
UCEd Use Cases development approach

Stéphane S. Somé
SITE, University of Ottawa,

ssome@site.uottawa.ca

Abstract

This document presents an approach for specifying use cases with the
Use Case Editor (UCEd). We propose an iterative approach where use
cases are defined in conjunction with a domain model. Each iteration
involves validation by inspection and simulation.

1. Overview

The following flowchart shows the first part of a suggested approach for
developing use cases using UCEd. The process starts with requirements
including the overall business objective, description of product intent,
preliminary version of use cases elicited from users, etc.

1

Figure 1: Use Cases development approach with UCEd

The end result is a requirements specification consisting of use cases
and a preliminary domain model. In the second part of the process
(discussed in Section 9) sequencing between related use cases is
specified and the domain model updated.

We use an Automated Teller Machine (ATM) system to illustrate the
approach. The initial requirements should state information such as what
the system is about, who are the users, what are the boundaries and so
on. We suppose a classical ATM system which goal is to provide banking
facilities to customers. For sake of simplicity, we suppose the system
includes the ATM interface itself as well as all the back treatment
necessary for banking. At this stage, it is possible that preliminary
sketching of the main functions and transactions are known.

2. Use Cases Creation

We suggest an iterative approach for use cases creation, where use
cases are defined, edited, and validated one at the time.
As an example, suppose our first use case for the ATM system is a use
case describing how users log themselves in the system in order to use
it for their transactions.

The first task in a use case definition is to come up with a meaningful
name. A use case name should capture the high-level goal of the
described activity. In our example, a good name would be “log in”. The
use case is then
added to the use
case model.
• Open the use

case editing
tool (File ->
Open -> Use
Case Editor),
and Specify a
new name for the
use case by
replacing the
default name
(New) by the use
case name (“log
in”). Click on the
new use case in

2

Figure 2: Initial use case edition

the use case model tree to open a description editor.
• Once a use case has been identified in the use case model,

1. Define the use case
description
elements. The
mandatory
elements are: title,
system under
design, primary
actor, and
precondition. The
title is the same as
the use case name.
The following figure
shows the use
case writing tool
after the first stage
of use case “log in”
creation.

In the above
example, the system
under design is ATM,
the primary actor is User (the one who initiate the use case and have a
goal that needs to be satisfied) and the precondition is “ATM is ON”.
Recall that conditions are in the form <Entity> verb <Value>
Where verb is a conjugated form of “to be” in the present tense (e.g: is,
are, is not, ...)1. A description and a goal should also be specified for the
use case. The description is a short paragraph on what the use case is
about. The goal specifies in one or two sentences the expectation of the
use case actors from the execution of the use case.

2. Define use case primary scenario.
A primary scenario describes the normal course of events in a use
case. The use case goal is fulfilled at the end of this scenario.

Create a sequence of actor actions, system reactions to fulfill the goal
and to realize the postcondition (if already defined).

In order to add a first step to a use case:
• right-click on STEPS, and

1 Other allowed verbs are have and can.

3

Figure 3: Use case with description elements specified

• select Add Step
A new line numbered 1. will be added to the use case description.
Type in the use case description edition area to edit a line,

The following figure shows a primary scenario definition to use case “log
in”.

The scenario is a sequence of steps each being either an actor action or
a system reaction. The first step in the primary scenario should be an
action performed by the primary actor.
It is also advised to define postconditions to scenarios. Condition “User
is logged in” has been specified as the postcondition of the main
scenario of use case “log in”.

3. Add alternative courses of events (secondary scenarios) to use case.

Alternative courses of events may be created by systematically
analyzing each step asking questions as
• what error situations are possible after the step ?
• what variations to the normal behavior are possible after the step ?

Some secondary scenarios end-up with the use case goal being
abandoned (failure scenarios). While other secondary scenarios branch

4

Figure 4: Use case "log in" with primary scenario defined

back at the primary scenario leaving the possibility that the goal
becomes fulfilled (recovery scenarios). The last step in a recovery
scenario is a branching statement (GOTO) back to the primary scenario.
An alternative postcondition should be specified for each failure
scenario.

Right-click on a step and select Add Alternative to Step to create an
alternative scenario from a step.

Figure 5 shows use
case “log in” with
some alternative
scenarios.
Note that not all
(even not any)
alternative course of
events need to be
defined before
performing the next
stages of domain
extraction and
validation. Several
iterations may be
used for a single use
case.

3. Domain elements extraction

Use case “log in” cannot be validated nor a state model generated at
this stage for a lack of domain model. A domain model can be created
manually. Alternatively, some of the domain elements may be extracted
from the use case using the domain model extraction wizard.

Double-click on Extract Domain (or select Validate -> Extract
Domain From Use Cases), to start the domain model extraction
wizard.

5

Figure 5: Use case "log in" with some alternative scenarios

The following figure is a view of a session with the wizard.

Select parts to match string shows a part of a use case text that can
not be parsed because of insufficient information. A selection of the
appropriate types for each part of the string needs to be made. For
instance, in the above example, ATM was chosen as a System Concept
and the remainder of the string as an operation of ATM.

After going through the wizard, use File -> Open -> Domain Editor to
open the domain editor.

The resulting domain model shown below includes all the necessary
elements for use cases validation.

6

Figure 6: View of Domain Model extractor wizard

7

Figure 7: Domain Model derived from use case "log in"

4. Domain Model Validation

A domain model needs to be validated to ensure correctness and
completeness. A validated domain model is also needed before use
cases can be validated.

Double-click on Validate (or select Validate -> Validate Domain) to
validate the domain. Results of domain model validation are shown in
the domain editor tool message area.

5. Use Cases validation

Use cases validation ensures that a correct syntax is used for use cases
and that all use
case elements
are defined in
the domain
model.

Select Validate
-> Validate
Use Cases to
launch use cases
validation.
Results of use
cases validation
are shown in the
use cases
editing tool
message area.

In the ATM
example, the
validation results
are as in Figure
8.

The use case syntax is fine. The validation results include warnings
related to use case sequencing. We discuss sequencing in Section 9.

8

Figure 8: Use case "log in" validation results

6. Control-flow based state model generation

A control flow-based state model for use case “log in” is generated by
right-clinking on the use case in the use case model, and selecting
State Machine -> (Re)generate Control Flow State Machine for
log in (alternatively, menu option Generation -> Generation based
on Use Case flow -> Generate for: log in could be used).

The resulting state model can be viewed by right-clicking on use case
“log in” and selecting State Machine -> View State Machine
(alternatively, menu option State Machine -> State Machine
Obtained from Use Case flow -> View Use Case log in could be
used).

The following Figure shows use case
“log in” control-flow based state
model as shown by the state model
viewer.

Transition events are abbreviated
for convenience. They can be
revealed by hovering over the
graph.

9

Figure 9: Control-flow based state model
generated from "log in"

State models may also be viewed by generating a Graphviz dot2 file and
by using a dot viewer. Right-click on use case “log in” and select State
Machine -> Export State Machine in Graphviz dot format to
generate a dot file.

The following shows the resulting dot file rendered with dotty.

Visualization allows validating that a state model conforms to the intent
of a use case. Validation is also possible using simulation.

2 http://www.graphviz.org/

10

Figure 10: Visualization of state model in dot format

7. State model simulation

Simulation of the control-flow based state model generated from use
case “log in” is launched by right-clicking on the use case and selecting
State Machine -> Simulate Use Case log in (alternatively, menu
option Simulation -> State Machine Obtained from Use Case flow
-> Simulate Use Case log in could be used). UCEd simulation tool is
opened using menu option File -> Open -> Simulator.

The following shows a view of the simulation tool given the ATM
example.

Only one actor
(User) has been
defined so far
and only two
operations are
defined for that
actor. The
current state is
the state model
initial state.

Events are
simulated by
clicking on them
in the Actor
Events pane. For instance clicking on event user type pin results in the
following message.

11

Figure 11: Initial view of the Simulator

Figure 12: Warning for un-supported event

This is normal according to the use case since the first event should be
User inserts a card.

When event inserts a card is selected, the behavior as specified by use
case log in depend on whether the inserted card is unreadable or not
(alternative 1.a). Accordingly, the simulator asks which possibility
should be considered by displaying the following

Choosing the first condition results in the following.

12

Figure 13: Dialog for choosing a guard condition

Figure 14: Simulator view after guard choice

8. Specification of operations

A part from use cases, an objective of UCEd is to help specify operations
such that their implementation (according to the specification) would
allow the realization of the use cases.
An operation specification includes:

 pre-conditions: a set of conditions that need to hold prior to the
operation,

 post-conditions which include in turn
 added-conditions: a set of conditions that become true after

the operation,
 withdrawn-conditions: a set of conditions that are removed

after the operation.
Preconditions specify the necessary state for an operation. Added-
conditions specify new state information and withdrawn-conditions
specify parts of the state that stop being relevant after an operation. For
instance, withdrawn-conditions may be used to express the fact that an
entity state is re-initialized.

8.1 Operation effects identification

Some of the operations effects follow from an analysis of what
operations are supposed to do. As an example, the ATM operation
display error message intuitively should result in a modification of what
is displayed to the user such at an error message is shown. The effect
can be specified by:
1. introducing a new attribute to the ATM called display3,
2. adding error message as a possible value of display,
3. adding condition ATM display is error message as an added

condition of operation display error message.

Similar effects can be added to operations ask User pin and display
operation menu. The resulting domain model is as follow.

3 A sub-component is probably more appropriate.

13

8.2 Operation effects validation

The validation of specified operation effects proceeds by (1) the
generation of an operation-effect based state model and (2) the manual
inspection and/or simulation of that state model.

To generate an operation-effect based state model for the ATM example
with the modified domain, validate the use case model, then select
Generation -> Generation based on Operation effects -> Add: log
in. Then, selects State Machine -> State Machine obtained from
Operation effects -> View Global StateChart to view the generated
StateChart.

14

Figure 15: Domain Model with some operation effects

The generation given the operations as specified results in an
inconsistent state model (a StateChart can not be created) and the
following message is displayed.

A consistent state model should be such that:
 (1) triggers and reactions are not possible from a same state,
 (2) only one reaction is possible from a state,
 (3) no state allows both guarded and unguarded transitions.
Situation (3) applies in the ATM example. Typically, a trigger event insert
card is possible from the same state as guarded transitions.

Notice that a state
model was
generated but due
to the inconsistency,
a StateChart
representation of
this state model is
not possible. The
produced state
model (in text form)
is shown in Figure
17. It is displayed
using menu option
State Machine ->
State Machine
From Operation Effects -> View Detailed StateGraph.

15

Figure 17: Detailed effect-based state model

Figure 16: Message produced for inconsistent state model when
attempting StateChart generation

The problem is due to lack of effects to User's operation insert card that
translates in the above detailed state graph to the three non-
deterministic transitions from state 1.
We need to specify operation insert card such that its execution
produces a change of state. The guards conditions user card is
unreadable and user card is NOT unreadable would then be applied from
that state and not conflict with operation insert card.

As a general rule, actor's operations such as User's operation insert
card, should have added-conditions specified to capture a transaction
state. In the ATM example, we will specify transaction states for the
operations of actor User as follow.

1. Add an attribute to User, say transaction status.
2. Specify possible

values to the
attribute such
that different
states of Users'
transactions are
captured. We
define possible
values card
inserted and
pin entered for
that purpose.

3. Specify added
conditions to
User operations.
Here we specify
condition User
transaction
status is card
inserted to
operation insert
Card, and
condition User
transaction
status is pin
entered to
operation type
pin.

The resulting
domain model is shown in Figure 18.

16

Figure 18: Domain Model with operation effects

We can attempt to generate a state model with the modified domain
model. Reset the state model first to remove use case log in from the
sate model by selecting Generation -> Generation based on
Operation effects -> Reset State Machine.
The resulting state model is still inconsistent as shown by the following
message, which is displayed when attempting to view the StateChart.

Below is the detailed state model.

17

Figure 19: Inconsistency displayed when attempting StateChart generation

Figure 20: Detailed effect-based state model

We can observe non-deterministic transitions from state 6 where two
system reactions (check user's identification and display operation
menu) are conflicting. Operation check user's identification should
produce a state change.
Intuitively checking of a user identification would result in a state where
the user's identification is known as valid or not valid. We can

1. add an attribute identification to User,
2. add valid as a possible value of attribute identification of User,
3. add added-condition user identification is valid OR user

identification is not valid to operation check user's
identification

The modified domain model and use case are as follow.

18

Figure 21: Modified domain model

Additionally, a guard needs to be added to step 5 to ensure operation
display operation menu is executed only when the User identification is
valid.

The generated state model is now free of inconsistencies. StateChart
generation from operation effects is now possible. Below is the
StataChart obtained from use case "log in".

19

Figure 22: Use case "log in" with guard in step 5

We notice the following warning when generating a state model based
on operation effects.

WARNING - success postcondition "user is logged in" of use case log in
is not satisfied at the end of scenario.
 Actual conditions are
 [user identification is valid, atm Display is operation menu, atm is on,
 user transaction status is pin entered, user card is NOT unreadable]

Effects need to be specified such that the use case success
postcondition holds at the end of the primary scenario. Recall that use

20

Figure 23: State model corresponding to
use case in Figure 22

case log in success postcondition is “User is logged in”. State S5 is the
last state obtained from the main scenario. The conditions
corresponding to a state may be displayed by hovering over it or by
double clicking on the state when viewing the state model.

State S5 corresponds to condition [User identification is valid AND User
card is NOT unreadable ATM is ON AND User transaction status is pin
entered AND ATM display is operation menu] (). we can ensure use case
log in postcondition by adding condition “User is logged in” as an added
condition to operation display operation menu. The following shows the
state model generation results after this change.

The state model inspection and simulation reveals other problems with
operation effects.
For instance, when simulating the operation-effect based state machine,
the following shows the simulator screen after selecting operation user
insert card, condition user card is NOT unreadable and operation user
type pin.

21

Figure 24: State model generation result

Figure 26
is
obtained
after the
selection
of
operation
user
insert
card.

The
operation
shouldn't
be
accepted
at this
stage
since the
User's
card has already been inserted and has not been ejected yet.
The control-flow based state machine exhibits the correct behavior by

22

Figure 25: Simulator view

Figure 26: Simulator view after trigger "user insert card"

not allowing operation user insert card after operation user insert card,
condition user card is NOT unreadable and operation user type pin.

We can note that state S5 in the operation-effects based state machine
(Figure 23) is a sub-state of state S0. State S0 corresponds to condition
[ATM is on] while state S5 corresponds to [user identification is valid
AND ATM is on AND ATM display is operation menu AND user is logged in
AND user card is NOT unreadable AND user transaction status is pin
entered]. Because of this relation, all transitions possible from state S0
are also possible from state S5.

In order to avoid the above mentioned behavior, the state obtained after
user insert card followed by user type pin shouldn't be sub-state of S0.
The specification can be corrected based on the observation that the
pre-condition do not reflect the fact the User card is not inserted at the
start of the use case. After a modification of the pre-condition to ATM is
ON AND User transaction status is not card inserted followed by
validation and generation of operation-effect based state machine, state
S0 now corresponds to [ATM is on AND user transaction status is NOT
card inserted] and state S5 is not sub-state of S0 anymore. Operation
user insert card is now denied after operation user insert card,
condition user card is NOT unreadable and operation user type pin.

23

9. Use Case sequencing

Use cases are not always independent one from the other. There are
sequential dependencies between use cases such that a use case
execution may need that other use cases have been completed first.
Sequencing may also concern the ability to repeat a use case after a
particular scenario. As in the preceding discussion, use case sequencing
should be elaborated first based on control-flow, before equivalent
operation effects are introduced.

9.1 Use Case repetition

It should be possible to start use case "log in" over after User card
ejection in steps 1.a.2 and 2.a.1. We use the resume statement to
specify that the use case may repeat after steps 1.a.2 and 2.a.1.

Use case sequencing is reflected in control-flow generated StateChart-
Charts as transitions between use case nodes.

24

Figure 27: Use case "log in" with resume statements

The StateChart-Chart generated from use case “log in” includes
transitions from state S3 and S6 to the use case state border
corresponding to the two resume statements.

In order that the operation-effect based StateChart corresponds to the
control-flow based StateChart in Figure 28, the control-flow based state
model in Figure 23 should be such that the system returns to state S0
rather than going to states S6 and S3, after user card ejection
(operation user eject card).
Recall that state S0 corresponds to condition [ATM is on AND user
transaction status is NOT card inserted], state S3 corresponds to
condition [ATM Display is pin enter prompt AND ATM is on AND User

25

Figure 28: StateChart corresponding to
use case "log in" showing transitions
corresponding to 'resume' statements

transaction status is card inserted AND User card is NOT unreadable]
and state S6 corresponds to [ATM Display is error message, ATM is on
AND User transaction status is card inserted, User card is unreadable].
Operation eject User Card post-conditions should be such that the
condition corresponding to S0 is obtained.
Therefore, the operation needs to withdraw conditions ATM Display is
pin enter prompt, User transaction status is card inserted, User
card is NOT unreadable, User Card is unreadable and ATM
display is error message and needs to add condition User
transaction status is not card inserted.

We specify
User
transaction
status is not
card inserted
as an added-
condition and
conditions
ANY ON
User* and
ANY ON ATM
display as
withdrawn-
conditions to
operation eject
User Card. The
withdrawn-
conditions
state that all
conditions on
entity User (as
well as sub-
entities of
User), and all
conditions on
entity ATM
display are to
be removed
after the operation execution.

The following is the resulting state chart. The system returns now to
state S0 after operation eject Card.

26

Figure 29: Specification of operation 'eject card' to allow repetition

27

Figure 30: Effect-based state model

9.2 Use Cases integration

Once a use case definition is satisfactory (i.e the use case is deemed
valid by inspection/simulation), use cases development process may
proceed with definition of additional use cases.
 In the ATM example, there are several other use cases such as withdraw
cash, make deposit, transfer funds, ...
We suggest that each use case be defined independently prior to
integration.
1. Define each use case from a fresh state model following the approach

discussed .
2. Integrate the use cases. We suggest an incremental integration

approach where use cases are integrated one at the time or in small
subsets.

The following flowchart describes the use case integration process
starting from a set of use cases and a domain model.

The process
begins with a set
of use cases and
a domain model.
Control-flow
sequencing
between the use
cases are first
specified using
use cases follow
lists and
enabling
directives.

The control-flow
sequencing is
validated by
inspection/simulation of a generated control-flow based StateChart-
Chart. Following control-flow validation, operation effects are specified
such that a generated effect-based state-model is deemed satisfactory
by comparison to the control-flow based StateChart-Chart.

28

Figure 31: Use Case sequencing elaboration process

For instance suppose use cases “turn ATM on”, “turn ATM off”,
“withdraw cash” and “make deposit” are defined for the ATM application
in addition to use case “log in”.
Title: turn ATM on
Description:
System Under Design: ATM
Primary Actor: Operator
Participants:
Goal: Allows an Operator to start the ATM
up so that it could provide transaction
services to Users.
Follows Use Cases:
Invariant:
Precondition: ATM is OFF
STEPS
1.The Operator turns the system ON
2.The ATM asks the amount in the cash
dispenser
3.The Operator enters the amount of
money currently in cash dispenser
4.The ATM displays a welcome message
Success Postcondition:

Title: turn ATM off
Description:
System Under Design: ATM
Primary Actor: Operator
Participants:
Goal: Allows an Operator to switch the
ATM off. Transaction services are not
provided anymore following the use case.
Follows Use Cases:
Invariant:
Precondition: ATM is ON
STEPS
1.The Operator turns the system off
2.The ATM clears the system
Success Postcondition:

Title: withdraw cash
Description:
System Under Design: ATM
Primary Actor: User
Participants:
Goal: Allow a User to get a cash amount
by deduction from his/her account.
Follows Use Cases:
Invariant:
Precondition: ATM is ON AND ATM
Display is operation menu
STEPS
1.The User selects cash withdrawal
2.The ATM asks the withdrawal amount
3.The User enters an amount
4.The ATM asks the customer account
update
5.ATM provides cash in the cash
compartment
6.The User takes the cash from the cash
compartment
7.The ATM ejects the user card
Success Postcondition:

Title: make deposit
Description:
System Under Design: ATM
Primary Actor: User
Participants:
Goal: Allows a User to make a money
deposit to his/her account.
Follows Use Cases:
Invariant:
Precondition: ATM is ON AND ATM
Display is operation menu
STEPS
1.The User selects cash deposit
2.The ATM asks for a deposit amount
3.The User specifies a deposit amount
4.The ATM asks the user to insert a
deposit
5.The User inserts a deposit
6.The ATM updates the User's account
7.The ATM ejects the user card
Success Postcondition:

Table 1: Use cases in the ATM System without sequencing constructs

For sake of simplicity we are restricting these use cases to their main
scenario.

29

9.2.1 Control-flow sequencing

Control-flow sequencing is specified using use case follow lists and
enabling directives.

A use case follow list specifies which use cases precede that use case
and how these use cases are synchronized. Two operators: AND and OR
are used.

● If a use case uc0 follow list is expressed as “uc1 AND uc2 AND ...
ucN”. All of the use cases uc1, uc2, ... ucN need to reach a point
where they enable use case uc0 in order for uc0 to be executed.

● If a use case uc0 follow list is expressed as “uc1 OR uc2 OR ...
ucN”. Use case uc0 can execute as soon as any of use cases uc1,
uc2, ... ucN reaches a point where uc0 is enabled.

An enabling directive specifies which use cases may execute from a
given point of a use case scenario and whether or not these use cases
execute concurrently.

● After enabling directive “enable uc1, uc2, ... ucN”, one and only
one of use cases among uc1, uc2, ... ucN may execute.

● After enabling directive “enable in parallel uc1, uc2, ... ucN”, all of
use cases uc1, uc2, ... ucN may execute concurrently with the
others.

In the ATM example, suppose an analysis determined the following
sequencing constraints:

(1)Use case “log in” may execute after the primary scenario of use
cases “turn ATM on”, “withdraw cash” or “make deposit”.

(2)The primary scenario of use case “log in” must be completed
before use cases “withdraw cash” and “make deposit”.

(3)Use cases “withdraw cash” and “make deposit” execute
alternatively. Meaning only one of these 2 use cases execute at a
time.

(4)Use case “turn ATM off” may follow any of “turn ATM on”,
“withdraw cash” and “make deposit”.

(5)Use case “turn ATM on” may follow the primary scenario of “turn
ATM off”.

Following are use cases “turn ATM on”, “turn ATM off”, “withdraw cash”
and “make deposit” with follow lists and enabling directives to reflects
the above sequencing constraints.

30

Title: turn ATM on
Description:
System Under Design: ATM
Primary Actor: Operator
Participants:
Goal: Allows an Operator to start the ATM
up so that it could provide transaction
services to Users.
Follows Use Cases: turn ATM off
Invariant:
Precondition: ATM is OFF
STEPS
1.The Operator turns the system ON
2.The ATM asks the amount in the cash
dispenser
3.The Operator enters the amount of
money currently in cash dispenser
4.The ATM displays a welcome message
5.enable log in, turn ATM off
Success Postcondition:

Title: turn ATM off
Description:
System Under Design: ATM
Primary Actor: Operator
Participants:
Goal: Allows an Operator to switch the
ATM off. Transaction services are not
provided anymore following the use case.
Follows Use Cases: turn ATM on OR
withdraw cash OR make deposit
Invariant:
Precondition: ATM is ON
STEPS
1.The Operator turns the system off
2.The ATM clears the system
3.enable turn ATM on
Success Postcondition:

Title: withdraw cash
Description:
System Under Design: ATM
Primary Actor: User
Participants:
Goal: Allow a User to get a cash amount
by deduction from his/her account.
Follows Use Cases: log in
Invariant:
Precondition: ATM is ON AND ATM
Display is operation menu
STEPS
1.The User selects cash withdrawal
2.The ATM asks the withdrawal amount
3.The User enters an amount
4.The ATM asks the customer account
update
5.ATM provides cash in the cash
compartment
6.The User takes the cash from the cash
compartment
7.The ATM ejects the user card
8.enable log in, turn ATM off
Success Postcondition:

Title: make deposit
Description:
System Under Design: ATM
Primary Actor: User
Participants:
Goal: Allows a User to make a money
deposit to his/her account.
Follows Use Cases: log in
Invariant:
Precondition: ATM is ON AND ATM
Display is operation menu
STEPS
1.The User selects cash deposit
2.The ATM asks for a deposit amount
3.The User specifies a deposit amount
4.The ATM asks the user to insert a
deposit
5.The User inserts a deposit
6.The ATM updates the User's account
7.The ATM ejects the user card
8.enable log in, turn ATM off
Success Postcondition:

Table 2: Use Cases in the ATM System with sequencing constructs

31

Use case “log
in” is shown in
Figure 32. A
StateChart-
Chart is
generated
from the use
cases using
Generation
->
Generation
based on
Use Case
flow ->
Generate
StateChart
Chart.The
generation
proceeds fine as
shown in Figure
32.
The generated
StateChart Chart
is displayed using
State Machine
-> State
Machine
obtained from
Use Case flow
-> View
StateChart
Chart.
Figure 33 shows
the generated
StateChart-Chart.
Each use case
corresponds to a
node and these
nodes are
connected either

32

Figure 32: Use case "log in" with sequencing constructs

Figure 33: StateChart-Chart obtained from the ATM use cases

directly as “turn ATM off” and “turn ATM on” or through flow nodes. In
this example, only decision/merge nodes appear.

Sequencing can be validated by simulating the generated StateChart-
Chart. Prior to simulation, the default initial use case may be changed
using Simulation ->
State Model
obtained from Use
Case flow ->
Simulate StateChart
Chart -> Set Initial
State.
Use Case “turn ATM
on” is selected here as
initial use case. The
simulation will start
with this use case
enabled.

9.2.2 Operation-effects based sequencing

Once control-flow sequencing has been validated, the domain model is
updated such that state models based on operation effects allow the
same sequencing between use cases as state models generated based
on control-flow.
We suppose the process described in the previous sections has been
followed for each use case. A domain model has been developed such
that the operation effect-based state model corresponding to each use
case in isolation is deemed valid by inspection/simulation. Table 3 shows
an example of domain model with the required properties.

33

domain
 System Concept:ATM
 Attribute:display
 Possible Values Set
 Value:error message
 Value:pin enter prompt
 Value:operation menu
 Value:amount in dispenser prompt
 Value:welcome message
 Value:withdrawal amount
 Value:deposit amount prompt
 Value:deposit insertion prompt
 Attribute:transaction status
 Possible Values Set
 Value:customer account update
 Value:user account updated
 Value:user cash provided
 Operation Set
 Operation:display error message
 AddedCondition:ATM display is error message
 Operation:eject user card
 AddedCondition:User transaction status is not card
 inserted
 WithdrawCondition:ANY ON User*
 WithdrawCondition:ANY ON ATM display
 Operation:ask user pin
 AddedCondition:ATM display is pin enter prompt
 Operation:check user's identification
 AddedCondition:User identification is valid or User
 identification is not valid
 Operation:display operation menu
 AddedCondition:ATM display is operation menu
 AddedCondition:User is logged in
 Operation:ask amount in cash dispenser
 AddedCondition:ATM display is amount in dispenser prompt
 Operation:display welcome message
 AddedCondition:ATM display is welcome message
 Operation:clear system
 AddedCondition:ATM is OFF
 WithdrawCondition:ANY ON Operator*
 WithdrawCondition:ANY ON ATM*
 WithdrawCondition:ANY ON User*
 Operation:ask withdrawal amount
 AddedCondition:ATM display is withdrawal amount
 Operation:ask customer account update
 AddedCondition:ATM transaction status is customer account
 update
 Operation:ask deposit amount
 AddedCondition:ATM display is deposit amount prompt
 Operation:ask user insert deposit
 AddedCondition:ATM display is deposit insertion prompt
 Operation:update user's account

34

 AddedCondition:ATM transaction status is user account
 updated
 Operation:provide cash
 AddedCondition:ATM transaction status is user cash
 provided
 Possible Values Set
 Value:on
 Value:off
 Concept:user
 Sub Component:card
 Operation Set
 Possible Values Set
 Value:unreadable
 Attribute:transaction status
 Possible Values Set
 Value:card inserted
 Value:pin entered
 Value:cash withdrawal selected
 Value:deposit amount specified
 Value:cash deposit selected
 Value:deposit inserted
 Value:amount entered
 Value:cash taken
 Attribute:identification
 Possible Values Set
 Value:valid
 Operation Set
 Operation:insert card in
 AddedCondition:User transaction status is card inserted
 Operation:type pin
 AddedCondition:User transaction status is pin entered
 Operation:select cash withdrawal
 AddedCondition:User transaction status is cash withdrawal
 selected
 Operation:enter amount
 AddedCondition:User transaction status is amount entered
 Operation:take cash
 AddedCondition:User transaction status is cash taken
 Operation:select cash deposit
 AddedCondition:User transaction status is cash deposit
 selected
 Operation:specifie deposit amount
 AddedCondition:User transaction status is deposit amount
 specified
 Operation:insert deposit
 AddedCondition:User transaction status is deposit inserted
 Possible Values Set
 Value:logged in
 Concept:operator
 Attribute:transaction status
 Possible Values Set
 Value:system turned on

35

 Value:amount in cash entered
 Value:system turned off
 Operation Set
 Operation:turn system on
 Precondition:ATM is OFF
 AddedCondition:ATM is ON
 AddedCondition:Operator transaction status is system
 turned on
 Operation:enter amount of money currently in cash dispenser
 AddedCondition:Operator transaction status is amount in
 cash entered
 Operation:turn system off
 AddedCondition:Operator transaction status is system
turned off

Table 3: Sample domain model allowing operation-effect validation of the Use Cases in
the ATM System

Operation-effects based sequencing is achieved by specifying use cases
pre and post-conditions such that when a use case uc1 is followed by a
use case uc0 after a given scenario sc0, the post-condition at the end of
sc0 implies use case uc1 pre-condition.

UCEd verification includes checking that sequencing statements are
consistent with pre/post-conditions. Figure 34 shows use case
sequencing warnings resulting from the ATM system.

(1)The enabling of use cases “withdraw cash” and “make deposit” at
step 6 of use case “log in” is not consistent with pre/post-
conditions as use case “log in” primary scenario post-condition is
“user is logged in” and both “withdraw cash” and “make deposit”
have “(ATM is on AND ATM display is operation menu)” as pre-
condition.

(2)No post-condition is defined for the main scenario of use case
“turn ATM on” however, the enabling of use case “log in” and
“turn ATM off” at the end of the scenario is such that the post-
condition should be “(ATM is on AND user transaction status is
NOT card inserted)”.

36

(3)Similarly, no post-condition is defined for the primary scenario of
use case “turn ATM off” but, in accordance with the enabling of
use case “turn ATM on”, the post-condition should be “ATM is off”.

(4)Finally, no post-condition are defined for the primary scenarios of
use cases “withdraw cash” and “make deposit”. However,
because each of these use cases enable use cases “log in” and
“turn ATM off”, they should both have “(ATM is on AND user
transaction status is NOT card inserted)” as post-condition.

In order to remove these validation messages:
 We change use case “log in” success post-condition to “User is

logged in AND ATM is ON AND ATM display is operation menu”
and we add condition “User is logged in” to use cases “withdraw
cash” and “make deposit” pre-condition.

37

Figure 34: Use Case sequencing verification results for the ATM system

 We add “ATM is on AND user transaction status is NOT card
inserted” as success post-condition to use case “turn ATM on”.

 We add “ATM is OFF” as success post-condition to use case “turn
ATM off”.

 And we add “ATM is on AND user transaction status is NOT card
inserted” as success post-condition to use cases “withdraw cash”
and “make deposit”.

Figure 35
shows the
sequencing
validation
results after
performing
these
changes. No
warning is
produced.

Figure 36 shows the global effect-based state model generated from the
ATM use cases by considering the domain model in Table 3. States S0 to
S4 correspond to use case “log in”, states S9 to S15 correspond to use
cases “withdraw cash” and “make deposit”, and states S9 to S7
correspond to “turn ATM on” and “turn ATM off”.
State S0 corresponds to use case “log in” pre-condition, state S4
corresponds to use case “log in” success post-condition, state S9
corresponds to use cases “withdraw cash” and “make deposit” pre-
conditions, state S12 corresponds to “withdraw cash” success post-
condition, state S15 corresponds to “make deposit” success post-
condition, state S8 corresponds to “turn ATM off” pre-condition, state S5
corresponds to “turn ATM off” success post-condition and “turn ATM on”

38

Figure 35: Validation results after changes to remove sequencing
warnings

pre-condition, and finally, state S7 corresponds to “turn ATM on” success
post-condition.

Although the graphical depiction shows an unconnected state model,
there is actually a connection when we consider the conditions
corresponding to states corresponding to pre/post-conditions.
For instance, state S4 is a sub-state of S9 (the condition corresponding
to S4 subsumes the condition corresponding to S9). Therefore, all
transitions from S9 are possible from S4 and consequently use case “log
in” is followed by “withdraw cash” and “make deposit” as expected.
Additionally there is an alternative choice between the use cases
because of the two transitions from S9.
Similarly, states S12 and S15 are both sub-states of S8. The sequencing

39

Figure 36: Global effect-based state model obtained with domain model in Table 3

from “withdraw cash” and “make deposit” to “turn ATM off” is therefore
possible.

State Condition

S0 ATM is on AND
user transaction status is NOT card inserted

S4 user identification is valid AND
ATM is on AND
ATM display is operation menu AND
user is logged in AND
user card is NOT unreadable AND
user transaction status is pin entered

S5 ATM is off

S7 ATM display is welcome message AND
operator transaction status is amount in cash entered AND
ATM is on

S8 ATM is on

S9 ATM is on AND
ATM display is operation menu AND
user is logged in

S12 ATM is on AND
ATM transaction status is user cash provided AND
user transaction status is NOT card inserted

S15 ATM is on AND
ATM transaction status is user account updated AND
user transaction status is NOT card inserted

Table 4: Condition corresponding to use case connecting states

The global state model includes extra behaviors from the strict
interpretation of control-flow relations. For instance, condition “ATM is
on” is included in all states conditions but S5. As a consequence,
operation “turn system off” would be accepted from all these states.
This extra behavior might be accepted as a valid generalization of the
use case model. In case extra behaviors such as the above are deemed
unacceptable, operations effects need to be modified to obtain the
required behavior.

In order to have a strict correspondence between states S4 and S9,
operation display operation menu should be such that condition “user is

40

logged in AND ATM display is operation menu AND ATM is on” is
obtained rather than “user identification is valid AND user is logged in
AND ATM display is operation menu AND ATM is on AND user transaction
status is pin entered AND user card is NOT unreadable”. Therefore, the
extra conditions “user identification is valid”, “user transaction status
is pin entered” and “user card is NOT unreadable” need to be
withdrawn by the operation. We specify operation display operation
menu withdrawn-condition as “ANY ON User*”.
Similarly we add “ANY ON ATM transaction status” as withdrawn-
condition to operation eject user card such that states S12 and S15 are
replaced by S0.
In order that use case “log in” follows “turn ATM on”, state S0 conditions
need to be obtained at the end of the primary scenario of “turn ATM on”.
Note that the following warning message is displayed when generating
an effect-based state model

WARNING - success postcondition "user transaction status is NOT card
inserted" of use case turn ATM on is not satisfied at the end of
scenario.
 Actual conditions are
 [ATM display is welcome message, operator transaction status is
 amount in cash entered, ATM is on]

We add "user transaction status is NOT card inserted" as added-
condition to operation turn system ON, and we add condition “ATM
display is welcome message” to use case “log in” pre-condition and
specify “ANY ON Operator*” as withdrawn-condition to operation display
welcome message. We also note that use cases “withdraw cash” and
“make deposit” need to execute operation display welcome message in
order that condition “display is welcome message” hold and perform the
necessary modifications.

Figure 37 shows the global effect-based state model obtained after the
above changes. The initial state has been set to S10 using Simulation
-> State Machine obtained from Operation effects -> Set initial
State. State S9 is sup-set of all states but S10. Therefore the transition
from S9 applies to all the states except state S10.

According to the strict interpretation of the control-flow sequencing
constraints, use case “turn ATM OFF” might be executed only after use
case “turn ATM ON”, “withdraw cash” and “make deposit”. This
typically corresponds to state S0. By adding “ATM display is welcome
message AND user transaction status is NOT card inserted” to the pre-

41

condition of use case “turn ATM OFF”, the generated effect-based state
model shown in Figure becomes compliant to the required sequencing.
The final use case and domain model are shown in the Appendix.

42

Figure 37: Global effect-based state model

43

Figure 38: Global effect-based state model

10. Conclusion

This document presented an iterative approach for use cases
elaboration in conjunction with domain elements using UCEd. The
approach is based on a strong relation between use cases and
specification of operations. Use cases state required events sequencing.
However, these requirements are possible only given specific
transformation performed by operations. We capture these
transformations in a contractual form as preconditions and
postconditions. In this document, we only focused on a subset of use
case description capabilities supported by UCEd. Other capabilities
include use case «include» and «extend» relations as well as scenarios
for automating use case simulation.

44

Appendix

Final use case and domain model for the ATM example.

Domain model

domain
 System Concept:ATM
 Attribute:display
 Possible Values Set
 Value:error message
 Value:pin enter prompt
 Value:operation menu
 Value:amount in dispenser prompt
 Value:welcome message
 Value:withdrawal amount
 Value:deposit amount prompt
 Value:deposit insertion prompt
 Attribute:transaction status
 Possible Values Set
 Value:customer account update
 Value:user account updated
 Value:user cash provided
 Operation Set
 Operation:display error message
 AddedCondition:ATM display is error message
 Operation:eject user card
 AddedCondition:User transaction status is not card inserted
 WithdrawCondition:ANY ON User*
 WithdrawCondition:ANY ON ATM display
 WithdrawCondition:ANY ON ATM transaction status
 Operation:ask user pin
 AddedCondition:ATM display is pin enter prompt
 Operation:check user's identification
 AddedCondition:User identification is valid or User
 identification is not valid
 Operation:display operation menu
 AddedCondition:ATM display is operation menu
 AddedCondition:User is logged in
 WithdrawCondition:ANY ON User*
 Operation:ask amount in cash dispenser
 AddedCondition:ATM display is amount in dispenser prompt
 Operation:display welcome message
 AddedCondition:ATM display is welcome message
 WithdrawCondition:ANY ON Operator*
 Operation:clear system
 AddedCondition:ATM is OFF
 WithdrawCondition:ANY ON Operator*
 WithdrawCondition:ANY ON ATM*
 WithdrawCondition:ANY ON User*
 Operation:ask withdrawal amount
 AddedCondition:ATM display is withdrawal amount

45

 Operation:ask customer account update
 AddedCondition:ATM transaction status is customer account
 update
 Operation:ask deposit amount
 AddedCondition:ATM display is deposit amount prompt
 Operation:ask user insert deposit
 AddedCondition:ATM display is deposit insertion prompt
 Operation:update user's account
 AddedCondition:ATM transaction status is user account
 updated
 Operation:provide cash
 AddedCondition:ATM transaction status is user cash provided
 Possible Values Set
 Value:on
 Value:off
 Concept:user
 Sub Component:card
 Operation Set
 Possible Values Set
 Value:unreadable
 Attribute:transaction status
 Possible Values Set
 Value:card inserted
 Value:pin entered
 Value:cash withdrawal selected
 Value:deposit amount specified
 Value:cash deposit selected
 Value:deposit inserted
 Value:amount entered
 Value:cash taken
 Attribute:identification
 Possible Values Set
 Value:valid
 Operation Set
 Operation:insert card in
 AddedCondition:User transaction status is card inserted
 Operation:type pin
 AddedCondition:User transaction status is pin entered
 Operation:select cash withdrawal
 AddedCondition:User transaction status is cash withdrawal
 selected
 Operation:enter amount
 AddedCondition:User transaction status is amount entered
 Operation:take cash
 AddedCondition:User transaction status is cash taken
 Operation:select cash deposit
 AddedCondition:User transaction status is cash deposit
 selected
 Operation:specifie deposit amount
 AddedCondition:User transaction status is deposit amount
 specified
 Operation:insert deposit
 AddedCondition:User transaction status is deposit inserted

46

 Possible Values Set
 Value:logged in
 Concept:operator
 Attribute:transaction status
 Possible Values Set
 Value:system turned on
 Value:amount in cash entered
 Value:system turned off
 Operation Set
 Operation:turn system on
 Precondition:ATM is OFF
 AddedCondition:ATM is ON
 AddedCondition:Operator transaction status is system turned
 on
 AddedCondition:User transaction status is not card inserted
 Operation:enter amount of money currently in cash dispenser
 AddedCondition:Operator transaction status is amount in
 cash entered
 Operation:turn system off
 AddedCondition:Operator transaction status is system turned
 off

Use case model

Use Case: log in

Title: log in
Description: This use case captures a login procedure to the

ATM System. Users are identified with a Card and a
 password. After the User has provided her Card and password,
 the system checks for the identification and if valid,
 displays an operation menu. If the Card or password are not
 valid, the User access is denied and her Card returned.
System Under Design: ATM
Primary Actor: User
Participants:
Goal: Allow a User to identify itself to the ATM in order to
 perform banking transactions.
Follows Use Cases: log in OR turn ATM on OR withdraw cash OR make

deposit
Invariant:
Precondition: ATM is ON AND User transaction status is not card i

inserted AND ATM display is welcome message
STEPS
1.User inserts a Card in the ATM card reader slot
2.The ATM asks for User pin
3.The User types a pin
4.ATM checks the User's identification

47

5.If User identification is valid then, ATM displays an operation menu
6.enable withdraw cash, make deposit
ALTERNATIVES
1.a.User Card is unreadable
1.a.1.ATM displays an error message
1.a.2.ATM ejects the User Card
1.a.3.ATM displays welcome message
1.a.4.resume
Alternative Postcondition: ATM is ON AND User transaction status is

not card inserted AND ATM display is welcome message
2.a.after 60 sec
2.a.1.ATM ejects the User Card
2.a.2.ATM displays welcome message
2.a.3.resume
Alternative Postcondition: ATM is ON AND User transaction status is

not card inserted AND ATM display is welcome message
Success Postcondition: User is logged in AND ATM is ON AND ATM
display is operation menu

Use Case: turn ATM on

Title: turn ATM on
Description:
System Under Design: ATM
Primary Actor: Operator
Participants:
Goal: Allows an Operator to start the ATM up so that it could

provide transaction services to Users.
Follows Use Cases: turn ATM off

Invariant:
Precondition: ATM is OFF
STEPS
1.The Operator turns the system ON
2.The ATM asks the amount in the cash dispenser
3.The Operator enters the amount of money currently in cash dispenser
4.The ATM displays a welcome message
5.enable log in, turn ATM off
Success Postcondition: ATM is on AND user transaction status is NOT

card inserted AND ATM display is welcome message

Use Case: turn ATM off

Title: turn ATM off
Description:
System Under Design: ATM

48

Primary Actor: Operator
Participants:
Goal: Allows an Operator to switch the ATM off. Transaction

services are not provided anymore following the use case.
Follows Use Cases: turn ATM on OR withdraw cash OR make deposit
Invariant:
Precondition: ATM is ON AND ATM display is welcome message AND

user transaction status is NOT card inserted
STEPS
1.The Operator turns the system off
2.The ATM clears the system
3.enable turn ATM on
Success Postcondition: ATM is OFF

Use Case: withdraw cash

Title: withdraw cash
Description:
System Under Design: ATM
Primary Actor: User
Participants:
Goal: Allow a User to get a cash amount by deduction from

his/her account.
Follows Use Cases: log in
Invariant:
Precondition: ATM is ON AND ATM Display is operation menu AND User

is logged in
STEPS
1.The User selects cash withdrawal
2.The ATM asks the withdrawal amount
3.The User enters an amount
4.The ATM asks the customer account update
5.ATM provides cash in the cash compartment
6.The User takes the cash from the cash compartment
7.The ATM ejects the user card
8.The ATM displays a welcome message
9.enable log in, turn ATM off
Success Postcondition: ATM is on AND user transaction status is NOT

card inserted AND ATM display is welcome message

Use Case: make deposit

Title: make deposit
Description:
System Under Design: ATM

49

Primary Actor: User
Participants:
Goal: Allows a User to make a money deposit to his/her account.
Follows Use Cases: log in
Invariant:
Precondition: ATM is ON AND ATM Display is operation menu AND User

is logged in
STEPS
1.The User selects cash deposit
2.The ATM asks for a deposit amount
3.The User specifies a deposit amount
4.The ATM asks the user to insert a deposit
5.The User inserts a deposit
6.The ATM updates the User's account
7.The ATM ejects the user card
8.The ATM displays a welcome message
9.enable log in, turn ATM off
Success Postcondition: ATM is on AND user transaction status is NOT

card inserted AND ATM display is welcome message

50

	UCEd Use Cases development approach
	Abstract
	1. Overview
	2. Use Cases Creation
	3. Domain elements extraction
	4. Domain Model Validation
	5. Use Cases validation
	6. Control-flow based state model generation
	7. State model simulation
	8. Specification of operations
	8.1 Operation effects identification
	8.2 Operation effects validation
	9. Use Case sequencing
	9.1 Use Case repetition
	9.2 Use Cases integration
	9.2.1 Control-flow sequencing
	9.2.2 Operation-effects based sequencing

	10. Conclusion
	Appendix
	Domain model
	Use case model
	Use Case: log in
	Use Case: turn ATM on
	Use Case: turn ATM off
	Use Case: withdraw cash
	Use Case: make deposit

