An approach for the synthesis of State transition
graphs from Use Cases*

Stéphane S. Somé
School of Information Technology and Engineering (SITE)
University of Ottawa
Ottawa, Ontario, KIN 6N5, Canada

Abstract Use Cases describe possible interactions
inwolving a system and its environment. They are
widely used to represent user’s requirements as a ba-
sis for software development. This paper discusses
state models generation from Use Cases. We pro-
pose a formalization of use cases, a natural lan-
guage based syntaz for use cases description, and
an algorithm that incrementally composes a set of
use cases as a finite state transition machine.

Keywords: Requirements engineering, Use Cases,
UML, State machines

1 Introduction

A use case partially describes a system behav-
ior without revealing its internal structure. As
such use cases are useful to capture and doc-
ument the external requirements of systems.
Several software development approaches in-
cluding the Unified Software Development Pro-
cess [3] recommend use cases for users’ require-
ments description. The partial nature of use
cases offers lot of benefits for requirements en-
gineering. It allows several users with differ-
ent views of a same system to provide different
but possibly overlapping use cases describing
its behavior. The partial nature also helps de-
veloping a system by incremental addition of
services. A problem however, is that it is of-
ten difficult to visualize the global behavior re-
sulting from the combination of the use cases.

*This work is funded by the Natural Sciences and
Engineering Research Council of Canada (NSERC).

Moreover, separately defined use cases may be
inconsistent one with the other and the set
of use cases may be incomplete. A solution
consists of deriving a specification integrating
all the related use cases, such that the system
global behavior can be examined, and verified
for inconsistencies as well as incompleteness.

In this paper, we present an approach for
the integration of related use cases into a global
specification. We use finite state transition ma-
chines as a model for use cases composition and
present an algorithm for the generation of finite
state transition machines from use cases. Be-
cause finite state transition machines are ex-
ecutable, one of the possible applications of
our work is early simulation of users require-
ments. Other applications include verification
of use cases and conformance validation of the
early requirement model with models derived
at later stages from refinements of uses cases.

Use cases are generally written informally
using a natural language. This informal nature
of use cases is a problem with our proposed ap-
proach. Automatic generation of specification
from free form use cases would require analy-
sis and understanding of unconstrained natu-
ral language; a task that is virtually impossi-
ble. To overcome this difficulty, the use cases
in our approach have formal semantics with a
front-end language based on a restricted form
of English. The application domain model is
used as a lexicon for use cases analysis.

Our approach is rooted in the UML. The do-
main model is a UML class diagram and we as-
sume the use cases definition and semantics of

the Object Management Group (OMG) UML
specification [7]. The UML seems appealing
because of the great acceptance it has gained
among software developers and tool vendors.
An advantage of using UML is the possibility
of integration of our approach to the various
existing UML based methodologies and tools.

In the rest of this paper, we first present our
notation and formalization of use cases. Sec-
tion 3 then presents an approach for the gener-
ation of state transition models from use cases.
Finally section 4 concludes the paper.

2 Use Cases

A use case consists of intertwined scenarios
[4, 10, 1], each scenario being a possible se-
quence of interactions. Use cases are developed
by adding secondary scenarios to a primary
scenario. The primary scenario captures the
“normal” or “most common” behavior. It is
written as if everything goes right without any
error. A secondary scenario describes an alter-
native outcome that may result from an error.
Each secondary scenario is written by defining
diverging behaviors from a specific point of a
primary scenario.

Figure 1 shows an example of use case. The
format used is inspired from [1]. This use case
describes a login procedure that must be used
by doctors and nurses for a Patient Monitoring
System (PM System). The primary scenario
is described in the section titled Steps while
the secondary scenarios consist of interactions
in the primary scenario followed by behaviors
defined in the section titled Eztensions.

2.1 An abstract syntax for use cases

Figure 2 shows an UML notation of an abstract
syntax for use cases. A use case can be seen
as a tuple [Title, Precondition, Steps, Postcon-
dition] with: Title a label that uniquely iden-
tifies the use case, Precondition a condition!
that must be true before an instance of the

!The term constraints is used in the UML specifica-
tion to refer to conditions.

Title: Log in

Precondition: System is ON AND NO user
is logged in AND NO card is inserted

Steps: 1: User inserts a Card

2: System asks for Personal Identifica-
tion Number (PIN)

3: User types PIN

4: System validates USER identifica-
tion

5: System displays a welcome message
to User

6: System ejects Card

Extensions: la: Card is not regular
lal: System emits alarm
la2: System ejects Card

4a: User identification is invalid AND
User number of attempts is less than
4

4al Go back to Step 2

4b: User identification is invalid AND
User number of attempts is equal to
4

4bl: System emits alarm
4b2: System ejects Card

Postcondition: User is logged in

Figure 1: Use case describing a login procedure
in a Patient Monitoring System.

UseCase Description details UseCase
(from Use Cases package)
title: String
+steps, +postcondition +precondition
UseCaseSt : +scond| Constraint
‘ P (from Core)
+excond +exstepcond
+oper x| +ext

UseCaseOperation
+exstepoper

Figure 2: Abstract syntax for use cases descrip-
tion.

use case can be executed, Steps an ordered set
of steps, and Postcondition a condition that
must be true at the end of an instance of the
use case execution. Each step in Steps is a
tuple [SCond, Oper, Ext] with SCond a condi-
tion, Oper a use case operation, and Ext a set
of extensions starting at this point. SCond is
an additional condition that must hold for the
step to be possible. A step can have one or
more extensions specifying alternative behav-
iors that are possible following the step.

2.2 Natural language representation
of use cases

We use a form of natural language for condi-
tions and operations. Conditions describe sit-
uations prevailing within a system and envi-
ronment. Operations are active sentences in
which a component performs an action given as
a verb. Another component may be included
in the sentence as the one affected by the oper-
ation. We briefly present a part of the syntax
used for conditions in the rest of this section.
A condition is written as a predicative
phrase, seeking a certain quality on an entity of
the domain model. As an example the precon-
dition of the above use case is a clause where
the system has the quality of being ON. Fig-
ure 3 shows an excerpt of a Definite Clause
Grammar (DCG) [8] for conditions. DCGs are
contextual grammars used for natural language
description. The context in a DCG is defined
as predicates that are checked with the gram-
mar productions. A domain model provides
the context in our case. A domain model is a
high-level class model that captures the most
important types of objects in the context of the
system. The domain concepts include the sys-
tem as a black box with the “things” that exist
or events that transpire in the environment in
which the system works [3]. In the PM system,
domain concepts include the PM system and
User (a generalization of Doctor and Nurse).
These concepts in turn may have sub-concepts,
attributes and operations. We use UML class
diagrams [9] extended with stereotypes to de-
scribe domain models. Figure 4 shows a graph-

condition +——
condition —»
condition +——
pred_phrase

pred_phrase
pred_phrase, conj, condition
negation, condition

l

noun_phrase(N), verb, value(N)
noun_phrase(C)

l

determinant, [C] {concept(C)}
noun_phrase([C,A])

— determinant, [C], [A],

{concept_attribute(C,A)}

value(N) +—— determinant [A], {discrete(N),
possible_value(N,A)}

value(N) —— comparison
{not(discrete(N))}

conj +— [AND]|[OR]

verb — {derived_from (be)}

verb — {derived_from(become)}

Figure 3: A partial DCG for conditions.

ical representation of the PM system domain
model using the UML notation.

The DCG in Figure 3 references the do-
main model through the predicates concept,
concept_attribute, discrete, and possible_value.
The domain model definition is mapped into
these predicates. As an example, some
of predicates corresponding to the model in
Figure 4 are concept(“User”), concept(“PM
System”), concept_attribute(“User”, “num-
ber of attempts”), concept_attribute(“User”,
“Card”),
discrete(“Card”), POSSi-
ble_value([“User”, “Card”], “inserted”), possi-
ble_value([“User”, “Card”], “regular”).

3 From Use Cases to State
Models

Based on our formalization, we have developed
an algorithm to generate a hierarchical type of
finite state transition machines from use cases.
The algorithm is an adaptation of [11]. It is
based on the following.

<<concept>>

<<concept>>
PM System USER
possible values: -
ON, OFF possible values:
logged in
used number of attempts: numerical
ask for PIN by |identification
validate USER identification possible values:
display welcome message cardva“d' invalid
gect card possible values: inserted,
emit alarm regular
prompt for patient information insert card
prompt for vital signs type PIN
log transaction enter patient information
choose patient admission
enter vital signs
connect cables to patient
<<concept>>
Display Doctor Nurse

possible values:
pin enter prompt
welcome message,
patient info prompt
vital signs prompt

Figure 4: Partial representation of the PM sys-
tem domain model.

e Operations can have withdrawn-conditions
and added-conditions. These conditions
are expressed as predicates on the domain
entities. As an example, Figure 5 shows
an excerpt of the added-conditions and
withdrawn-conditions of some of the op-
eration in the PM System domain model.

e Each state is defined by characteristic
predicates which hold in it. These predi-
cates are formulated on the domain model
entities.

Two states are identical if they have the
same characteristic predicates.

e A state sy is a sub-state of a state s, (its
sup-state), if its characteristic predicates
include those of s, in the logical sense.

Any transition going from a state s also
applies to all sub-state of s.

Operation: ask for PIN
added-conditions: Display is pin enter prompt
Operation: validate User identification
added-conditions: User identification is valid
OR . User identification is invalid
withdrawn-conditions: Display is pin enter prompt
Operation: display welcome message
added-conditions: Display is welcome message,
User is logged in
Operation: eject card
added-conditions: NOT Card is inserted
Operation: prompt for patient information
added-conditions: Display is patient prompt info
Operation: prompt for vital signs
added-conditions: Display is vital sign prompt
Operation: insert card
added-conditions: User card is inserted

Figure 5: Description of the PM System do-
main model operations.

For each use case, we augment a state tran-
sition graph with states and transitions such
that the behavior sequences corresponding
to the use case is included as state transi-
tion sequences in the state transition graph.
We use the operations withdrawn and added-
conditions to determine states. Suppose “-”
is an operator such that C; and Cy being 2
sets of predicates, C; — C is a set obtained
by removing all the predicates in Cs from Cf,
and C; + C5 is a set obtained by adding all
the predicates in Cy to C7. Given a state s
such that pred(s) are the characteristic predi-
cates of s, the execution of operation op with
added-condition add_conds(op) and withdrawn
conditions withdr_conds(op) produces a state s’
such that

pred(s') = (pred(s) - withdr_conds(op)) +
add_conds(op).

A finite state transition machine is a tuple
[, S, F, S0] where: ¥ is a finite alphabet, §
is a finite set of states, F' is a transition func-
tion, and S0 C S is a set of initial states. F
is defined as Sx ¥ x S. Given a use case [Ti-
tle, Pre, Steps, Post], the algorithm enriches a

state transition machine M as follow. Before
the first use case composition, M is initially
such that ¥ = 8§ = F = (.

1 Let s be a state such that pred(s) = Pre

2 For each step = [SCond, Oper, Ezt] in
Steps

2.1 Let ¢ be a state such that pred(t) =
pred(s) + SCond (t is either identical
to s or is a sub-state of s).

2.2 If Oper is an actor action or a system
response, let u be a state obtained by
executing Oper from state ¢, add a
transition ¢ X Oper X u to F, and add
Oper to X

If Oper is a branching to step i, let
u be the state from which step 7 was
considered, add a transition ¢ x {} xu
to F

2.3 For each extension ezt = [EzCond,
EzSteps] in Ext, let u' be a state such
that pred(u’) = pred(u) + EzCond
For each extension step exst =
[EzStepCond,

EzStepOper] in ExCond

2.4.1 Let v be the state such that
pred(v) = pred(u') + EzStep-
Cond

2.4.2 add a transition corresponding
to EzStepOper the same way as
in steps 2.2, suppose v’ the re-
sulting state, v’ = v’

25 s=u
3 Add any new state to S

Figure 6 shows the finite state transition ma-
chine corresponding to the use case User login.
State S0 characteristic predicates are the use
case preconditions { “System is ON”, “No user
is logged in”, “No card is inserted”}. State S1
is obtained by considering the use case step
1. It is characterized by the set of predi-
cates { “System is ON”, “No user is logged in”,
“Card 1is inserted”} since the operation “insert
Card” adds the predicate “Card is inserted”,

insert card

ask pin

=0

validate user

Figure 6: Finite state transition machine gen-
erated from use case User login.

replacing the previous predicate “No card is
inserted”. The algorithm generates state S2
when adding the extension of step 1 1a. S2 is
a sub-state of S1 because of 1a extension condi-
tion “Card is not regular”. The state S2 char-
acteristic predicates are { “System is ON”, “No
user logged in”, “Card is inserted”, “Card is
not regular”}. The extension step Ial creates
a transition that loops back to state §2. This is
due to the fact that the operation “emit alarm”
has no effects according to the domain model
shown in Figure 4. Therefore, the resulting
state obtained by considering this operation is

identical to the originating state. The exten-
sion step 1a2 operation “eject card” withdraws
all the predicates on Card and add the pred-
icate “No Card is inserted” to S2 character-
istic predicates, resulting in the characteristic
predicates { “System is ON”, “No user is logged
in”, “No Card is inserted”} of state S0. The
remaining states are as follow. State S8 char-
acteristic predicates are { “System is ON”, “No
user s logged in”, “Card is inserted”, “Display
is pin enter prompt”}. State Sj is character-
ized by { “System is ON”, “No user is logged
in”, “Card is inserted”, “USER identification
is valid OR USER identification is invalid”}.
States §5 and S6 are sub-states of S/ because
their characteristic predicates logically include
those of S4. S5 characteristic predicates are
{ “System is ON”, “No user is logged in”, “Card
is inserted”, “USER identification is invalid”,
“number of attempts < 47}, while S6 charac-
teristic predicates are { “System is ON”, “No
user is logged in”, “Card is inserted”, “USER
identification is invalid”, “number of attempts
> 47}. States S§7 characteristic predicates
are {“System is ON”, “USER is logged in”,
“Card is inserted”, “USER identification is
valid”, “Display 1is welcome message”}. Fi-
nally states S8 is characterized by { “System
is ON”, “USER is logged in”, “No Card is in-
serted”, “USER identification is valid”, “Dis-
play is welcome message”}.

We do not directly use use cases postcondi-
tions for finite state machine generation. Post-
conditions are rather used for verification. We
consider postconditions as contractual state-
ments of guarantees at end of the successful
execution of a use case (the primary scenario).
Therefore, the postconditions of a use case
should be included in the characteristic predi-
cates of the last state corresponding to the use
case main course of events. In the above ex-
ample, state S8 characteristic predicates effec-
tively includes the postcondition of the use case
which is “USER is logged in”.

Our algorithm supports overlapping and
connected use cases. Suppose the use case Ad-
mit patient of the PM System shown in Figure
7. Admit patient is supposed to follow the use

Use case name: Admit patient
Actor: User (e.g. doctor, nurse)
Participants: Patient

Goal: A User wants to perform the admission
of a patient on a Monitor.

Precondition: User is logged in AND NOT
Patient is admitted to the Monitor

Steps: 1: User chooses patient admission

2: System prompts for patient infor-
mation

User enters patient information
System prompts for vital signs
User enters vital signs

User connects cables to the Patient

System logs transaction

Postcondition: Patient is admitted to the
Monitor

Figure 7: Admit patient use case.

case User login. The algorithm adds Admit pa-
tient from sub-states of states 57 and S8 since
the predicate “User is logged in” holds in both
these states.

4 Conclusion

This paper presented an approach for the gen-
eration of state transition models from use
cases. A number of similar contributions dis-
cuss finite state machines synthesis from sce-
narios [5, 12, 2, 11, 6, 13]. The main difference
between these approaches and ours is that they
deal with scenarios. A scenario is a single linear
sequence of interactions between external ac-
tors and a system, while use cases integrate set
of scenarios. Another difference is that scenar-
ios are often represented using formal graphical
notations such as Sequence Diagrams or Mes-
sage Sequence Charts (MSCs).

The approach presented here is being imple-

mented in a Use Case Edition (UCEd) tool.
The objective of UCEA is to help use cases ac-
quisition, use cases verification, prototype gen-
eration, and simulation. We are also extending
the state model generation algorithm to sup-
port the include as well as the extend relation-
ships between use cases.

References

[1] A. Cockburn. Writing Effective Use Cases.
Addison Wesley, 2001.

[2] M. Glinz. An Integrated Formal Model of
Scenarios Based on Statecharts. In Soft-
ware Engineering - ESEC’95. Proceedings
of the 5th FEuropean Software Engineer-
ing Conference, pages 254-271. Springler
LNCS 989, 1995.

[3] I. Jacobson, G. Booch, and J. Rumbaugh.
The Unified Software Development Process.
Addison Wesley, 1998.

[4] I. Jacobson, M. Christerson, P. Jonsson,
and G. ()vergaard. Object-Oriented Soft-
ware Engineering, A Use Case Driven Ap-
proach. Addison-Wesley, ACM Press, 2 edi-
tion, 1993.

[6] K. Koskimies and E. Méakinen. Automatic
Synthesis of State Machines from Trace Di-

agrams. Software-Practice and Ezxperience,
24(7):643-658, July 1994.

[6] S. Leue, L. Mehrmann, and M. Rezai. Syn-
thesizing ROOM Models from Message Se-
quence Chart Specifications. In 13th IEEE
Conference on Automated Software Engi-
neering, October 1998.

[7] OMG. OMG Unified Modeling Language
Specification version 1.4, 2001.

[8] F. C. N. Pereira and D. H. D. War-
ren. Definite clause grammars for lan-
guage analysis—a survey of the formalism
and comparison with augmented transition
networks. Artificial Intelligence, 13:231-
278, 1980.

[9] J. Rumbaugh, I. Jacobson, and G. Booch.
The Unified Modeling Language Reference
Manual. Addison-Wesley, 1998.

[10] G. Schneider and J. P. Winters. Apply-
ing Use Cases a practical guide. Addison-
Wesley, 1998.

[11] S. Somé and R. Dssouli. An Enhancement
of Timed Automata generation from Timed
Scenarios using Grouped States. Electronic
Journal on Network and Distributed Pro-
cessing (EJNDP), (6), 1998.

[12] S. Somé, R. Dssouli, and J. Vaucher. From
Scenarios to Timed Automata: Building
Specifications from Users Requirements. In
Proceedings of the 2nd Asia Pacific Soft-
ware Engineering Conference (APSEC’95).
IEEE, Dec. 1995.

[13] J. Whittle and J. Schumann. Generating
statechart designs from scenarios. In Inter-
national Conference on Software Engineer-
ing (ICSE 2000), Limerick, Ireland, Jun.
2000.

