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What is Learner Instability?

Definition

A learning algorithm is said to be unstable if it is sensitive to
small changes in the training data

Problems caused by instability

I Estimates of predictive accuracy can exhibit high variance

I Difficult to extract knowledge from the model; or the
knowledge that is obtained may be unreliable
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What is Learner Instability?

Example

Understanding low yield in a manufacturing process:

I “The engineers frequently have good reasons for believing
that the causes of low yield are relatively constant over
time. Therefore the engineers are disturbed when different
batches of data from the same process result in radically
different decision trees. The engineers lose confidence in
the decision trees, even when we can demonstrate that
the trees have high predictive accuracy.” [Turney, 1995]
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Review: Decision Tree Induction

I Using the C4.5 decision tree software [Quinlan, 1996]

I Task: Given a collection of labelled examples, build a
decision tree that accurately predicts the class labels of
unseen examples

Type Colour DriverAge Risk

Sport Silver 24 High
Sport Red 37 High

Economy Black 19 High
Economy Silver 21 High

Sport Black 39 High
Sport Silver 46 Low

Economy Black 62 Low
Economy Red 26 Low
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High

High

DriverAge <= 24

FalseTrue

Low

Sport Economy

Type

I Classify an unseen example:

I DriverAge=32, Type=Economy, Colour=Black
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Decision Tree Splitting Criteria

I The best attribute and split at a given node are
determined by a splitting criterion

I Each criterion is defined by an impurity function f (p+, p−)

I Here, p+ and p− represent the probabilities of each class
within a given subset of examples formed by the split

I C4.5 uses an entropy-based criterion (i.e. gain ratio)

I f (p+, p−) = (p+) log2(p+) + (p−) log2(p−)

I Another impurity function, called DKM, was proposed by
Dietterich, Kearns, and Mansour [Dietterich et al., 1996]

I f (p+, p−) =
√

2 · p+ · p−
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Decision Tree Instability (C4.5 algorithm)

UCI Lymphography dataset
(attributes renamed)

A <= 3

B +

C D

A <= 1 + + + - -

- +

D

+ + E B

- A <= 1 F A <= 3

- + C + - G

+ -H -

+ + -

106 training examples

107 training examples
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Types of Stability

I We distinguish between two types of stability:
semantic and structural stability

I Given“similar”data samples, a decision tree learning
algorithm is:

I semantically stable if it produces trees that make
similar predictions

I structurally stable if it produces trees that are
syntactically similar
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Quantifying Stability

Semantic stability

Measure the expected agreement between two decision trees

I Defined as the probability that two trees predict the same
class label for a randomly chosen example [Turney, 1995]

I Estimate the agreement of two trees by having the trees
classify a set of randomly chosen unlabelled examples

Structural stability

No widely-accepted measure exists for decision trees

I We propose a novel measure, called region stability

I Compare the decision regions (or leaves) in one tree with
those of another
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Semantic Stability (Example)

0

y=3

x=5

Tree 1
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FalseTrue
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y <= 3

True False



Semantic Stability (Example)

0

y=3

x=5

Tree 1

Tree 2

0

y=3

x=5

Semantic Stability

The probability that the two trees
assign the same class label to an
unseen example

Classify unlabelled examples

1 x=1, y=1 (same label) X

2 x=6, y=4 (same label) X

3 x=9, y=2 (same label) X

4 x=8, y=8 (same label) X

I Score = 4/4 = 1
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Region Stability

I Each leaf in a decision tree is a decision region

I Defined by the unordered set of tests along the path
from the root to the leaf

I Two decision regions are“equivalent” if they perform the
same set of tests and predict the same class label

I We estimate the region stability of two trees by having
the trees classify a set of randomly chosen
unlabelled examples
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Region Stability: Continuous Attributes

0 1.55

0 1.5

True boundary at .6

Tree 1

Tree 2

I Specify a value ε ∈ [0, 100]%

I Thresholds that are within this range of one another are
considered to be equal
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C4.5 Instability Example

UCI Lymphography dataset
(attributes renamed)

A <= 3

B +

C D

A <= 1 + + + - -

- +

D

+ + E B

- A <= 1 F A <= 3

- + C + - G

+ -H -

+ + -

106 training examples

→ Active Learning →

107 training examples
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Active Learning

I In a passive learning setting, the learner is provided with
a set of training examples (typically drawn at random)

I In active learning [Cohn et al., 1992], the learner
controls the examples that it uses to train a classifier

I Three main active learning paradigms:

1. Pool-based
2. Stream-based
3. Membership queries

I We focus on pool-based active learning, or
selective sampling

I Active learning methods have been shown to make more
efficient use of unlabelled data

I Yet, no attention has been given to their stability
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Selective Sampling

Given: A pool of unlabelled data U and some labelled data L

Repeat until (some stopping criterion is met):

1. Train a classifier on the labelled data L

2. Select a batch of m examples from the pool U , obtain
their labels, and add them to the training set L

We empirically studied 4 selective sampling methods that can
use C4.5 as a base learner:

1. Uncertainty sampling [Lewis and Catlett, 1994]

2. Query-by-bagging [Abe and Mamitsuka, 1998]

3. Query-by-boosting [Abe and Mamitsuka, 1998]

4. Bootstrap-LV [Saar-Tsechansky and Provost, 2004]

I Random sampling served as a baseline comparison
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Uncertainty Sampling
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Query-by-Bagging
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Other Sampling Methods

Query-by-Boosting

I Committee is formed using the AdaBoost.M1 algorithm
[Freund and Schapire, 1996]

I Committee member ti has voting weight βi = εi
1−εi

,
where εi is the weighted error rate of ti

Bootstrap-LV (Local Variance)

I Bagging; Examples are selected by sampling (without
replacement) from the distribution D(x), x ∈ U

I Di(x) is inversely proportional to the variance in the
class probability estimates (CPEs) for example xi

Direct selection versus Weight sampling
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Committee-based Selective Sampling

C4.5

Bagging
or

Boosting

L U

Selection
(Voting)

Measure stability, accuracy, etc.
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Experiments

Questions being addressed

I Do certain selective sampling methods grow more stable
decision trees than others?

I Are committee-based sampling methods effective at
selecting examples for training a single decision tree?

I Can changing C4.5’s splitting criterion improve
stability?
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Experimental Procedure

I 16 UCI datasets [Newman et al., 1998]

I Only datasets that contained at least 500 examples
I Multi-class problems converted to two-class
I Missing values removed

I Each dataset was partitioned as follows:

Initial
15%

Unlabelled(Pool)
52%

Evaluation
33%

I Other parameters:

I Learning stopped once 2/3 of the pool examples labelled
I Committees consisted of 10 classifiers
I Region stability computed using ε = {0, 5, 10}%
I Results averaged over 25 runs (diff. initial training data)
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Experimental Procedure (Continued)

I We measured three (3) types of active learning stability
I Tree i was compared with...

I the tree grown on iteration i − 1 (previous tree) �
I the tree grown on iteration n (final tree) �
I the trees grown on iteration i when given different initial

training data L �

↓ ↓

L01 → t01,1 → t01,2 → t01,3 → . . . → t01,n

L02 → t02,1 → t02,2 → t02,3 → . . . → t02,n
...

l

L25 → t25,1 → t25,2 → t25,3 → . . . → t25,n

↑ ↑
These are called PrevStab, FinalStab, and RunStab
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Evaluation

I Statistical significance was assessed by comparing the
average ranks of the sampling methods.

I Recommended procedure for comparing multiple learning
methods [Demšar, 2006].

Example

Method 1 Method 2 Method 3 Method 4

Dataset 1
Dataset 2
Dataset 3

Avg. Rank
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Evaluation

I Statistical significance was assessed by comparing the
average ranks of the sampling methods.

I Recommended procedure for comparing multiple learning
methods [Demšar, 2006].

Example

Method 1 Method 2 Method 3 Method 4

Dataset 1 1 4 2 3
Dataset 2 2 3 1 4
Dataset 3 1 4 2.5 2.5

Avg. Rank 1.333 3.667 1.833 3.167
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Evaluation (Continued)

I For a given {statistic, sampling method, splitting
criterion, data set} tuple, we get a sequence of scores

I How do we rank the sampling methods?

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

australian

Fraction of pool examples labelled
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.140

.145
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Random
QBag
QBoost
BootLV
Uncert.



Averaging Scores

I Summary statistic: sequence of scores → single number

1. Compute the average score si at each iteration i
(i.e. over the 25 runs)

2. The overall score is a weighted average 1
n

∑n
i=1 wi · si ,

where wi = 2i
n(n+1)

I The weight increases linearly as a function of i

I We argue that stability and accuracy are most important
in the later stages of active learning

I e.g. Stability in early rounds is of little value if stability
deteriorates in later rounds

Kenneth Dwyer, University of Alberta Decision Tree Instability and Active Learning 31



Averaging Scores

I Summary statistic: sequence of scores → single number

1. Compute the average score si at each iteration i
(i.e. over the 25 runs)

2. The overall score is a weighted average 1
n

∑n
i=1 wi · si ,

where wi = 2i
n(n+1)

I The weight increases linearly as a function of i

I We argue that stability and accuracy are most important
in the later stages of active learning

I e.g. Stability in early rounds is of little value if stability
deteriorates in later rounds

Kenneth Dwyer, University of Alberta Decision Tree Instability and Active Learning 31



Example: Averaging Scores and Ranking
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Ranks/Scores

1. QBag (.953)

2. Random (.858)

3. BootLV (.644)

4. Uncert (.638)
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Statistical Significance [Demšar, 2006]

Dataset Random QBag QBoost BootLV Uncert
(R) (G) (T) (L) (U)

anneal .144 (4) .121 (1) .135 (3) .125 (2) .150 (5)
australian .129 (1.5) .129 (1.5) .131 (5) .130 (3.5) .130 (3.5)
car .090 (5) .077 (1) .082 (4) .078 (2) .081 (3)
german .293 (5) .274 (1) .285 (2) .290 (4) .289 (3)
hypothyroid .006 (5) .002 (2) .002 (2) .002 (2) .004 (4)
kr-vs-kp .014 (5) .007 (1.5) .008 (3) .007 (1.5) .010 (4)
letter .015 (5) .011 (2) .011 (2) .011 (2) .013 (4)
nursery .056 (5) .038 (1.5) .039 (3) .038 (1.5) .044 (4)
pendigits .016 (5) .010 (1.5) .010 (1.5) .012 (4) .011 (3)
pima-indians .286 (5) .283 (2) .280 (1) .284 (3) .285 (4)
segment .020 (5) .011 (1) .012 (2.5) .012 (2.5) .019 (4)
tic-tac-toe .217 (5) .197 (1) .201 (2) .207 (3) .211 (4)
vehicle .227 (1) .231 (5) .229 (3.5) .228 (2) .229 (3.5)
vowel .056 (5) .033 (1) .036 (2) .037 (3) .049 (4)
wdbc .073 (4) .068 (2) .067 (1) .069 (3) .076 (5)
yeast .256 (4.5) .250 (1) .253 (2.5) .256 (4.5) .253 (2.5)
Avg. rank (4.375) (1.625) R,U (2.500) R (2.719) R (3.781)

I Apply the Friedman and Nemenyi significance tests
I e.g. At α = .05, the critical difference is 1.527
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Error Rates

I The committee-based sampling methods achieved lower
error rates than did Uncertainty or Random

I At first glance, this might not appear to be a novel or
interesting result

I Important difference from previous active learning studies:

I A committee of C4.5 trees selected examples that were
used to train a single C4.5 tree, which was evaluated

I In prior research, e.g., Query-by-bagging selected
examples for training a bagged ensemble of trees

I When trained on the same data sample, a committee of
trees is likely to be more accurate than a single tree

I Yet, a committee of trees is no longer
interpretable [Breiman, 1996]

Kenneth Dwyer, University of Alberta Decision Tree Instability and Active Learning 35



Error Rates

I The committee-based sampling methods achieved lower
error rates than did Uncertainty or Random

I At first glance, this might not appear to be a novel or
interesting result

I Important difference from previous active learning studies:

I A committee of C4.5 trees selected examples that were
used to train a single C4.5 tree, which was evaluated

I In prior research, e.g., Query-by-bagging selected
examples for training a bagged ensemble of trees

I When trained on the same data sample, a committee of
trees is likely to be more accurate than a single tree

I Yet, a committee of trees is no longer
interpretable [Breiman, 1996]

Kenneth Dwyer, University of Alberta Decision Tree Instability and Active Learning 35



Error Rates

I The committee-based sampling methods achieved lower
error rates than did Uncertainty or Random

I At first glance, this might not appear to be a novel or
interesting result

I Important difference from previous active learning studies:

I A committee of C4.5 trees selected examples that were
used to train a single C4.5 tree, which was evaluated

I In prior research, e.g., Query-by-bagging selected
examples for training a bagged ensemble of trees

I When trained on the same data sample, a committee of
trees is likely to be more accurate than a single tree

I Yet, a committee of trees is no longer
interpretable [Breiman, 1996]

Kenneth Dwyer, University of Alberta Decision Tree Instability and Active Learning 35



Error Rates

I The committee-based sampling methods achieved lower
error rates than did Uncertainty or Random

I At first glance, this might not appear to be a novel or
interesting result

I Important difference from previous active learning studies:

I A committee of C4.5 trees selected examples that were
used to train a single C4.5 tree, which was evaluated

I In prior research, e.g., Query-by-bagging selected
examples for training a bagged ensemble of trees

I When trained on the same data sample, a committee of
trees is likely to be more accurate than a single tree

I Yet, a committee of trees is no longer
interpretable [Breiman, 1996]

Kenneth Dwyer, University of Alberta Decision Tree Instability and Active Learning 35



Error Rates (Continued)

I We typically observed a“banana”shape, indicating
efficient use of unlabelled data (below: kr-vs-kp)
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Tree Size

I The selective sampling methods consistently yielded larger
trees than did Random sampling (below: vowel)
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Tree Size and Intelligibility

I Trees grown using Query-by-bagging (QBag) contained 38
percent more leaves, on average, than those of Random

I Yet, we argue that this did not usually result in a loss of
intelligibility

I There is no agreed-upon criterion for distinguishing
between a tree that is interpretable and a tree that is not

I Let’s consider one simple criterion:

I There might exist a threshold t , such that any tree
containing more than t leaves is uninterpretable

I On a given dataset, if QBag’s leaf count is greater than
t while Random’s is at most t , then QBag has sacrificed
intelligibility
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Tree Size and Intelligibility (Continued)

QBag
Tree
Size

Random
Tree Size

t

t

D1
D2

D3

D4D5

Both intelligible

Both unintelligible

Random more
complex

QBag more complex

I We examined all integer values of t between 1 and 25,
and found QBag to be more complex on at most 5
datasets (t = 13)
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Stability

I Query-by-bagging (QBag) grew the most semantically
and structurally stable trees

I Its stability gains across runs were highly significant
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Splitting Criteria: Entropy vs. DKM

I We employed the Wilcoxon signed-ranks test

I DKM was more structurally stable and more accurate
than entropy

I Structural stability of all 5 sampling methods improved
when using DKM

I The best method, QBag, exhibited even better
performance when paired with DKM

I Differences in semantic stability and tree size were, for
the most part, insignificant
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Main Contributions

1. How should decision tree (in)stability be measured?

We proposed a novel structural stability measure for d-trees,
called region stability, along with active learning versions

2. How stable are some well-known active learning methods
that use the C4.5 decision tree learner?

Query-by-bagging was found to be more stable and more
accurate than its competitors

3. Can stability be improved in this setting by changing C4.5’s
splitting criterion?

The DKM splitting criterion was shown to improve the
stability and accuracy of C4.5 in active learning
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Future Work

Incremental Tree Induction [Utgoff et al., 1997]

I Tree is restructured when new training data arrive

I On average, requires less computation than growing a
new tree from scratch

I Error-correction mode: Only add a new example if the
existing tree would misclassify it

I Alternatively, we could add all new examples, but only
update the tree if an example is misclassified

I These“good enough” trees might be more stable
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Future Work (Continued)

Learning under Covariate Shift [Bickel et al., 2007]

I Active learning constructs a training set whose
distribution may differ arbitrarily from the original

I I could be the case that ptrain(x ) 6= ptest(x )

I The expected loss is minimized when training examples
are weighted by:

ptest(x )

ptrain(x )

I Is such a correction beneficial in active learning?

I Are techniques for dealing with class imbalance are more
appropriate?
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Conclusions

I When training a single C4.5 tree in an active learning
setting, one should use the DKM splitting criterion and
select examples with Query-by-bagging

I This combination yields the most stable and accurate
decision trees

I We should be aware of the potential instability of machine
learning algorithms, particularly when attempting to
extract knowledge from a classifier
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Thank You!

?
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