Supporting Use Cases Based Requirements Simulation*

Stéphane S. Somé
School of Information Technology and Engineering (SITE) University of Ottawa

800 King Edward, P.O. Box 450, Stn. A Ottawa, Ontario, KIN 6N5, Canada
Email: ssome@site.uottawa.ca

Abstract In this paper, we present an approach
for requirements simulation in the context of re-
quirements engineering. Simulation is an effective
technique for requirement elicitation an early val-
idation. This technique involves the derivation of
a prototype from requirements. In our approach,
requirements are described as use cases. A state
machine automatically generated from use cases is
used as a prototype. The approach is supported by
a tool that creates a graphical environment for use
cases simulation.

Keywords: Requirements engineering, Simulation,
Use Cases, UML, State machines

1 Introduction

Requirements engineering includes the elicita-
tion, understanding and representation of cus-
tomers needs for a system. It is a critical tasks
in software engineering; the source of a great
number of software failures. The main rea-
son for these requirements induced failures is a
gap between customers and the system devel-
opment process. This gap is due to the man-
ual nature of the requirement engineering pro-
cess. Requirements are informally sought by
analysts from customers who then pursue oth-
ers development activities according to what
they understand about customers needs. The
understanding of requirements is generally rep-
resented as an abstract specification often not
comprehensible by customers. That added to
the difficulty to automatically ensure consis-

*This work is funded by the Natural Sciences and
Engineering Research Council of Canada (NSERC).

tency between specifications and informal re-
quirements makes difficult to ascertain, before
later phases of a development process, if a spec-
ification is right according to its requirements
and if there are no missing requirements. Sim-
ulation of a prototype model derived from re-
quirements is one way to bridge the gap be-
tween requirements and the development pro-
cess. Simulation can help requirements valida-
tion and elicitation by allowing customers and
requirements analysts to animate the original
users requirements.

Use Cases [4] that describe possible inter-
actions involving a system and its environ-
ment are increasingly being accepted as ef-
fective means for requirements elicitation and
analysis [3]. An advantage is the intuitive and
partial nature of use cases. A use case describes
a piece of a system behavior without revealing
the internal structure of the system. As such,
use cases are useful to capture and document
external requirements of systems. Use cases
can also be used for requirements validation
through prototyping and simulation [3]. In the
current practice, however, informal definitions
of use cases are used and the prototype deriva-
tion process is still manual. In [5], we proposed
a formalization and a natural language based
notation for use cases description. We also pre-
sented an algorithm for the integration of a set
of related use cases in a finite state machine us-
ing a domain model. This paper presents an ex-
tension of the use case composition algorithm
allowing to take into account extend relations.
We also present an approach for requirement
capture, clarification, and simulation built on
this previous work. The approach is supported

by a tool called UCEd (Use Case Editor [1])
that takes a set of related use cases written
in a restricted form of natural language and
generates and executable specification that in-
tegrates the partial behaviors of the use cases.
UCEd uses information contained in an appli-
cation domain model for syntactical analysis of
use cases and specification generation.

This paper is organized as follows. The
next section outlines a general approach for use
cases based requirements engineering. Section
3 presents an extension of our use cases com-
position algorithm for extension use cases. We
discuss use cases simulation in section 4, and
we conclude this paper in section 5.

2 Requirements
process

engineering

Figure 1 describes a Use Cases based re-
quirement engineering process that starts with

domain model use cases

i i

domain elements .

Domain Model Use Cases
Edition [~ Capture
11 domain elements 1 \
domain usecases
elements)7(
changesto | YseCases changesto
domain Composition use cases
elements
state
model
Y
changesto Use Case changesto
domain Simulation | use cases
elements

Figure 1: Use Cases based requirement engi-
neering process. The boxes show activities and
the arrows data elements passed.

an early view of requirements consisting of
“rough” domain model and use cases, and pro-

duces a high-level state model specification of
the system as well as clarified use cases and do-
main models. All the activities are supported
by UCEA.

A domain model is a high-level class model
that captures domain concepts and their rela-
tionships. Domain concepts are the most im-
portant types of objects in the context of a
system. The domain concepts include the sys-
tem as a black box with the “things” that ex-
ist or events that transpire in the environment
in which the system works [3]. We use UML
class diagrams extended with stereotypes [4]
to describe domain models. Figure 2 shows
a graphical representation of a domain model
in the UML notation. In addition, we spec-
ify operation effects as added-conditions and
withdrawn-conditions. Added-conditions de-
note conditions known to become true after an
operation. Withdrawn-conditions are removed
after the operation execution. We use added
and withdrawn-conditions for use cases com-
position into finite state machines.

Use cases are narrative description of inter-
actions involving a system and its environment.
Use cases are defined in a Use Case model that
consists of use cases, actors and relationships.
A relationship between an actor and a use case
captures the fact that the actor participates in
the use case. Relationships between use cases
include the include and extend relationships.
The include relationship denotes the inclusion
of a use case as a sub-process of another use
case (the base use case). The extend relation-
ship, denotes an extension of a use case as ad-
dition of “chunks” of behaviors defined in an
extension use case. These chunks of behaviors
are included at specific places in a base use
case called extension points. Include relation-
ships are already supported in the algorithm
in [5]. We present an extension for the eztend
relationship in section 3. A use case diagram is
a graphical depiction of a use case model that
does not include a description of use cases in-
teractions. We developed a restricted form of
natural language for use case description [5].
Figure 3 shows an example of use case diagram
and Figure 4, the details of a use case in our

<<system concept>>

PM Svsten <<concept>>
> USER
possible values: -
ON, OFF possible values:
security] logged in
possible values: high used | imber of attempts
ask PIN by |identification
validate USER identification possible values:
display welcome message cardval id, invalid
eject card possible values: inserted,
emit alarm regular
prompt patient information insert card
prompt vital signs type PIN
log transaction enter patient information
choose patient admission
enter vital signs
connect cables
<<concept>>
Display Doctor Nurse
possible values:
pin enter prompt
welcome message, <<concept>>
patient info prompt Patient

vital signsprompt | monitors

Operation: ask for PIN
added-conditions: Display is pin enter prompt
Operation: validate User identification
added-conditions: User identification is valid
OR User identification is invalid
withdrawn-conditions: Display is pin enter
prompt
Operation: display welcome message
added-conditions: Display is welcome message,
User is logged in
Operation: eject card
added-conditions: NOT Card is inserted
Operation: prompt for patient information
added-conditions: Display is patient prompt
info
Operation: prompt for vital signs
added-conditions: Display is vital sign prompt
Operation: insert card
added-conditions: User card is inserted

Figure 2: Example of domain model descrip-
tion for a Patient Monitoring System.

use case description language.

Use Cases composition is based on: the
specification of operations effects as withdrawn

Login
Extension points
card inserted:
after step user insert card
pin entered:

<<extend>>
after step user enter pin T~

_ System security ishigh

Login secure

USER \
Admit Patient
<<include>> ~~ \;

7
<<include>> - /

CStecetam >

<<include>> ’

Dischar ge Patient

PATIENT

NURSE DOCTOR

Figure 3: Example of Use Case diagram.

Title: Log in

Precondition: PMSystem is ON AND NO user is
logged in AND NO card is inserted

Steps: 1: User inserts a Card in the card slot
Extension Point ==> card inserted
2: PMSystem asks for PIN
3: User types her PIN
Extension Point ==> pin entered

4: PMSystem validates the USER identifi-
cation

5: PMSystem displays a welcome message
to User

6: PMSystem ejects Card

Extensions: 1la: User Card is not regular

lal: PMSystem emits alarm
1la2: PMSystem ejects Card

4a: User identification is invalid AND User
number of attempts is less than 4

4al Go back to Step 2

4b: User identification is invalid AND User
number of attempts is equal to 4

4b1l: PMSystem emits an alarm
4b2: PMSystem ejects Card

Postcondition: User is logged in

Figure 4: Use case “Log in” describing a login
procedure in the Patient Monitoring System.

and added-conditions, and a relation between
states and conditions such that each state is
defined by characteristic conditions holding in
it. Figure 5 shows a state transition machine
generated from use case “Log in”. The compo-
sition algorithm allows the integration of sev-
eral related use cases in a same state machine.

Figure 5: State machine generated from use
case “Log in”. Plain transitions correspond
to external actor actions while dotted transi-
tions correspond to the system responses. The
state machine is hierarchical. States may in-
clude sub-states and a transition going from a
state applies to all its sub-states.

State transition machines can be used as
prototypes. UCEd includes a Use Case Simula-
tor that generates a prototype with a graphical
user interface from state machines. Using the
interface, UCEd allows “playing” the use cases
giving an opportunity to validate requirements
and uncover possible interactions between use
cases. Section 4 describes use case simulation
in more detail.

Title: Log in secure
Parts: At extension point card inserted
1: System logs transaction

At extension point pin entered

1: System logs transaction

Figure 6: Extension use case “Log in secure”.
Extension points are defined in use case “Log

in”.

3 Extension use cases

An extension use case includes one ore more
parts that are to be inserted at specific exten-
ston points in a base use case. An extension
use case is a tuple [Title, Parts] with: Title
a label identifying the use case and Parts a
set of parts. Each part is a tuple [ExtPoint,
Steps] with EztPoint a reference to an exten-
sion point (defined in the UML specification)
and Steps an ordered sequence of steps. For-
mally an extend relationship between a base
use case UCbase and an extension use case
UCezt is a tuple [UCbase, UCext, ExtCond,
EztPoints] where EztCond is a condition under
which the extension can take place, and FExi-
Points are a set of extension points referred to
in the extension use case. As an example sup-
pose the extension use case Log in secure shown
in Figure 6. Log in secure extends use case Log
in such that information provided by a user
logging in is recorded. This extension use case
includes two parts. One to be included at the
extension point card inserted and the other at
the extension point pin entered.

For extension use cases composition, we keep
a correspondence between extension points and
states as follow. In the state machine genera-
tion algorithm, when a step referred by an ex-
tension point is considered, we associate the
resulting state of that step with the extension
point. Let corr_state(extp) be a function such
that given the extension point extp, corr_state
returns the state corresponding to extp. The
generation of a state transition machine in

presence of an extension proceeds as shown in
Figure 7. Figure 8 shows the state machine

Given: [E, S, F, S0] a state machine generated
from UChase, extension
use case UCext = [Title, Parts], extend relation
[UCbase, UCext, ExtCond, ExtPoints]

For each parts [extp;, Steps;] in Parts,

1 Let s; be the state corr_state(sext;)

2 Let sext; be a state such that pred(sext;) =
pred(s;) + ExCond

3 add the steps Steps; from sext; (as in [5]).

Figure 7: State machine generation algorithm
from extension use cases.

generated from the extension use case Log in
secure. The composition starts here from the

\

\
\

\
\
1
! \
|
I
I

log transaction

Figure 8: State machine generated from use
case “Log in secure”.

state machine shown in Figure 5. The exten-
sion point “card inserted” corresponds to the
state S1 and the extension point “pin entered”
corresponds to the state S3. The algorithm

creates the sub-states S10 and S11 of S1 and
S8 with the additional characteristic condition
“System security is high”, and adds a transi-
tion from these states.

4 Use Cases simulation

Figure 9 shows a view of UCEd simulator. The

ax

=| Previous State
ACTOR Patient EVENTS STATE:L

CONDITIONS:

trigger alarm + PMSystem is ON

ACTOR USER EVENTS

ress cancel button
P | System Reaction

ask Pin

insert card

PREVIOUS REACTIONS REPEATED
AN INFINITE NUMBER OF TIME

disconnect cables

connect cables

press logout button | Current State
STATE:7
CONDITIONS:
+ Card is inserted
+ Display is pin enter prompt
+ PMSystem is ON

«choose alarm silencing function

choose Patient discharge function

enter vital signs

enter patient information B e

type PIN

choose patient admission

EZ] I+

=l

Figure 9: Simulator tool view.

simulator includes an “actor events panel” (left
panel) and a “simulation results panel” (right
panel). UCEd simulator tool provides an inter-
face for use cases simulation using a generated
state model as prototype. UCEd generates a
button corresponding to each actor operation
in the “actor events panel” such that clicking
on the button simulates the given operation.
The operations are obtained from the domain
model. The “simulation results panel” includes
areas for the state prior to the latest actor op-
eration, the system reactions in response and
the new state reached. Initially, the previous
state area is empty and the current state area
shows the label and characteristic conditions of
the state model initial state.

The simulator handles selected actor oper-
ations according to the underlying state ma-
chine. If the state machine doesn’t include a
transition triggered by the selected operation
from the current state, the simulator displays
a message and the current state remains un-
changed. If there are more than one transi-
tion on the selected operation from the current

state, the simulator displays an error message
to the fact that the state model (an therefore
the use case and/or domain model) is ambigu-
ous. This is a form of non deterministic behav-
ior that might be an indication of erroneous use
cases. If there is a single transition triggered
by the actor operation from the current state,
the simulator moves to the resulting state of
that transition and adds all the system oper-
ations on outgoing transitions to the reactions
area. The final state reached then becomes the
new current simulation state. When a simu-
lated transition enters a state with sub-states,
the simulator prompts the user such that the
extra conditions of the sub-states might be en-
abled making thus the simulation switch to one
of these sub-states. As an example suppose the
simulation of the state machine obtained from
use cases Log in and Log in secure shown in
Figure 8. The simulation starts in state S0
the state machine initial state. Suppose the
user chooses operation insert card, the simula-
tion moves to state S1. Since S7 includes 52
and S10 as sub-states, the simulator prompts
the user such that one of the conditions “Card
is not regular” or “Security is high” may be en-
abled. These conditions are respectively states
52 and S10 extra conditions in comparison to
S1. Suppose the user chooses to enable con-
dition “Card is not regular”. The simulator
would move to state 52, add reactions “emit
alarm” and “eject card” to the system reac-
tions area, and set the new current state as
state S0. Suppose now condition “Security is
high” is chosen. The simulator would move to
state S10 and add operation “log transaction”
to the system reactions area. Because there
is no other transition from state S10, state S1
transition to S& would then be considered. Op-
eration “ask pin” would be added to the sys-
tem reactions area and the simulation would
continue from state S3.

5 Conclusion

We have presented an approach that aims at
helping requirements engineering by allowing

use cases simulation. Our work shares simi-
larities with the play-in/play-out approach of
Harel and Marelly [2]. The play-in/play-out
approach is a specification methodology where
a system required behavior is captured (played-
in) as scenarios using a Graphical User In-
terface. A play-engine automatically gener-
ates a formal version of the played scenarios in
the language of Live Sequence Charts (LSCs).
This formal specification can then be simulated
(played-out) using the same Graphical User In-
terface as for scenarios capture. UCEd auto-
matic generation of a Graphical User Interface
and simulation through that interface is similar
to the way scenarios are played-out in the play-
in/play-out approach. Differences between the
two approaches include the use of textual use
cases and a domain model as a basis for re-
quirement capture in UCEd. One of our ob-
jectives is to support requirements engineering
with textual use cases.

References

[1] Use Case Editor (UCEd) toolset.
http://www.site.uottawa.ca/Ssome/
Use_Case_Editor UCEd.html.

[2] D. Harel and R. Marelly. Come, Let’s Play.
Springler, 2003.

[3] 1. Jacobson, G. Booch, and J. Rumbaugh.
The Unified Software Development Process.
Addison Wesley, 1998.

[4] OMG. OMG Unified Modeling Language
Specification version 1.4, 2001.

[6] S. Somé. An approach for the synthesis
of state tramsition graphs from use cases.
In Proceedings of the International Confer-
ence on Software Engineering Research and
Practice (SERP’03), volume I, pages 456—
462, june 2003.

