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Main points and motivation

Reviewed article: 

“Support Vector Inductive Logic Programming” 
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Main points and motivation

� Goal: prediction of toxicity

� Intersection of SVM and ILP

� SVM provides for dimensionality independence
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� ILP kernel captures relational information



Chemistry

• Molecular structure of toxic chemicals
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Images from Environmental Health Perspectives



Chemistry
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Inductive Logic Programming

� Introduced by Stephen Muggleton in 1992

Inductive Logic Programming (ILP) 

= 
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= 

Machine Learning Ʌ Logic Programming

=

Learning with Logic



Inductive Logic Programming

� Induction – reasoning from specific to general

� Logic programs are the set of Horn clauses that follow the 
rules of the first order logic:

mother(X, Y)           parent(X, Y)  Ʌ  female(X) .
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female(Jane).                  female(Ann).

male(Jack).                     male(John).

parent(Jane, Ann).          parent(Jack, Ann).

� Questions:  Is Jane a mother of Ann?

Who is a mother of Ann?



Inductive Logic Programming

ILP is represented in logic programs which are used to 
derive a solution to a problem by inducing a hypothesis 
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derive a solution to a problem by inducing a hypothesis 
based on a set of positive and negative examples.



Inductive Logic Programming

� Concept learning:  given a background knowledge B and 

experimental observations E (consisting of positive E+ and 

negative E- examples) find a hypothesis H such that:

B  Ʌ H  |=  E
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B  Ʌ H  |=  E

� B, E and H are each logic programs



Inductive Logic Programming

� B, H, and E should satisfy the following conditions:

Background11



Inductive Logic Programming

� Classify the following:

Positive examples Negative examples
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Inductive Logic Programming

� Classify the following:

Positive examples Negative examples
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Inductive Logic Programming

� B would specify following rules:

� before(X, Y)  :- <when position of X is less than position of Y>

� adjacent(X, Y)  :- <when there is no other object between X and 

Y>
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Y>

� Then the resulting theory H will be:

� positive  :- before(circle, triangle),  adjacent(triangle, circle).



Support Vector Machines

� Take any problem and transform it into a high dimensional 
space, so that it becomes linearly separable, but

� Calculations to obtain the separability plane can be done in 
the original input space (kernel trick)
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the original input space (kernel trick)

Info from CSI5387 lecture notes by Dr. Stan Matwin



Support Vector Machines

� I.e. SVM learning process consists of 2 stages:

1. Map the input data,  d1, . . . , dn ∈ D, into some higher 
dimensional space H through a non-linear mapping φ that 
is given by .
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∈

is given by φ : D → H.

2. Construct a linear function f in the space



Support Vector Machines

� The kernel function may transform the data into a higher 
dimensional space to make it possible to perform the 
separation.
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Info from http://www.dtreg.com/svm.htm



Propositionalization

� Propositionalization – techniques to transform relational 
(first order logic) representation to propositional (fixed 
sized feature vectors)

� Involves construction of structural features from relational 
background knowledge
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background knowledge

� => Any propositional learner can be applied after 
propositionalization

� SVILP is similar in its use of support-vector technology to 
the domain-dependent bottom-up propositionalisation
approach



Bottom-Up Propositionalization

� Discover fragments that occur frequently in the dataset (ex. 
circle followed by triangle)

� Bottom-up approach to fragment generation: generate only 
those fragments that really occur in the examples

� Algo:  depth-first search for fragments for each data point 
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� Algo:  depth-first search for fragments for each data point 
(ex. sequence)



Support Vector ILP

� In short: SVM with ILP as a kernel function

� Like in ILP, assume background knowledge B, examples E
and a hypothesis H
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and a hypothesis H

� SVILP bases a kernel on the predictions of the clauses h in 
H



Support Vector ILP

� Kernel is built by forming a binary hypothesis-instance 

association matrix M: hi × dj , where hi ∈ H and dj ∈ D.

� For each hypothesis clause h in H: 

h : D → {True, False}.

τ
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� Conversely the τ function gives the hypothesised clauses 
covering any particular instance:

τ (di) = {h : ∃h ∈ H, (B, h |= di)}

� So the kernel function is as follows:

K(di, dj) = f(τ (di) ∩ τ (dj))



Results

� Tested on the new DSSTox dataset (as opposed to 
Mutagens)

� Used 5-fold cross validation with mean squared error 
(MSE) and R-squared evaluation

� Compared results with well known QSAR software 
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� Compared results with well known QSAR software 
TOPKAT(Toxicity Prediction by Komputer Assisted 
Technology)

� Also compared to following techniques:  partial least 
squares (PLS), multi instance kernels (MIK) , an RBF kernel



Results
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Conclusion

� Accuracy is good, but perhaps not the best way to 
evaluate the approach

� No mention of the performance time
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� The kernel works within the standard ILP setting of 
generalisation with respect to background knowledge 
(not just atomic generalization)

� SVILP method shows significant improvement with 
respect to the other methods

� Follow up work confirms this (see references)
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