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Abstract 
Automated document classification can be a valuable 
tool for enhancing the efficiency of creating and 
updating systematic reviews (SRs) for evidence-
based medicine. One way document classification 
can help is in performing work prioritization: given a 
set of documents, order them such that the most 
likely useful documents appear first. We evaluated 
several alternate classification feature systems 
including unigram, n-gram, MeSH, and natural 
language processing (NLP) feature sets for their 
usefulness on 15 SR tasks, using the area under the 
receiver operating curve as a measure of goodness. 
We also examined the impact of topic-specific 
training data compared to general SR inclusion data. 
The best feature set used a combination of n-gram 
and MeSH features. NLP-based features were not 
found to improve performance. Furthermore, topic-
specific training data usually provides a significant 
performance gain over more general SR training. 
 
Introduction 

Systematic reviews (SRs) are an essential 
component in the practice of Evidence-based 
Medicine (EBM), providing recommendations for 
medical treatment, diagnosis, prognosis, and etiology 
based on the best available biomedical evidence. 
Because new information constantly becomes 
available, medicine is continually changing, and SRs 
must undergo periodic updates. Currently, experts in 
EBM manually review thousands of articles on 
specific classes of drugs in order to synthesize 
treatment recommendations to direct the standard of 
practice and continually improve the standard and 
cost-effectiveness of clinical care.1 The Cochrane 
Collaboration estimates that at least 10,000 total SRs 
are needed to cover most health care problems, with 
less than half of this number completed after 10 years 
of concerted effort by the EBM community. New 
trials are currently published at a rate of more than 
15,000 per year, making the need for improved 
efficiency in preparing and updating reviews urgent.2 

By applying automated document classification 
techniques early in the process, at the stage of 
identifying and screening the possibly relevant 
literature, the workload of the systematic reviewers at 
these early stages can be reduced. Automated 
document classification can help by identifying the 
most promising documents, reducing the human 
workload, and allowing more time to be spent on the 
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more analytical parts of the task including: 
conducting more detailed analyses, writing more 
complete reports, and producing a greater number of 
complete reviews more quickly.  

When performing systematic reviews, the review 
topics are periodically updated. This creates an 
opportunity to use the article inclusion/exclusion 
decisions made previously as a training set within a 
machine learning framework. This training set can be 
used to create a classifier that prioritizes work for 
future review updates. This concept of work 
prioritization for document-intensive tasks has 
several attractive features. First, by reviewing the 
most likely important documents before other 
documents the human reviewers or curators are more 
likely to be able to “get up to speed” on the current 
developments within a domain more quickly. Also, 
while reviewers or curators can certainly read all the 
documents in a collection given sufficient time, many 
tasks have practical limitations, and it is expedient to 
read first the documents that are most likely useful. If 
time or resource limitations prevent reading all 
documents within a collection, reviewing documents 
in order of most likely importance allows a more 
confident decision to be made about when the 
document review can be considered complete. 

Most commonly in bioinformatics text 
classification research, the performance of a given 
system on a given task is measured by precision and 
recall, which are then combined into a single F-
measure.3 These metrics measure the ability of a 
classifier to make correct predictions identifying 
which documents are positive (desired for the given 
task), and which are negative (should be ignored for 
the given task). Precision is the fraction of correct 
positive predictions, recall is the fraction of true 
positive documents correctly prediction, and the F-
measure is the geometric mean of the two. 

While the precision, recall, and F-measure metrics 
are common and useful, they are not optimal or even 
relevant for all tasks. These measures are focused on 
the ability of a classification system to make binary 
predictions on the documents of interest. If the task is 
not to separate documents into positive and negative 
groups, but instead to prioritize which documents 
should be reviewed first and which later, then 
precision, recall, and F-measure do not provide 
sufficient information.  Furthermore, the binary 
prediction measures are heavily influenced by the 
prevalence of positive cases, and therefore it is 
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difficult to use these measures to make meaningful 
comparisons on the performance of a system across 
tasks with different class prevalence. 

Given a set of documents, where some are positive 
and some are negative for a given task, a good 
measure of the quality of a specific document 
ordering is the area under the receiver operating 
curve (ROC), usually abbreviated “AUC”. This 
measure is the area under the curve traced out by 
graphing the true positive rate against the false 
positive rate, at all thresholds of sensitivity for a 
given document classification system, where 1.0 is a 
perfect score and 0.50 is equivalent to a random 
ordering. The AUC is a good measure of the quality 
of work prioritization for a given classifier because it 
is equivalent to the probability of a randomly chosen 
positive sample being ranked higher than a randomly 
chosen negative sample.4 It is independent of class 
prevalence and therefore is a good overall measure to 
use when the false positive/negative cost tradeoff is 
not known in advance or when comparing 
performance on tasks with different class prevalence.  

In this work we use AUC as a consistent metric to 
compare alternative methods for applying machine 
learning techniques to automated work prioritization 
of systematic review topics. First we investigate the 
best set of features to be used from among available 
feature types including n-gram, manual annotation, 
and natural language processing (NLP) derived 
features. Other biomedical document classification 
research has found that features derived from manual 
annotation, such as MeSH terms, and NLP-based 
conceptual features, such as those produced by 
MetaMap5, improved classification performance.6-9 
We sought to determine whether these types of 
features improved SR classification as well.  

Second, using the best feature set found, we 
compare the performance obtained using SR topic 
specific training data versus non-topic specific 
training data. Work of other investigators, such as 
Aphinyanaphongs6, 7, has shown that high quality 
EBM articles can be predicted with good accuracy 
irrespective of the particular biomedical subject 
domain of the article. Since the task of selecting high 
quality EBM articles is similar to a non-topic specific 
version of selecting articles for inclusion in a SR, we 
examined the level of performance improvement 
obtained when training on data specific to an 
individual topic compared to training on SR inclusion 
decision data not specific to that SR topic. 
 
Methods 
Evaluation: To evaluate the alternative classification 
feature sets (described below) we applied each of 
them in various combinations to the fifteen 
biomedical document triage topics that we have 
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previously used in our work on the use of automated 
document classification for drug-related systematic 
review update.10 We term each unique combination 
of feature sets a feature system.  

The test collection contains the titles, abstracts, and 
MeSH terms for over 8000 documents that have been 
judged by experts for inclusion in 15 different 
systematic drug reviews. Each review comprises 
between 300 and 3500 journal article judgments. The 
15 review topics represent a wide range of drugs, 
diseases, and medical knowledge, and also appear to 
have a wide range of difficulty in terms of machine 
learning tasks. The collection is publicly available.11 

Each feature system was evaluated by performing 
five repetitions of two-way cross-validation with 
stratification to keep the ratio of positive to negative 
samples consistent between training and test splits.  
Each two-way cross-validation was randomly and 
independently split, and each feature system was 
subject to the exact same sequence of splits. 
Therefore each measurement consisted of 10 
measurements of the AUC, which were then 
averaged to create an average AUC score for each 
system for each topic.12 Systems were then compared 
across the set of 15 SR topics using a non-parametric 
rank-based repeated measures statistical analysis with 
post-hoc paired Wilcoxon tests.13 Systems were 
divided into statistically significant (α = 0.05) ranked 
performance groups, where differences between 
systems within a rank group are not statistically 
significant. Systems placed into lower rank groups 
are statistically distinct from the overall best 
performing system in each of the higher rank groups. 

We also compared topic specific training data 
versus non-topic specific training data using the best 
overall feature system found in the first set of 
experiments. For each of the 15 SR topics, we 
compared cross-validation (intra-topic training) on 
the topic to training on the data samples from the 
remaining 14 topics (inter-topic training) prior to 
classification on the given topic. To improve 
comparability, we used the same sequence of splits 
for both intra- and inter-topic training, scoring AUC 
on a one half of the given topic data at a time, 
repeating the splits five times, and averaging the 
results. Results were compared topic-by-topic for 
statistically significant differences using the t-test 
with α = 0.05.  
 
Feature Systems: Algorithms based on support vector 
machines have been consistently shown to work well 
on biomedical text with large numbers of sparse 
features and are one of the most popular methods for 
classifying biomedical text.8, 14 We used the 
SVMLight14 implementation of SVM at default 
settings to compare feature systems including:  
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unigram based features, n-gram based features of 
token length 1-4, annotation based features using 
MeSH terms, and UMLS (Unified Medical Language 
System) CUI-based features extracted using 
Metamap by applying the MMTx 2.4.C distribution. 
All features were represented as binary vectors where 
the element of a feature vector was set to 1 if that 
feature was included in a given document and 0 
otherwise. Test samples were ranked for AUC 
computation based on the SVM signed-margin 
distance. We compared systems using feature types 
both singly and in combination.  

Unigram (ABTITLE) and n-gram based features 
(NGRAM12, NGRAM13, and NGRAM14) were 
extracted from the text of the title and abstract of the 
MEDLINE record for each of the articles in the 
dataset using the StandardAnalyzer in Lucene15 as a 
tokenizer, which also applies a small stop-word list. 
N-grams consisted of from one to four contiguous 
tokens not separated by punctuation. 

For features based on MeSH terms (MESH), we 
included features representing primary terms, main 
terms and subheadings separately, as well as 
complete MeSH terms as given in the MEDLINE 
record. For the Metamap features, we evaluated 
systems using two types of UMLS CUI-based 
features. The first type (MMTXFIRST) used just the 
first and highest scoring UMLS term identified for 
each phrase. The second type used all of the high 
scoring UMLS terms matched to a given phrase in 
the text (MMTXALL). All features of the given types 
were input to the SVM classifier. In order to limit the 
number of possible combinations and interactions to 
a manageable set, neither stemming nor feature 
selection was performed. 
 
Results 
Average AUC for each of the 13 compared feature 
systems over each of the 15 tasks are shown in Table 
1. The mean average AUC for each system across all 
topics is also shown at the bottom of the table. The 
table separates groups of systems into statistically 
indistinguishable equal rank groups according to the 
results of the RMEQ analysis (α = 0.05 significance). 

The overall top scoring system includes features 
based on unigrams, MeSH terms, and n-grams of 
length 2 (ABTITLE+MESH+NGRAM12) with a 
mean average AUC of 0.8662 overall. The other 
system in the top rank group incorporated 
MMTXFIRST features instead of n-gram features 
(ABTITLE+MESH+MMTXFIRST), had a mean 
average AUC of 0.8481, and was statistically 
indistinguishable from the top ranked system.  

The systems combining unigram-based features 
with either MeSH or higher order n-gram based 
features performed equivalently and comprised rank 
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group 2. There were no significant differences 
between using n-gram features of lengths up to two, 
three or four. Rank group 3 includes the 
ABTITLE+MESH+MMTXALL system, as well as 
the system that used only MESH-based features. 
Rank group 4 shows equivalent performance between 
the ABTITLE+MMTXFIRST and ABTITLE system, 
implying there was no significant performance gain 
by adding MMTXFIRST features to unigram based 
features. The ABTITLE+MMTXALL system placed 
alone in the fifth rank group, performing worse than 
the ABTITLE+MMTXFIRST system. Systems 
consisting solely of MMTx features, MMTXFIRST 
and MMTXALL, finished in the lowest rank group 
with mean average AUCs of 0.7423 and 0.7333. 

Figure 1 presents the results of comparing training 
on inter- versus intra-topic documents. Intra-topic 
performance is significantly better than inter-topic on 
11 of the 15 topics, and about equal for 3 topics. For 
9 of the topics seeing an improvement, the difference 
is greater than 0.10, and for some topics, such as 
ADHD, Estrogens, and OralHypoglycemics, the 
inter-topic results are not much better than random, 
while the intra-topic results are quite good. 
Interestingly, for one topic, SkeletalMuscleRelaxants, 
the inter-topic AUC is actually much better than the 
intra-topic performance.  
 
Discussion 
Several useful conclusions can be made from these 
results in terms of optimizing AUC for SR review 
document prioritization. First and foremost, there was 
no advantage to be gained using the MMTx derived 
UMLS CUI features over other feature types. While a 
system using these features was included in the top 
rank group, the ABTITLE+MESH+NGRAMS12 
system performed just as well, if not better. Since 
extracting UMLS CUI features with MMTx is a 
computationally and time-intensive operation, and 
extracting n-grams is fast and simple, n-gram based 
features, in combination with MeSH terms, are to be 
preferred. Also, while inclusion of n-gram features 
was helpful in achieving maximum performance, 
there was no increased benefit in going from 2-gram 
to 3- or 4-gram length features. 

This result contrasts somewhat with that of 
Yetisgen-Yildiz and Pratt, who found that including 
MMTx-derived features improved results over their 
text only system when applied MEDLINE abstracts. 
However, they did not include n-gram features in 
their work.9 In fact, in only this one case 
(ABTITLE+MESH+MMTXFIRST) did adding 
MMTx-based features to a system 
(ABTITLE+MESH) improve that system’s rank 
group, and as noted, this improvement was not more 
than that derived from adding simple n-grams. For 
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the other feature systems, adding MMTX-based 
features did not show an improvement. The 
ABTITLE+MESH system performed significantly 
better than the ABTITLE+MESH+MMTXALL 
system. We were hoping that MMTx-derived features 
would be helpful in situations where MeSH terms 
were not available. This was not the case, as the 
ABTITLE system performed about the same as the 
ABTITLE+MMTXFIRST system, implying that 
adding the MMTXFIRST features did not improve 
performance to the unigram-only system. Taken 
alone, it did not matter whether MMTXFIRST or 
MMTXALL features were used, as both MMTX-only 
systems performed poorly. However the 
MMTXFIRST features were beneficial in 
combination with other features 
(ABTITLE+MESH+MMTXFIRST), while the 
MMTXALL features were somewhat disruptive to 
classification task performance.  

MeSH-based features were essential for top 
performance. Removal of these features from a 
system resulted in a system of lower performance. 
For example, removing MeSH features from the best 
ABTITLE+MESH+NGRAMS12 system resulted in 
the ABTITLE+NGRAMS12 system being ranked 
one group lower. Removing MeSH features from the 
ABTITLE+MESH system resulted in the ABTITLE 
system ranking two groups lower. 

The results shown in Figure 1 make it clear that 
training on data specific to a SR topic almost always 
achieves performance greater than training on more 
general systematic review inclusion data, and is 
sometimes essential for good performance. Therefore 
topic-specific training should be done when data is 
available, such as when updating a previous SR. 
However, there are two circumstances where training 
on general SR inclusion data may be warranted. First, 
when no topic-specific training data is available 
general training on SR inclusion data may be 
sufficient. Across the 15 studied topics the mean 
average AUC was 0.7380 when trained on inter-topic 
documents, as compared to 0.8610 for intra-topic. 
Some topics, such as Triptans, did well with inter-
topic training (average AUC = 0.8262), although not 
as well as with intra-topic. This level of performance 
may be acceptable for some uses. Secondly, for one 
topic, SkeletalMuscleRelaxants, the intra-topic 
performance was poor. An examination of the dataset 
shows the likely reason for this. There are only 9 
positive documents out of 1643 for this topic. This is 
the lowest absolute number of positive documents 
across the 15 topics and evidently was not enough 
positive data to adequately characterize the task. The 
general SR training data more adequately described 
the parameter space for inclusion in this SR. 
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Conclusion 
In this work we have shown that automated work 
prioritization can be accomplished with high 
performance across a range of drug-related SR topics 
with a straightforward feature set. Extension to non-
drug related SRs is an area for future work. Unlike in 
previous work, we found that NLP-based features do 
not provide a significant advantage over simpler 
feature types. We have also shown that topic-specific 
training data is required for best performance. 
However, there are circumstances where the 
performance achieved using classifiers trained on 
general (inter-topic) training data may be useful or 
necessary. To allow focus on the feature system 
issues, stemming, feature selection, and feature 
weighting were not included. Also, it is presently 
unknown what level of performance is necessary in 
order to provide adequate value to the SR process. 
Furthermore, prospective studies must be conducted 
to determine what level of performance can be 
achieved on future document collections. Further 
work will investigate these and related issues. 
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Figure 1. Comparison of mean AUC between inter- and intra-topic training for all 15 topics. 

TASK ABTITLE+MESH+NGRAMS12 ABTITLE+MESH+MMTXFIRST ABTITLE+MESH ABTITLE+NGRAMS13 ABTITLE+NGRAMS14 ABTITLE+NGRAMS12
ACEInhibitors 0.9462 0.9362 0.9378 0.9465 0.9465 0.9478
ADHD 0.9244 0.9054 0.9262 0.9155 0.9125 0.9203
Antihistamines 0.7228 0.6913 0.7048 0.7185 0.7289 0.7060
AtypicalAntipsychotics 0.8180 0.8045 0.8013 0.8256 0.8254 0.8164
BetaBlockers 0.8911 0.8679 0.8721 0.8690 0.8675 0.8704
CalciumChannelBlockers 0.8738 0.8408 0.8419 0.8397 0.8431 0.8349
Estrogens 0.8876 0.8692 0.8753 0.8502 0.8456 0.8526
NSAIDS 0.9515 0.9383 0.9412 0.9538 0.9546 0.9496
Opioids 0.8972 0.9086 0.8996 0.9017 0.8994 0.9029
OralHypoglycemics 0.7815 0.7603 0.7753 0.7530 0.7478 0.7598
ProtonPumpInhibitors 0.8600 0.8360 0.8429 0.8573 0.8589 0.8546
SkeletalMuscleRelaxants 0.7383 0.6851 0.6594 0.5988 0.5974 0.5962
Statins 0.9007 0.8704 0.8785 0.8617 0.8617 0.8555
Triptans 0.9097 0.9204 0.9112 0.9054 0.9009 0.9076
UrinaryIncontinence 0.8905 0.8878 0.8825 0.8784 0.8766 0.8782

MEAN 0.8662 0.8481 0.8500 0.8450 0.8445 0.8435

Rank Group 5 System Features
TASK ABTITLE+MESH+MMTXALL MESH ABTITLE+MMTXFIRST ABTITLE ABTITLE+MMTXALL MMTXFIRST MMTXALL

ACEInhibitors 0.9329 0.9206 0.9312 0.9356 0.9260 0.7614 0.7917
ADHD 0.8924 0.9286 0.9001 0.9193 0.8831 0.7215 0.6543
Antihistamines 0.6912 0.6733 0.6585 0.6803 0.6627 0.5528 0.5668
AtypicalAntipsychotics 0.8004 0.7781 0.7915 0.7839 0.7882 0.7569 0.7574
BetaBlockers 0.8534 0.8479 0.8429 0.8388 0.8275 0.7468 0.7307
CalciumChannelBlockers 0.8357 0.8352 0.8049 0.8015 0.8014 0.7294 0.7577
Estrogens 0.8506 0.8729 0.8345 0.8339 0.8122 0.7155 0.6718
NSAIDS 0.9402 0.9095 0.9298 0.9355 0.9318 0.8289 0.8767
Opioids 0.9035 0.8822 0.9120 0.8984 0.9032 0.8246 0.8061
OralHypoglycemics 0.7554 0.7260 0.7369 0.7519 0.7348 0.6650 0.6902
ProtonPumpInhibitors 0.8154 0.8404 0.8224 0.8291 0.8022 0.7586 0.7525
SkeletalMuscleRelaxants 0.6748 0.6642 0.6046 0.5734 0.5995 0.6071 0.5360
Statins 0.8649 0.8500 0.8301 0.8319 0.8259 0.7552 0.7487
Triptans 0.9192 0.8423 0.9121 0.9008 0.9098 0.8623 0.8269
UrinaryIncontinence 0.8811 0.8493 0.8753 0.8678 0.8655 0.8492 0.8321

MEAN 0.8407 0.8280 0.8258 0.8255 0.8183 0.7423 0.7333

Rank Group 3 System Features Rank Group 4 System Features Rank Group 6 System Features

Rank Group 1 System Features Rank Group 2 System Features
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