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A new algorithm for reducing the workload of experts
in performing systematic reviews

Stan Matwin,'? Alexandre Kouznetsov,® Diana Inkpen," Oana Frunza,’

Peter 0'Blenis”

ABSTRACT

Objective To determine whether a factorized version of
the complement naive Bayes (FCNB) classifier can
reduce the time spent by experts reviewing journal
articles for inclusion in systematic reviews of drug class
efficacy for disease treatment.

Design The proposed classifier was evaluated on a test
collection built from 15 systematic drug class reviews
used in previous work. The FCNB classifier was
constructed to classify each article as containing high-
quality, drug class-specific evidence or not. Weight
engineering (WE) techniques were added to reduce
underestimation for Medical Subject Headings (MeSH)-
based and Publication Type (PubType)-based features.
Cross-validation experiments were performed to evaluate
the classifier's parameters and performance.
Measurements \Work saved over sampling (WSS) at no
less than a 95% recall was used as the main measure of
performance.

Results The minimum workload reduction for

a systematic review for one topic, achieved with

a FCNB/WE classifier, was 8.5%; the maximum was
62.2% and the average over the 15 topics was 33.5%.
This is 15.0% higher than the average workload
reduction obtained using a voting perceptron-based
automated citation classification system.

Conclusion The FCNB/WE classifier is simple, easy to
implement, and produces significantly better results in
reducing the workload than previously achieved. The
results support it being a useful algorithm for machine-
learning-based automation of systematic reviews of drug
class efficacy for disease treatment.

INTRODUCTION

This paper describes a computer system that assists
people involved in building systematic reviews,
which are among the basic tools of evidence-based
medicine (EBM). According to the Centre for
Evidence-Based Medicine, ‘Evidence-based medicine
is the conscientious, explicit and judicious use of
current best evidence in making decisions about the
care of individual patients."

Evidence-based medicine involves three distinct
steps: (1) identifying evidence from the scientific
literature that pertains to a clinical question; (2)
evaluating this evidence; and (3) applying the
evidence to the clinical problem.

Since the body of the scientific literature is
growing extremely fast (500000 new abstracts are
added to Medline every year), practicing EBM is
so challenging and labor-intensive that tools are
needed to support it. Advanced information tech-
nologies should be developed and implemented to

support EBM by reducing the labor required while
capturing high-quality evidence. The practice of
EBM integrates individual clinical expertise with
the best available external clinical evidence from
systematic research. Systematic reviews are one of
the main tools of EBM.

A systematic review is a highly structured
process for reviewing literature on a specific topic or
group of topics to distill a targeted subset of
knowledge or data. Experts first review identified
documents and complete a series of forms designed
to screen out non-relevant documents. Then core
data are extracted from the screened-in documents.

Commonly, the screening process consists of an
initial screening phase, referred to as ‘broad
screening’, and a final phase often referred to as
‘strict screening’. Usually, broad screening requires
two reviewers who review each abstract. The goal
is to retrieve 100% of relevant abstracts, while
excluding the obvious non-relevant ones. Abstracts
need the approval of only one of two reviewers to
pass to strict screening, while abstracts are excluded
only if both reviewers stipulate exclusion. Although
retrieving as many relevant documents as possible
is crucial, it is not the only goal of broad screening.
The success of broad screening also requires mini-
mizing the inclusion of non-relevant abstracts.

Articles that pass the broad screening phase are
subjected to strict screening. In strict screening,
reviewers read the article abstracts and the complete
articles with the goal of achieving 100% precision.

Systematic reviews are costly, as they take
considerable effort from domain experts. They are
also error prone, extremely hard to manage, very
difficult to keep up-to-date since new evidence
continues to emerge, and take a long time to
complete. Consequently, there is significant
demand for tools that will enhance and facilitate
systematic reviews. Machine-learning (ML) tech-
niques could provide appropriate tools.® In this
paper we present novel methods for this task,
achieving better results than in previous work.

BACKGROUND

While there is a wealth of literature on automatic
text classification,*” it has limited usefulness for
classifying medical abstracts in systematic reviews,
because it targets mainly topic identification, as in
classifying newswire articles by topic. This task is
relatively uncomplicated, since the vocabularies used
in newswire articles differ significantly by topic. In
systematic reviews, the situation is quite different.
Initially, abstracts are preselected using standard
information retrieval keyword-based queries on
a bibliographic database, and the broad screening is
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performed on the result of these queries. The keywords with
which the queries are built are therefore present in all the selected
abstracts, regardless of their class. Therefore, the vocabularies in
relevant and non-relevant abstracts exhibit fewer differences than
in the newswire topic classification. Automatic text classification
applied to systematic reviews is therefore more challenging than
the standard topic classification task. For this reason, we limited
the comparison for our work to previous attempts to use text
classification for systematic reviews.

To our knowledge, Aphinyanaphongs et al® was the first study
to apply ML to systematic reviews. The work focused on
improving performance over the clinical query filters first
proposed by Haynes et al.”~® The authors used the data derived
from the ACP Journal Club as their corpus. After experimenting
with a variety of ML techniques, they found that the support
vector machine (SVM) achieved the best performance with
those data. Their research showed that ML could be successfully
applied to creating systematic reviews.

Cohen er al'® also applied ML to systematic reviews, focusing
on reducing the workload of reviewers during broad screening by
eliminating as many non-relevant documents as possible while
including no less than 95% of the relevant documents. They
introduce a new measure, work saved over sampling (WSS).
They define work saved as ‘the percentage of papers that meet
the original search criteria that the reviewers do not have to read
(because they have been screened out by the classifier)’. They
then specify that the work saved must be greater than the work
saved by random sampling; thus work saved over sampling is
proposed as an evaluation measure. When training data are only
available for a single topic, Cohen e al'® ' represent state of the
art in automating systematic reviews. The classifier performance
scores they obtained with the voting perceptron (VP) algo-
rithm, '? the algorithm that they used for the classification task,
are used as a baseline for our current research.

In applications, besides the accuracy-based performance, it is
often interesting to look at the interpretability of the classifier.
A classifier is interpretable (understandable) if the user of this
classifier is able to interpret its meaning, and reason about the
explanation of the decision made by the classifier for a given
instance. The perceptron, which is a special case of a neural
network, consists of a set of equations of hyperplanes, with
words as variables. Decisions of Bayesian classifiers are presented
in terms of frequency of occurrence of words within a given
abstract. It is well known, for example,'? that neural networks
have low interpretability and require complex transformations
to extract interpretable knowledge from them. Following,'® we
believe that classifications by Bayesian classifiers are more
understandable by the medical end users; therefore they have an
interpretability advantage over the perceptron classifiers.

Recently, Cohen and collaborators have published two papers
in which SVM with an n-gram-based representation is used to
classify systematic reviews.'' ¥ Direct comparison is difficult, as
the evaluation measure is different (area under the curve in
Cohen'! and Cohen et al*®), and that work uses a different
training protocol based on cross-topic training. Therefore the
most recent work with which we can directly compare the
proposed approach is the study of Cohen et al.'® Furthermore, it
is generally recognized in the literature that SVM classifiers give
an excellent performance in text classification. Recent experi-
mental research,’®'® 26 however, indicates that advanced,
heuristic modifications of the classical naive Bayes classifier, for
example, multinomial naive Bayes (MNB) and complement
naive Bayes (CNB), yield a performance equaling that of SVM,
while being many times faster.
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Our motivation in undertaking the present study was to
demonstrate that a simple, more easily interpretable classifier
can be used in the systematic reviews application and yield
results comparable to other more complex and less interpretable
methods. The recent progress in Bayesian classifiers, in particular
the MNB classifier and the CNB classifier, resulted in classifica-
tion tools with topic classification performance comparable to
SVM and neural networks. We wanted to investigate whether
these results extend to the challenging and practically important
context of systematic review classification.

METHODS

Our task was to build a classifier that, once trained, will classify
previously unseen abstracts as either relevant or non-relevant to
the topic of the systematic review, with (1) very high recall and
(2) sufficient precision in removing the non-relevant articles
that, although human effort will still be required, there will be
significant labor savings.

We built and tested the automated classification system for
systematic reviews in five phases: (A) building the text collection
by extracting source data; (B) preparing the text collection for
ML and applying feature engineering, such as removing noisy
features or modifying weights; (C) text classification; (D) clas-
sifier performance evaluation; (E) tuning the classifier to specific
systematic review performance requirements. Below we discuss
each of the five phases.

Text collection

To make our research results comparable with previously
obtained results, as well as with future investigation results, we
used static and publicly available data. In particular, we built
a text collection that is as close as possible to that built by
Cohen et al.'® That collection contained 15 evidence reports
produced by the Oregon Evidence Based Practice Centre (EPC),
evaluating the efficacy of medications in several drug classes
(opioids, skeletal muscle relaxants, estrogen replacement). These
reports were mapped into a public domain collection of Medline
records from 1994 to 2003—that is, the abstracts of papers
evaluated and triaged by the EPC were fetched from that
collection. Because Cohen et al'® have published the interme-
diate results of their data extraction (as a Drug Review Journal
Citation Records file!®), we did not need to repeat all the
extraction process steps they used to obtain the Drug Review
Journal Citation Records file (see online appendix A for details).
We used this file as input for our data extraction process.

Table 1 gives information about the 15 drug groups for which
systematic reviews were built. These are the same data as used
by Cohen et al.'® We list in this table the number of abstracts in
each group, as well as the percentage of the relevant abstracts
among all the abstracts. We can observe that, in general, the data
are imbalanced: many more abstracts are judged non-relevant by
the EPC than are found relevant. This pattern makes it impor-
tant to use a classifier that will not become overwhelmed by the
prevailing non-relevant abstracts. When dealing with imbal-
anced data, the existing data mining terminology used in this
paper calls the class that contains most of the abstracts (here,
the non-relevant class) the majority class, and the other class,
containing the relevant abstracts, the minority class.

Our text repository consists of a subset of Medline abstracts
in the XML format, defined by the Text Retrieval Conference
(TREC). To be consistent with Cohen et al,'® we extracted from
the text repository a collection of 15 drug review topics based on
the Drug Class Review names, and then extracted data from the
text repository, including PMID, title, abstract, Publication Type
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Table 1 Datasets’ description (source Cohen et al')

No of % judged relevant

Drug class review abstracts (the Included class)
ACEInhibitors 2544 1.6
ADHD 851 2.4
Antihistamines 310 5.2
AtypicalAntipsychotics 1120 13.0
BetaBlockers 2072 2.0
CalciumChannelBlockers 1218 8.2
Estrogens 368 21.7
NSAIDs 393 10.4
Opioids 1915 0.8
OralHypoglycemics 503 21.0
ProtonPumplnhibitors 1333 3.8
SkeletalMuscleRelaxants 1643 0.5
Statins 3465 25
Triptans 671 3.6
Urinarylncontinence 3271 12.2

(PubType), Medical Subject Headings (MeSH) tags’, and the
class label. Our data-extraction schema selected only articles
with PMIDs that are included in the Drug Review Journal
Citation Records dataset.

Preprocessing the data and weight engineering (WE)

We used the bag-of-words (BOW) representation to code each
text collection. Each article in a text collection is represented as
a vector in an N-dimensional space where N is the total number
of terms (features) extracted from the text collection. Terms are
single words, not multiword phrases. Terms extracted from
MeSH and PubType represent the content of the relevant tags,
which could include multiword phrases.

The whole text collection should be represented as a (N+1)xJ
matrix where J is the number of articles in the text collection.
Each line j of this matrix is an N-dimensional BOW vector for
the article 7, plus the class label for the article j.

If a feature ¢ does not occur in the article j, then the relevant
matrix element is zero: a;;=0; otherwise a;; is assigned a positive
value. The way to calculate this value depends on the method used
for feature representation. The value a;; is 0 or 1 for the binary
method. For the frequency method, the value is the number of
occurrences of the feature 7 in the document j. There are other
methods to compute a;; such as tfidf (term frequency—inverse
document frequency method) feature representation.

To be consistent with Cohen ez al,'® we applied some modi-
fications to the classical BOW approach. Technically, these
modifications address the way we built the BOW terms. Because
of the nature of the Medline information, our collection includes
both flat texts, such as the abstracts, and structured texts, such
as the MeSH tags.

We grouped the extracted Medline fields into three categories.
Each category was ‘tokenized’ and preprocessed in a special way.
The first category consisted of titles and abstracts. The second
was composed of the MeSH tags. The last one included
PubTypes. We processed each category according to our under-
standing of how preprocessing was performed in Cohen er al,'
because we wanted to apply the learning algorithm to the same
data as Cohen et al.'® The steps we applied to build the final list
of terms (features for ML) from titles and abstracts are presented
in appendix B (available as an online data supplement).

"MeSH (Medical Subject Headings) is a medical thesaurus,? a hierarchical structure
of descriptors (tags) representing the US National Library of Medicine’s controlled
vocabulary used for medical information indexing and retrieval.

448

It should be noted that the use of a frequency-based represen-
tation versus a binary representation requires some thought, as it
was not immediately obvious which feature representation
method would work better for systematic review preparation
data. On the one hand, we can assume that the frequency-based
representation or more sophisticated frequency-related methods
such as 1f.idf would work better than the binary representation for
flat text fields, such as abstracts. On the other hand, since MeSH-
based and PubType-based features do not occur in an article more
than once, the binary representation method might be more
suitable for this type of data. As abstracts are narrative text and
MeSH tags and PubType are discrete values, the frequency-based
representation works better for abstracts, and the binary repre-
sentation is more suitable for MeSH-based and PubType-based
features. We have also experimented with the commonly used tf
idf, and we have found that the performance of this representation
is equal to that of a representation using ‘raw’ (unnormalized)
frequencies. This is generally consistent with the findings of
Cohen et al.’ Since a representation using frequencies alone,
without weighting features by inverse document frequencies, is
simpler and more efficient to compute, we have decided to
represent the abstracts by word frequencies, and the Pub-type and
MeSH features as binary. Cohen e /' tried both the binary and
the frequency feature weighting methods. In their experiments,
the binary method achieved better performance for the VP clas-
sifier they used. In the experimental comparisons between FCNB
and FCNB/WE in the Results section, we therefore use Cohen’s
binary representation for the VP classifier and the representation
described above for our methods.

In ML, all features are usually treated as equal by the learning
algorithms. In some tasks, however, it makes sense to give some
features weights bigger than other features, if this is likely to
improve the performance of a given learning algorithm. Such
tuning of weights is known as ‘weight engineering’. Weight
engineering modifies the existing data by weighting some of the
attributes more than others.

Some MeSH-based and PubType-based features included in our
data are highly informative for correct classification decisions
(table 9 in Cohen et a/'%), but the frequency weighting method
can assign less weight to them than to abstract-based features
that occur in an article more than once. This ‘unfair’ weighting
could account for the poor performance of the frequency-based
representation scheme in the experiments of Cohen et al.'?

Therefore, to increase the importance of PubType and MeSH
features, we used a simple WE scheme: each PubType-based and
MeSH-based feature weight was modified by multiplying it by
a fixed weight multiplier (WM). We tried multiple WM values
starting with the value 2 by increments of 1. Finally, we assigned
each drug review group the WM value that resulted in the best
WSS performance. The procedure is fully automatic; only the
final selection was performed manually, but this could also be
easily automated. We called this value the best WM value for the
current drug review group. If more than one value yielded the
best performance, we selected the smallest value. We observed
that, while different datasets could have different best WM
values, those WM values were all between 2 and 21. Although in
our experiments each WM value was computed on the training
set, it could as well be determined from a separate hold-out set,
so that it would be independent of the training data.

Text classification

We used a novel, modified version of the CNB classifier'® as
a classification algorithm, which we called factorized CNB
(FCNB). We used CNB as a basis for our classification process
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because the CNB classifiers implement state-of-the-art modifi-
cations of the MNB! classifier for a classification task with
highly imbalanced data. Because the pre-selected systematic
review data usually contain a large majority of non-relevant
abstracts (sometimes more than 99%), we needed to use classi-
fiers that take this problem into account. The CNB classifier
modifies the standard MNB classifier by applying asymmetric
word count prior probabilities that reflect the skewed class
distribution.’® The CNB algorithm is also fast and easy to
implement. Although many other classifiers could have been
used, Bayesian methods are simple and highly efficient. Besides
using VP in one study,'® Cohen et al report in another study!
good results with the use of SVMs. We find, however, that the
available implementations of SVM are two orders of magnitude
slower (in run time) than Bayesian methods."” Moreover, SVM
parameters require understanding of the SVM algorithm—for
example, the choice of the kernel or the setting of the slack
parameters coefficient—whereas the parameters of Bayesian
classifiers are based on the properties of the data—for example,
the importance of individual features or classes.

Evaluation of classification performance in systematic reviews
A systematic review ML classification system has two main
objectives: (1) to minimize the number of relevant documents
excluded by the classifier; (2) to reduce the reviewers’ workload
by excluding the maximum number of irrelevant documents.
While the first objective could be formalized by assigning
a required recall threshold, the second one requires a special
measure for workload savings. The use of precision as the rate of
correctly classified relevant articles could indicate the efficiency
of reducing workload, but it does not take into account the
achieved recall and the number of excluded non-relevant docu-
ments. Cohen et a/** introduced a new measure, WSS, that is
designed to quantify the reduction in workload in systematic
review preparation when using a classifier. That is, the classifi-
cation system can be said to save work only if the work saved is
greater than the work saved by simple random sampling.
WSS is defined as:

WSS = (TN + FN)/N — (1 —R) (1)

where TN (true negatives) is the number of negative (non-rele-
vant) abstracts correctly classified, FN (false negatives) is the
number of positive (relevant) abstracts incorrectly classified as
negatives (non-relevant), N is the total number of abstracts in
the test set, and R is the recall. This could be equivalently
expressed as:

WSS = (TN + FEN)/N—1 + TP/(TP + EN)  (2)

where TP (true positives) is the number of positive (relevant)
documents correctly classified. As Cohen et a/™® used recall and
WSS as their main measure, we did also.

In more detail, Cohen er a/™® used the special modification of
the WSS measure called WSS@95%. Where WSS@95% is a WSS
interpolation for recall at 0.95. We have similarly approximated
WSS@95% with the highest obtained WSS score with recall no
less than 0.95. (We call it the Best WSS.)

Tuning the Bayesian classifier to specific systematic review
performance requirements: the FCNB/WE algorithm

When running the original CNB, '° we were obtaining recall for the
relevant class that was significantly lower than the required 95%
level. Such results are not acceptable for a user building a real
systematic review. We have therefore modified the classifier by
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adding a heuristic weight factorization technique to the CNB
algorithm. A factor Fce [0, 1] was added to the classification rule
for choosing the label /rcyp of a document 4, as follows:

lkcNp(s) = arg max, {Iog;a(ﬂf) —F. Zﬁ-log[%} (3)
i c+a
where p(fl.) is the class prior estimate, f; is the frequency count of
feature i in document 4,
N;; is the number of times feature i/ occurred in documents of
classes other than ¢, and
N; is the total number of feature occurrences in classes other
than¢, a;is a smoothing parameter (the common practice is to set
a;=1); o denotes the sum of the @; (to ensure that the probability
distribution sums up to 1). The p(f.) term preceding the ‘minus’
operator represents the prior probability of a given class, and is
obtained from the probability distribution between the two
classes in the training set. Two main features of the algorithm are
implemented in this formula and need to be explained.

Firstly, as discussed above, the evidence of belonging to the
minority class ¢ is weak, as a frequency-based estimation of
a probability of belonging to the minority class is very inexact.
To focus the classifier on the minority class ¢, instead of
measuring the evidence of an abstract belonging to ¢, we
measure the better supported evidence of belonging to any class
other than the class c. We then use the probability of the opposite
event, which is the event of not belonging to a class other than c.
That event is logically equivalent to belonging to c¢. This is
implemented here with the expression following the ‘minus’
operator in the square bracket. It is important to observe that
the minus in front of this expression means that we evaluate
here the probability of the event complementary to belonging to
a class other than c—that is, we evaluate the probability of
belonging to c. Moreover, we further focus on the minority class
by decreasing the weight of the evidence of not belonging to this
class by multiplying the log expression by a factor F..

Secondly, to improve the recall on the class of relevant
abstracts, we give the evidence of belonging to this class an
additional weight with respect to the non-relevant class. This
increases the weight for the relevant class, while keeping the
weight of the non-relevant class.

Therefore F.=1 will be used when we compute the above
formula for the non-relevant class, and F.<1 when ¢ represents
the relevant (minority) class. We refer to this algorithm as
factorized CNB, or FCNB. To use FCNB in systematic review
preparation, we had to select a factor value that could result in
the best performance for a given drug review topic. We also had
to evaluate how this factor would accommodate new data (eg,
future articles and updates of the drug evidence review). Factor
values were determined using 10-fold cross-validation on
a separate hold-out set. Details are presented in appendix C
(available as an online data supplement).

Our method, which we call FCNB/WE, is therefore a modifi-
cation of FCNB that applies the FCNB algorithm to data that
were previously modified by performing WE on the features (a
method that boosts MeSH and PubType features). As WE
modifies (increases) the frequency values of the MeSH and
PubType features, it affects frequency-related variables in equa-
tion (3), namely f;, Nz and N; for MeSH and PubType features.
We have implemented FCNB/WE on the basis of the Weka open-
source software.??

To be able to compare our classifier performance with previ-
ously obtained results, we followed the 5X2 cross-validation
scheme used in the previous work.'”
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In 5X2 cross-validation, the dataset is randomly split in half.
One half (the training dataset) is used to train the classifier, and
then the classifier is evaluated using the other half as a test
dataset. Then the roles of the two datasets are exchanged, with
the second half used as a training set and the first half used as
a test set. The results are accumulated from both halves of the
split. The scoring process is repeated 5 times; each half of the
data is used twice—first for training and then for testing—
which produces 5X2=10 sets of scoring results. The 5X2 cross-
validation approach produces more realistic estimates of the
actual performance than the 10-fold cross-validation method,
another common approach, which often overestimates perfor-
mance.”?

We used stratified folds for cross-validation—that is, the
classes for each fold are represented in approximately the same
proportion as in the full dataset. We applied the FCNB classifi-
cation algorithm with various factor values. We used 22 values
for the factor, from 0.78 to 0.99 in increments of 0.01.

RESULTS

We performed the experiments in two batches, to evaluate first
the effects of focusing the classifier by means of using the factor
in CNB, and then to evaluate the combined effect of a factorized
classifier with WE: first, FCNB without WE, and then FCNB/
WE. For FCNB, we completed two sets of experiments with the
FCNB classifier: factor validation and 5X2 cross-validation. The
results of the factor validation experiments are presented in
appendix C.

Cohen et al™ published two sets of experimental results. The
first set was obtained without any stemming or use of a stop
word list to the representation of the data; the second set of
results used the data after removal of the 300 words from the
stop word list and after applying the Porter stemmer.*

Table 2 contains the main detailed results of our experiments
in comparison with the results of Cohen er a/*® obtained using
stemming and a stop word list, while table D1 in appendix D
(online supplement) compares our results with those of Cohen
et al'® obtained without stemming or use of a stop word list. As
usual, we refer to the approach presented in Cohen et a/* as the
VP approach. The three columns to the right of the drug topic
review column present the results of the 5X2 cross-validation

experiments. All the results are expressed using the WSS
measure, unless indicated otherwise. The first column (FCNB)
includes average WSS scores calculated as the average of all
FCNB 5X2 cross-validation WSS scores for the current drug
review. (There are five splits with two training/testing pairs
each. Therefore, 10 WSS scores were used to calculate each
average WSS.) To compare our FCNB results with the results of
Cohen e al'® using the VP approach, the second column (‘best
VP for recall > 0.95’) shows the results in Cohen ez a/'® with the
best WSS for recall over 0.95. The seventh column shows that
the summed difference between FCNB WSS and VP WSS for all
the drug reviews is +57.8%. The average difference per review is
3.9%.

To test the effects of factorization and WE, we applied the
5X2 cross-validation FCNB experiments using the WE tech-
niques (see appendix C for details). Table 2 presents the
following results:

» FCNB/WE experimental results: in the third column (FCNB/

WE);

» differences between FCNB/WE results and VP results: in the

fourth column (difference between columns 3 and 2);
> differences between FCNB results achieved with and without

applying the WE techniques: in the fifth column (‘FCNB/WE

— FCNB'’ is the difference between columns 3 and 1. We also

report 95% Cls for this comparison).

The lowest workload reduction for a topic achieved with
FCNB/WE is 8.5% (compared with 5.2% with FCNB alone), the
maximum is 62.2% (49.4% with FCNB), and the average per
topic over the 15 topics is 33.5% (22.3% with FCNB). This
makes it 11.2% higher than the average reduction workload
per topic obtained with FCNB, and 15.0% higher than the
results previously obtained with the VP algorithm used by
Cohen et al.'®

The summed difference between FCNB/WE WSS and VP WSS
for all drug reviews is +225.1%. FCNB/WE showed the best
performance relative to the results achieved by Cohen et a/ on
the NSAIDS drug review topic (the WSS percentage difference is
+43.8%). FCNB/WE’s worst WSS score was obtained on
ACEInhibitors (the WSS percentage difference is —6.9%).

The results in appendix D, table D1, are consistent with the
above results. When the VP classifier works on data that are

Table 2 Work saved over sampling results, in percentages, for 5X2 cross-validation experiments with a factorized complement naive Bayes (FCNB)

classifier and with a FCNB plus weight engineering (FCNB/WE) classifier

Best VP for
Drug review topics FCNB recall >0.95 FCNB/WE FCNB/WE — VP FCNB/WE — FCNB FCNB —VP
ADHD 494 68.4 62.2 —6.2 +12.8+12.2 —-19.0
Urinarylncontinence 29.4 19.0 29.6 +10.6 +0.2+9.7 +10.4
Opioids 45.9 15.4 55.4 +40.0 +7.5+5.5 +30.5
ACEInhibitors 29.9 59.2 52.3 —6.9 +22.4+17.9 —29.3
Estrogens 22.0 12.8 315 +24.7 +15.5+6.6 +9.2
SkeletalMuscleRelaxants 12,5 0.0 26.5 +26.5 +14.0+11.0 +12.5
BetaBlockers 21.0 22.0 36.7 +14.7 +9.7+7.7 +5.0
OralHypoglycemics 6.1 3.4 8.5 +5.1 +2.4+1.9 +2.7
Statins 22.1 20.3 315 +11.2 +9.4+59 +1.8
ProtonPumplnhibitors 5.2 17.8 229 +5.1 +17.7£9.6 —12.6
Antihistamines 5.6 0.0 14.9 +14.9 +9.3+45 +5.6
CalciumChannelBlockers 17.3 13.9 234 +9.5 +6.1+6.5 +3.4
NSAIDS 36.7 9.0 52.8 +43.8 +16.1+8.9 +21.7
Triptans 14.1 0.9 274 +26.5 +13.3%+15.3 +13.2
AtypicalAntipsychotics 1.7 15.0 20.6 +5.6 +8.9+6.0 —-3.3
Sum 334.9 2771 502.2 +225.1 +165.3 +57.8
Average 22.3 335 +15.0 +11.2 +3.9

VP denotes the Voting Perceptron classifier used in Cohen et al." The fifth column reports t-test Cls at the 95% level. Data areis subject to stemming and removal of words from a stoplist.
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neither stemmed nor subjected to stop word removal, the
differences in WSS performance between FCNB and VP in table
D1 correspond to the respective differences in table 2.

Discussion

Our results show that FCNB and FCNB/WE can be recom-
mended as algorithms for ML-based automation of systematic
reviews for the drug class efficacy for disease treatment. In this
section, we briefly summarize the main results, indicating that,
overall, FCNB and FCNB/WE achieve a better WSS performance
than the VP algorithm,'* discuss what makes FCNB, and
particularly FCNB/WE, achieve better WSS scores than the VP
approach for the majority of drug review topics and why the VP
method possibly outperforms the FCNB/WE method for two
specific drug groups, and present future work entailed by our
research.

Summary of the main results

Figure 1 compares results obtained in the present work with
those obtained for the VP approach.'® It summarizes the
distribution of the gains achieved by FCNB over VP and FCNB/
WE over FCNB. Using FCNB, we achieved an average workload
reduction of 22.3% per drug review study. Using FCNB/WE, we
achieved an average workload reduction of 33.5%—that is,
15.0% greater than the average workload reduction achieved in
previous work. It also shows that WE really pays off: the
differences in performance between FCNB/WE and FCNB are all
in favor of FCNB/WE.

Figure 1 shows that, in the majority of drug review groups (13
out of 15), the performance of FCNB/WE is better than the
performance of the VP method (we address below the case of
the two datasets, ADHD and ACEInhibitors, when this is not
the case). This result is of practical importance, because it
demonstrates that a simple and very efficient classifier performs
the systematic reviews classification task better than the main
published alternative, while being more efficient. The approach
presented here could therefore be considered as a possible tech-
nique for automating the systematic review process. We want to
emphasize that systematic reviews often start with datasets
much larger than those considered by Cohen e al,'® with the
broad screening phase including typically tens of thousands of
abstracts. The matter of the efficiency of the classifier used to
automate this phase is therefore of great practical importance.

Comparative analysis of performance

The work presented in Cohen et /' makes some observations
about the possible reasons for wide variations in the VP classi-
fication performance for the 15 drug reviews. The authors did
not find any significant correlation between performance and
sample size or fraction of positive samples. They also discussed
the issue of the number of significant features selected with the
x? test for the VP experiments.”” While 30 or fewer significant
features are not enough to adequately model the triage process,
the highest scoring topics did not necessarily have the highest
number of significant features, and the correlation between the
number of significant features and WSS was not statistically
significant. The fact remains, however, that the VP method was
used in conjunction with an intensive feature selection.

As FCNB does not normally require feature selection for
classification, we did not have problems such as a performance
decrease for small feature sets. This is in line with the general
properties of Bayesian approaches, which do not need feature
selection—non-relevant features result in small probability
values and are eliminated by the argmax operator at the core of
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Figure 1 Histogram summarizing the work saved over sampling results

for factorized complement naive Bayes (FCNB)/weight engineering (WE),
FCNB and voting perceptron (VP). The x-axis shows the discretized
differences between the methods (FCNB — VP, FCNB/WE — FCNB,
FCNB/WE — VP) , and the y-axis shows for how many topics (drug
reviews) the given difference in performance occurs. Looking at the
white bars, we observe that most of the topics are to the right of 0 on
the x-axis, visualizing the advantage of FCNB over VP. Looking at the
light grey bars, we observe that, except for two reviews, they are to the
right of 0, meaning that FCNB/WE performs better than VP on 13 out of
15 drug groups. Looking at the dark grey bars, we observe that all the
bars are in the right half of the interval, visualizing the clear advantage of
weight management when using FCNB.

the naive Bayes approach. This may be the main reason why the
FCNB scores are higher than the results produced by the VP for
the small drug review groups, such as Antihistamines.

As previously noted above, regarding the binary representa-
tion—frequency representation dilemma, while Cohen er a/*
used a binary scheme, we used a frequency-based representation
scheme. Both approaches have some advantages and disadvan-
tages that depend on the nature of the data. We believe that the
use of word frequencies for abstract-based features may be the
second reason for our better results. We provided the classifier
with more discriminative information for making better deci-
sion boundaries. When we did not use WE with FCNB, there
was a risk of underestimating the weights for the PubType-based
and MeSH-based features. (Unlike the abstract-based features,
PubType-based and MeSH-based features cannot have
a frequency greater than 1. This kind of ‘weight discrimination’
could ‘confuse’ the ML system.) The results of our experiments
show that the possible negative impact of underweighting of
MeSH-based and PubType-based features could be overcome by
applying WE. The fifth column in table 2 shows the effects of
WE combined with FCNB. The performance of FCNB/WE is
consistently better than that of FCNB, although in three drug
groups, Urinarylncontinence, CalciumChannelBlockers and
Triptans, the differences in favor of FCNB/WE are not large
enough to be statistically significant.

Regarding the ACEInhibitors and ADHD data, for which
FCNB/WE performs less well than VP, we found that the
performance obtained with FCNB/WE on these groups was still
quite acceptable. The FCNB/WE WSS scores for these data are
much better than the average FCNB/WE WSS score obtained
over 15 topics: the ADHD score was 62.2% and the ACEInhi-
bitors score was 52.3%, whereas the average WSS over 15 topics
was 33.5%. We believe that these two review groups are easy for
the VI, as the performance on both is among the best of all 15
reviews. In general, owing to its geometry (a linear hyperplane
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that best separates the two classes), the VP approach is partic-
ularly suitable for data that are linearly separable—that is, data
on which a linear classifier will do well in separating the two
classes. We believe, on the basis of a recent paper,'' that the
ADHD and ACElInhibitors drug groups are linearly separable. In
that paper, Cohen reports that a linear classifier (SVMLight with
the default, linear kernel) achieves some of its best performances
among all the 15 groups on these two groups. The linear sepa-
rability of these two groups would therefore explain why the VP
method, which is designed to work well with such data,
outperforms FCNB/WE on them.

We now briefly discuss the statistical significance of the
improvement of our results over those in Cohen er al.'® As the
experimental results for individual folds of the cross-validation
are not published in that paper, we could not run statistical
tests, such as a t test, to confirm that the differences between
our results and their results are significant.

Future work

In future work, we plan to integrate FCNB/WE with other
state-of-the-art ML approaches and techniques to create a fully
automated document classification system in which FCNB/WE
could be a part of a meta-algorithm that includes an ensemble of
classifiers. In addition to the data representation which we used
in the current research, in case the preferred name for a concept
changes over time, the integrated system could include feature
engineering based on using the Unified Medical Language
System (UMLS).?® The UMLS is a knowledge source containing
a metathesaurus, a semantic network, and the specialist lexicon
for biomedical domain. The UMLS is likely to contain both the
older and newer terms for a concept in a group of synonyms.

Another way to improve the FCNB-based text categorization
technique for systematic reviews could be to find a robust
algorithm to select factor values that match the current data. It
could be done by using data characteristics, such as the imbal-
ance rate for the available training data. An alternative approach
could be to score each article according to the confidence the
classifier has in its classification of this article. In other words,
each article and its score will determine a cut-off point, such
that only articles with a higher score will be included. We could
provide the users with results ranked by the scores and leave
them the option of choosing the level of confidence they need.

Weight engineering is not the only possible way to tune ML
classifiers to both types of features, namely binary features
(MeSH tags and PubType) and frequency features (abstracts and
titles). For example, we could try to solve the weight-underes-
timation problem and improve performance by applying a meta-
algorithm approach that combines FCNB with other algorithms
designed for binary features. This could also be a useful topic for
future research.

Finally, in this paper we have focused on comparing our efforts
with what is currently the state of the art in automating the
systematic review process. This included a performance evalua-
tion using a cross-validation protocol, as was done by Cohen e al.*
In addition, we used the WSS measure developed by Cohen et al,*
which measures work saved over and above work saved due to
random sampling. This kind of evaluation does not necessarily
reflect the labeling effort needed in a fielded system embedded in
a deployed systematic reviews system. We have addressed these
issues and we discuss our results elsewhere.?”

CONCLUSION
Our research has provided more evidence that automated
document classification has strong potential for aiding the
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labor-intensive literature review process for systematic reviews
and other similar studies.

We have demonstrated that CNB, which is designed specifically
to address classification tasks with skewed class distribution, can
be applied to the process of preparing systematic reviews. We
have shown how to modify CNB to emphasize the high recall on
the minority class, which is a requirement in classification of
systematic reviews. The result, which we have called FCNB, is
able to meet the restrictive requirement level of 95% recall that
must be achieved. At the same time, we found that FCNB leads to
better results in reducing the workload of systematic review
preparation than the results previously achieved with the VP
method. Moreover, FCNB can achieve even better performance
results when machine-performed WE is applied. FCNB provides
better interpretability than the VP approach,' and is far more
efficient than the SVM classifier also used for classifying medical
abstracts for systematic reviews.'*
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