
Generating a Domain Model from a Use Case Model∗

Nayanamana Samarasinghe Stéphane S. Somé

SITE, University of Ottawa, SITE, University of Ottawa

Ottawa, Ontario, K1N 6N5, Canada Ottawa, Ontario, K1N 6N5, Canada

Abstract

In this paper, we focus on the transition from
requirements to subsequent phases of software devel-
opment. We elaborate on creation of a Domain model
from an existing Use Case model. A domain model
can be seen as an interface or a pipe between the Re-
quirement Engineering phase and the Design Phase of
the software development life cycle. Our goal is to
automate the extraction of domain information from
requirements up to a feasible extent. The approach is
integrated to UCEd, a tool for use cases based require-
ments analysis.

1 Introduction

The use case technique is an effective technique
for user’s requirements capture and representation.
Use cases capture a system behavior as intended by
stakeholders under various conditions. Several descrip-
tion formalisms including flow charts, sequence charts,
Petri nets are possible for use cases. But because
of the specific skills or training needed by these for-
malisms to be understandable by the common user,
use cases are typically represented in a textual Nat-
ural Language form. There have been a number of
successful attempts of expressing use cases using Nat-
ural Language [4, 5, 6]. However, automatic processing
of use cases in full Natural Language is far from pos-
sible. Reasons for that include ambiguity, dependence
on common sense knowledge and contextual nature of
a natural language. We developed an approach for use
cases based requirements engineering based on a con-
trolled form of Natural Language. Our approach is
implemented in a tool called UCEd (Use Case Editor)
[1].

UCEd is used to define use cases in a controlled
form of English. However, UCEd assumes an existing
domain model (a high-level UML class diagram) for
the syntactic analysis of use cases [1]. Domain models
bridge the gap between the analysis of requirements
and the production of design specifications. A domain

∗Work supported by a grant from the Natural Sciences and
Engineering Research Council of Canada (NSERC).

model represents the common understanding of key
concepts in an organization. It is important to note
that users are usually unaware of the domain elements
at the stage of use cases description.

In this paper, we describe an approach to gener-
ate a domain model from use cases defined in Natural
Language. The rest of the paper is organized as fol-
lows. The next section describes the existing frame-
work used for use case capture. In this section we
focus on how the use cases and domain elements are
captured using the UCEd tool, and elaborate the for-
mal grammar used for modeling these elements. Sub-
sequent section explains our work on extracting the
domain elements from an existing use case model. In
the latter part of the paper we discuss the related work
that has been done in comparison to our current work.
Finally the conclusion of this paper will consist of a
summary of objectives achieved and any possible fu-
ture work (based on our current work).

2 UCEd Process

Figure 1 describes our use cases based require-
ments process as supported by the UCEd.

domain elements

domain elements

use cases

use cases
elements

domain

changes to
use cases

state
model

changes to

use cases

domain model

Edition

Domain Model

Use Cases

Use Case
Simulation

elements
domain
changes to

elements
domain
changes to

Composition

Use Cases
Capture

Figure 1: UCEd requirements engineering process.

Use Cases are captured in restricted form of nat-
ural language through a specific interface of UCEd.
Figure 2 shows a use case being edited with UCEd.
The grammar used for our restricted form of natu-

Figure 2: Extract of the Use Case Edition interface.

ral language is described in Section 4. UCEd checks
that the corresponding domain entities and operations
are defined in the domain model and reports inconsis-
tencies as well as omissions. We introduce a typical
telephone PABX system as a case study. The system
includes the domain entities: Caller, Callee, Switching
Network, Answering Machine and Service Provider.
Use cases for this system can be defined for making
a call, answering a call, returning a call, forwarding
a call and disconnecting a call. The use case edition
interface allows creation of a Use Case Model with a
list of use cases and actors. A detailed description
can also be added to each use case using the interface.
In accordance with the UML recommendation [3], use
cases can be linked by “include” and “extend” rela-
tions. As an example, in Figure 2 step 9 includes use
case “Disconnect Call”. A use case description is a se-
quence of steps. Each step involves an operation from
the environment or the system and may have one or
more extensions. As an example, step 4 involves op-
eration “translate digits” from “Switching Network”
and includes extension 4.a. Steps and extensions may
have guards. A guard is some condition that must be
satisfied prior to the execution of the use case step. In
step 5, “Caller line is not busy” is a guard conditions.
Each use case defines a part of the system behavior as
sequence of events that may follow each other. We use
the term “scenario” to refer to these sequences. A use
case typically includes a “main scenario” and a set of
“secondary scenarios”.

A Domain Model is a high level UML diagram
that captures the domain entities and their operations.
Figure 3 shows an excerpt of the phone system domain

model in UCEd Domain Edition Tool. We distinguish

Figure 3: Extract of the Domain Edition Tool.

the following types of domain entities.

1. Concept: These are the most important type of
entity in the context of the system. There could
also be concepts defined under a parent concept
(i.e. a sub-concept) to represent specialization or
inheritance behaviour.

2. System Concept: The system under consideration
that is represented as a black box.

3. Aggregation: Used to represent the “part-of” re-
lationship with the participating parent concept
or system concept.

4. Attribute: A feature of a concept, system concept
or an aggregation.

5. Object: An instance of a concept or system con-
cept.

It is important to note that Concepts, System Con-
cepts, Aggregations and Attributes may have a set of
possible values (state values) assigned to them. As an
example, possible values of entity “Phone” are “on-
hook” and “offhook”. Each concept, system concept or
aggregation may also have a set of operations. Domain
operations are declared in the format: “<action verb>

[action object]” where <action verb> is an infinitive
verb. An example would be “start ringing”.

The use case composition module deals with state
model generation. It uses a state model generation al-
gorithm described in [2]. The partial behavior of each
use case is merged in an incremental manner to obtain
a global state model. Use case composition is based
on operation effects specified as added and withdrawn
conditions. Generated state models are used as proto-
types to validate the original use cases and to uncover
any possible interactions between them [1].

3 Use Case Grammar

Domain elements extraction rely on a syntactical
analysis of use cases. In this session, we present our
restricted form of natural language grammar for use
cases. The two parts of use cases that are expressed
in natural language are conditions and operations.

“Conditions are predicative sentences describing
situations prevailing within the system and its envi-
ronment” [2]. Conditions are used to specify opera-
tions added and withdrawn conditions in the domain
model. They are also used for preconditions, postcon-
ditions and guards. Figure 4 introduces a concrete
syntax for conditions. An example of a condition is
“Caller phone is onhook” which is a precondition in
our phone system example.

<condition> -> <acondition> "and" <condition>

| <acondition> "or" <condition>

| "("<condition>")"

| <negation> <condition>

<acondition> -> [<determinant>] <entity>

[<verb>] <value>

<determinant> -> "a" | "an" | "the"

<negation> -> "not" | "no"

<entity> -> <concept> | <attribute>

<concept> -> (<word>)+ {member of the model

concepts}

<attribute> -> (<word>)+ {attribute of concept}

<verb> -> {derived from to be in present

tense}

<value> -> (<word>)+ {value of the entity}

| <comparison> {entity is non-discrete ?}

<comparison> -> <comparator> <word>

<comparator> -> ">" | "<" | "=" | "<=" | ">="

| "<>" | "greater than" | "less than"

| "equal to" | "different to"

| "greater or equal to" | "less or equal to"

Figure 4: Grammar for conditions.

Figure 5 describes use case operations syntax. A
use case operation reference is the specification of an
operation executed by a domain concept. The specifi-
cation of a use case operation uses a conjugated form
of the infinitive form of the operation declaration. For
sake of simplicity, only the present form is used. As
an example, “The Caller Phone starts ringing” is a use
case operation statement where: the concept perform-
ing the operation is “Caller Phone”, the operation is
“starts ringing” a conjugated form derived from dec-
laration “start ringing”.

<operation_spec> -> <concept_operation>

| <branching_statement> | <useCase_inclusion>

<concept_operation> -> [<before_delay>]

[<after_delay>]

[<condition_spec>]

<operation_reference>

<condition_spec> -> "IF" <condition> "THEN"

<operation_reference> -> (<word>)+ {derived from

an operation of the current entity}

<after_delay> -> "AFTER" <duration_spec>

<before_delay> -> "BEFORE" <duration_spec>

<duration_value> -> <duration_value>

<duration_unit>

<branching_statement> ->

"GO" "TO" "Step" <word> {corresponding to

a step label}

<useCase_inclusion> -> [<condition_spec>]

"INCLUDE" <use-case-name>

Figure 5: Grammar for use case operations.

4 Domain Elements Extraction

The objective of domain extraction is to allow
users to enter a set of requirements in the form of use
cases and derive the corresponding domain entities.
Notice that at the present time, domain specification
is completely manual. Extraction of domain elements
would ease UCEd requirements definition process by
removing the necessity for users to go back and forth
creating missing items in the domain during use case
composition. We propose a semi-automated extraction
mechanism. A fully automated approach comes up
against the inherent ambiguity of natural language.

Figure 6 describes an algorithm for domain el-
ements extraction from use cases. Let C, A and O
be sets of non-existing Conditions, Actors and Op-
erations respectively in the use case model. As ex-
plained in the domain grammar section a condition
is in the form “<entity> <verb> <value>” if we
omit the optional article for clarity. Also an oper-
ation reference can be defined as “<concept name>
<conjugated action verb> [action object]”. Here too
we omit [article] and [preposition action participant]
for the sake of simplicity. According to step 2 the al-
gorithm detects known sub-entities that are part of
condition (if any) and prompts the user for any unde-
fined sub-entities in order to ascertain its type. Figure
7 shows an example in this regard. In this example
the system has detected that “Switching Network” al-
ready exist as a System Concept in the domain. As
such it is now the user’s turn to resolve the remaining
part of the string: “call type”. It could be or a part
of an object, aggregation or an attribute. During this
process user selections are limited to the possibilities,

1. For each use case uc,

1.1 For each condition c ∈ uc

If the entity of c, e exists and the value of
c, v does not exist in the domain,
Add a possible value v to e in the domain

Else if e does not exists in the domain,
C = C ∪ {c}

1.2 For each operation reference o in uc

If o is not defined in the domain,
O = O ∪ {o}

1.3 For each actor a in uc,
If (a is not defined as a domain entity in the
domain), A = A ∪ {a}

2. For each element c in C,
Let e be the entity part of c

- Extract the part of e that has been already de-
fined in the domain and prompt user to select
the type of the sub entities for the rest.

- Add the sub-entities to the domain

- Insert v ∈ condition value to the referring entity

3. For each element a in A that is still not in the domain,

- Prompt the user for the type of entity

- Add the entity to the domain

4. For each element o in O,
For each token t in o,

- If (t is a verb and a starting point of a logical
operation)

op = part of the phrase that starts from t

Else

Prompt the user to select the appropriate
value for action specification, op

- Process the infinitive form of op. Remaining
part of o will contain the relevant entity for op,
say e (i.e. first part after removing the action
specification part)

- Extract the part of e that has been already de-
fined in the domain and prompt user to select
the type of the sub entities for the rest.

- Add the sub-entities to the domain

- Insert the infinitive form of op to the referring
entity of e as a domain operation

Figure 6: Algorithm for the domain elements extrac-
tion process.

Figure 7: System prompt to resolve an entity in a
condition.

Concept, System Concept, Object, Aggregation or an
Attribute. In Step 3 of the algorithm, we prompt the
user if the corresponding use case actor is not yet de-
fined in the domain. An actor may be a Concept or
a System Concept and will not be part of anything
else. Finally, step 4 resolves use case operations. The
algorithm considers the first word from the left of the
string. If it is a verb, this word is marked as a start of
an operation specification (automatic operation han-
dling). In a case where the system does not find any
verb in the operation string the user is prompted for
the operation (manual operation handling). This way
of automatic handling in order to ascertain the oper-
ation specification is rather tricky. The reason is that
certain words appear in more than one form (i.e. noun,
verb, adjective, etc.) Therefore what the system de-
tects as the operation specification is not guaranteed
to be accurate. In such a situation the user is given
the freedom to make the correct choice. For example
if the operation string given is “User Display blinks
fast” where “User” is a concept, “Display” is a com-
ponent of User and “blinks fast” is an operation, we
will detect “Display blinks fast” as the operation since
“Display” is a valid verb and is at the same time, the
first verb encountered from the left of the string. We

use the WordNet dictionary [7] to determine whether
a word is a verb or not. Figure 8 shows an example for
the system prompt for operation “Caller John places
the phone offhook”. In this case the system will detect

Figure 8: System prompt to resolve use case opera-
tions.

the action specification or the operation as “places the
phone offhook”. In the remaining part of the opera-
tion, “Caller” has already been identified as an existing
Concept of the domain. But we might need to define
what “John” is, which is an instance (or object) of con-
cept “User”. This is something similar to step 2 of the
algorithm. Afterward the system attempts to insert
the operation under the appropriate referring entity.

The most interesting part in the domain elements
extraction process is deciding on a way to assign the
relevant parts of a string representing an entity to
respective entity types. For example consider string
“Switching Network call type”. We had to come up
with a method that facilitates selection of any possible
combination of words for a sub-entity type in this en-
tity string. In this example the System Concept can be
taken as “Switching” or “Switching Network” (which
is the correct choice). The approach used to overcome
this issue was to simply create all possible of combina-
tion of words from a given phrase. This will facilitate
to select the appropriate sub-entity types from a given
phrase. Given a string w1 w2 w3 w4 · · · wn delimited

by spaces where w1, w2, w3, w4, · · ·, wn are the words
that consists in the string, we can derive all possible
combination of words of the string as follows,

w1, w2, w3, w4, · · ·, wn
w1 w2, w2 w3, w3 w4, · · ·, wn-1 wn

w1 w2 w3, w2 w3 w4, · · ·, wn-2 wn-1 wn

· · · · · · · · ·

w1 w2 w3 w4 · · · wn

These combinations of words will have any pattern
that we may need to choose for a particular selection
of a sub-entity type of an entity string. As an ex-
ample, suppose the entity string: “Switching Network
call type”, using the above notion we can derive the
following word combinations:

Switching, Network, call, type
Switching Network, Network call, call type
Switching Network call, Network call type
Switching Network call type

But the correct sub-entity selections “Switching Net-
work” (sub-entity type: System Concept) and “call
type” (sub-entity type: Attribute) are actually a sub-
set of the derived word combinations above. Thus this
notion can be used to identify any sub-entity type of
a given entity string.

As a case study, we created a use case model for
our telephone PABX system example as mention in
section 4 using the UCEd tool. The use case model
that was built using the tool is shown in Figure 2. Ini-
tially there were no domain elements defined in the
domain model. Afterward we ran the “Domain Ex-
tracting tool” on the existing use case model. After
completion of this process we observed that a set of
domain elements get added to the domain model as
could be seen in Figure 3. In order to verify whether
the created domain using this semi-automated process
is valid, we validated both the domain and use case
models and observed that the validation process for
both these models is successful.

5 Related Work

One interesting research that has some similarity
to our work is extraction of domain models out of ex-
isting code for generative reuse [8]. In this work, the
authors discuss reverse engineering of a domain model
from an existing code base. The recovered domain
model is subsequently used to develop application gen-
erators.

Other related works are attempts to extract Se-
quence Diagrams [3] from use case models in order to
validate use cases based requirements [9]. Sequence

Diagrams are merely representations of interactions
between actors and a proposed system expressed as
message exchanges. [9] states that these sequences
are transformed in to comparison sequence diagrams,
which in turn can be validated with a component based
simulation model to verify the conformance of the sys-
tem with its requirements. However this compliance
checking process is not automated at the moment and
the papers suggests that it should be possible to auto-
mate it in the future. Although this approach does not
suggest a domain extraction from a use case model it
highlights another possibility of an automated process
that can be applied to a use case model, which would
be much useful in the field of Requirement Engineer-
ing.

6 Conclusion

In this paper, we discussed domain model ele-
ments extraction from use cases. A domain model can
be treated as a lexicon for use case description. A
domain model also acts as an interface between the
requirement analysis phase and the design phase. It
can be used effectively as a basis for software design al-
lowing thus a smooth transition from the Requirement
analysis phase to Design phase.

We introduced and approach that automates a
domain model creation given a use case model. This
is an enhancement to a process where the insertion
of the corresponding domain elements in the domain
model was manual, and consequently error prone and
time consuming. Because of the inherent ambiguity of
Natural Language, complete automation of the extrac-
tion process is unfeasible. For instance, it is impossi-
ble to automatically ascertain the sub-entity type of
an entity (i.e. whether it is a concept, system concept,
aggregation, attribute, etc.). This paper however, sug-
gests the feasibility of a semi-automated process. We
also take the point that a right user interface can ease
the domain extraction process.

Our approach of domain model extraction is spe-
cific to the UCEd framework. The approach could be
generalized to use case models created from any tool
with an exchange format such as XMI [10].

References

[1] Use Case Editor (UCEd) toolset,
http://www.site.uottawa.ca/~ssome/Use Case -
Editor UCEd.html.

[2] S. Somé, An approach for the synthesis of State
transition graphs from use cases, Proceedings of

the International Conference on Software Engi-
neering Research and Practice (SERP), Volume.
I, pp 456-462, 2003.

[3] OMG, OMG Unified Modeling Lan-
guage Specification version 1.5 (2004)
http://www.omg.org/technology/documents/-
formal/uml.htm.

[4] K. Boettger, R. Schwitter, D. Mollà, and D.
Richards, Reconciling Use Cases via Controlled
Language and Graphical Models, Web-Knowledge
Management and Decision Support, Lecture
Notes in Computer Science, Vol. 2543, pp. 115-
128, Springer Verlag, Heidelberg, Germany, 2003.

[5] A. Fantechi, S. Gnesi, G. Lami, A. Maccari, Ap-
plication of Linguistic Techniques for Use Case
Analysis, Requirements Engineering Journal Vol.
8, Issue 3, pp 161-170, Springer-Verlag, 2003.

[6] Colette Rolland, Camille Ben Achour, Guiding
the Construction of Textural Use Case Specifi-
cation, Data & Knowledge Engineering Journal,
Elsevier Science Publishers, Vol 25, N 1-2, pp 125-
160, March 1998.

[7] WordNet lexical database for English Language
http://www.cogsci.princeton.edu/~wn/.

[8] P. Devanbu and W. Frakes. Extracting formal do-
main models from existing code for generative
reuse. ACM Applied Computing Review, 1997.

[9] Wolfgang Fleisch, Applying use cases for the re-
quirements validation of component-based real-
time software, Second IEEE International Sympo-
sium on Object-Oriented Real-Time Distributed
Computing, p. 75, Saint-Malo, France, May 02-
05, 1999.

[10] An Overview to the XMI - XML
Metadata Interchange Specifica-
tion http://www.omg.org/news/pr99/-
xmi overview.html.

