the results
- Gaussian distribution is better for higher confidence levels

privacy measures

- For modification methods
- First wrt the interval to which we generalize a value
- We inject "noise" with a random variable A with distribution f
- The privacy measure is

$$\prod(A) = 2^{-\int_{\Omega_A} f_A(a)\log_2 f_A(a)da}$$

We measure entropy

Differential privacy

- The desideratum: "access to a database should not enable one to learn anything about individual that could not be learned without access" [Dalenius 77]: simlar to semantic security of Goldwasser & Micali
- Impossible because of auxiliary knowledge (AK): database of avg height of people of different nationalities + AK = SM is 2 cm shorter than avg Israeli male

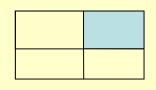
Differential privacy cont'd

- A randomized function K gives ε differential privacy if for all data sets D_1 and D_2 differing on at most one element, and all $S \subseteq Range(K)$,
- $Pr[K(D_1) \in S] \leq \exp(\varepsilon) \times \Pr[K(D_2) \in S]$
- A relative guarantee of non-disclosure: any disclosure is as likely whether or not the individual participates in D
- K is a protection ("sanitization") scheme,
 ∈ S represents a query about a database

Differential privacy cont'd

- For every pair of inputs that differ in one value
- For every output
- Adversary should not be able to distinguish between any D1and D2 based on any O:

$$\log \left[\frac{\Pr(D_1 \to O)}{\Pr(D_2 \to O)} \right] < \varepsilon(\varepsilon > 1)$$



Distributed data

- Vehicle/accident data
- To discover the causes of accidents we need to know the attributrs of different components from different manufacturers (brakes, tires)
- They will nolt disclose these values in the open
- Vertical partition

Distributed data

- A medical study carried out in several hospitals
- Would like to merge the data for bigger impact of results (results on 20 000 patients instead of 5 000 each)
- For legal reasons, cannot just share then open data
- Horizontal partition

Association Rule Mining Algorithm [Agrawal et al. 1993]

```
1. L_1 = large 1-itemsets

2. for (k = 2; L_{k-1} \neq \phi; k++) do begin

3. C_k = apriori - gen(L_{k-1})

4. for all candidates c \in C_k do begin

5. compute c.count

6. end

7. L_k = \{c \in C_k \mid c.count \geq min-sup\}

8. end

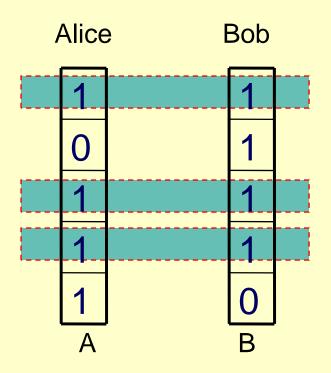
9. Return L = \bigcup_k L_k
```

c.count is the frequency of an itemset.

to compute frequency, we need access to values of attributes belonging to different parties

Example

- c.count is the scalar product.
- A = Alice's attribute vector, B = Bob'
- AB is a candidate frequent itemset
- c.count = A B = 3.
- How to perform the scalar product preserving the privacy of Alice and Bob?

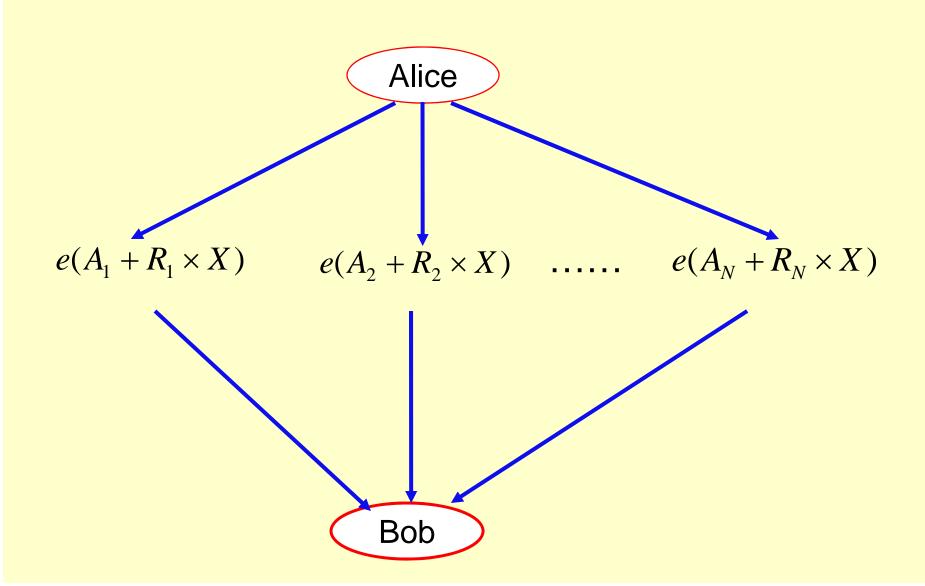


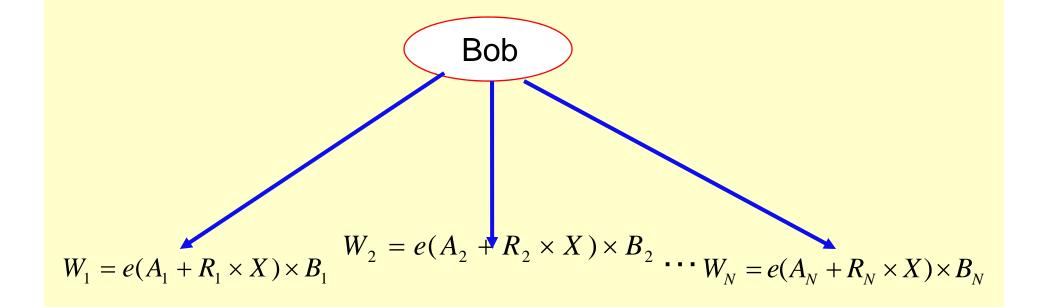
Homomorphic Encryption [Paillier 1999]

- Privacy-preserving protocol based on the concept of homomorphic encryption
- The homomorphic encryption property is

$$e(m_1) \times e(m_2) \times \cdots \times e(m_n) = e(m_1 + m_2 + \cdots + m_n)$$

• e is an encryption function $e(m_i) \neq 0$





$$B_i = 0 \Rightarrow W_i = 0$$

 $B_i = 1 \Rightarrow W_i = e(A_i + R_i \times X) \times B_i = e(A_i + R_i \times X)$

Bob computes $W' = [\prod_{j \neq 0} W_j] \mod X = [\prod_{j \neq 0} e(A_j + R_j \times X)] \mod X = [e(A_{j_1} + ...A_{j_m} + (R_{j_1} + ...R_{j_m}) \times X] \mod X$ encrypts , sends to Alice

Last stage

• Alice decrypts W' and computes modulo X.

c.count

$$= d(e(A_1 + A_2 + \dots + A_j + (R_1 + R_2 + \dots + R_j + R') \times X)) \mod X$$

$$(A_1 + A_2 + \dots + A_j) \le N < X$$

$$((R_1 + R_2 + \dots + R_j + R') \times X) \operatorname{mod} X = 0$$

- She obtains $A_1 + A_2 + \cdots + A_j$ for these A_j whose corresponding B_j are not 0, which is = c.count
- Privacy analysis

Now looking at data mining results...

Can data mining results reveal personal information? In some cases, yes: [Atzori et al. 05]:

An association rule:

$$a_1 \wedge a_2 \wedge a_3 \Rightarrow a_4[\sup = 80, conf = 98.7\%]$$

Means that $\sup(\{a_1, a_2, a_3, a_4\}) = 80$

So $\sup(\{a_1, a_2, a_3\}) = \frac{\sup(\{a_1, a_2, a_3, a_4\})}{0.987} = \frac{0.8}{0.987} = 81.05$

And $a_1 \wedge a_2 \wedge a_3 \wedge \neg a_4$ has support =1, and identifies a person!!

Protecting data mining results

 A k-anonymous patterns approach and an algorithm (inference channels) detect violations of k-anonymity of results

Discrimination and data mining

- [Pedreschi et al 07] shows how DM results can lead to discriminatory rules
- In fact, DM's goal is discrimination (between different sub-groups of data)
- They propose a measure of potential discrimination with lift: to what extent a sensitive is more assigned by a rule to a sensitive group than to an average group

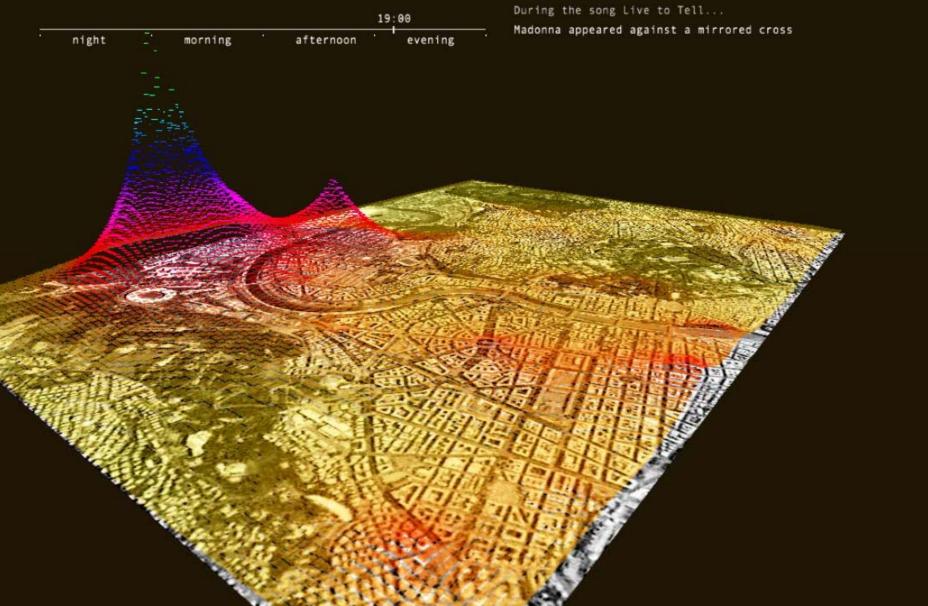
Other challenges

- Privacy and social networks
- Privacy definition where to look for inspiration (economics?)
- Text data perturbation/anonymization methods don't work
- Medical data: trails [Malin], privacy of longitudinal data
- Mobile data -

GeoPKDD

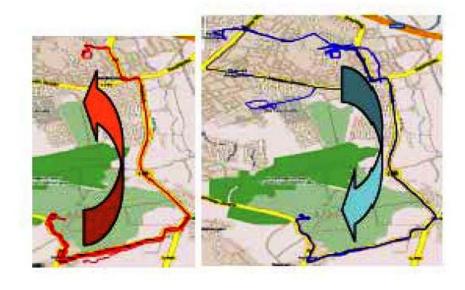
- European project on Geographic Privacyaware Knowledge Discovery and Delivery
- Data from GSM/UMTS and GPS

Madonnna Concert Cellphone activity in Stadio Olimpico Rome 2006-08-06



Located about three kilometres from the Vatican

First obtaining spatio-temporal trajectories, then patterns

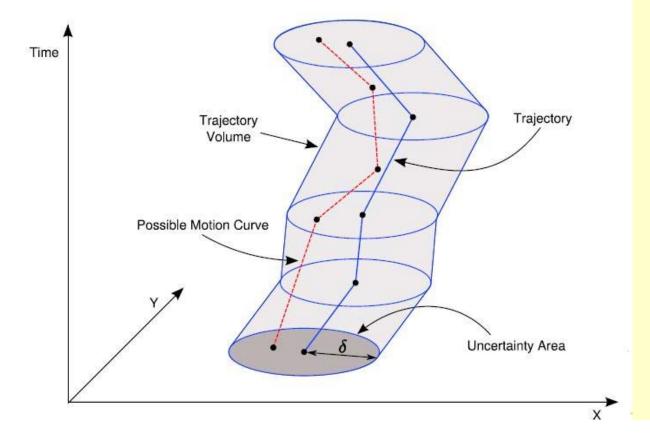


Trajectory = sequence of points visiteddans in a temporal order

pattern= set of frequent trajectories with similar transition times

Privacy of spatio-temporal data

- Modify the data in such a way each trajectory be indistinguishable from k other trajectories
- ... by minimizing distorsion introduced into the data



Conclusion

- A major challenge for database/data mining research
- Lots of interesting contributions/papers, but lack of a systematic framework
- ...?