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Abstract

In this paper, we propose an approach for the
verification of a state model against use cases written
in natural language. An objective of this approach is
to provide a quick way to ensure that requirements
modeling proceeds in the right direction in the con-
text of iterative development. The approach consists
of extracting logical statements from use cases and ver-
ifying these statements with corresponding statements
obtained from state machines. We are able to detect
some requirement violations symptomatic of wrong as-
sumptions.

1 Introduction

Use cases/Scenarios are considered as one of the
most effective ways to capture requirements and guide
software development. Use cases are easily traceable to
the later development stages namely implementation
and testing. A use case describes a set of sequential
interactions between a system and its actors. A use
case scenario represents a sequential flow of events in-
volving actors entitled to perform a specific function.
According to [1], scenarios are intuitive and very close
to users’ requirements. At the early requirement anal-
ysis stage, use cases are built in informal textual for-
mat as plainly stated by the user. Then these use cases
are usually formalized using UML Sequence Diagram,
Message Sequence Charts (MSC) or State Machines.
But once the requirements are formalized, the software
developer takes little concern in checking whether the
formalized design still follows all the basic functional-
ities correctly with reference to the informal textual
requirements. The above factors were instrumental to
the development of the approach described in this pa-
per. The objective of this approach is to provide a
mechanism for checking a design model represented as
state machines, against use cases. We focus on “early”
use cases represented in a form of natural language.
The conversion of use cases to state machines is essen-
tial to refine system behavior and to keep consistency
between requirements and design [10]. Our goal is to

provide a lightweight and semi-automated approach
that could be applied in the context of iterative elabo-
ration of state machines from use cases. The approach
is lightweight in the sense that it relies on simple con-
version rules and a proof mechanism based on first
order logic. It does not proscribe full-blown validation
based on simulation or theorem proving. But, our po-
sition is that such approaches are more heavyweight
and are better used later after enough requirements
are gathered.

The essence of our verification approach is the
derivation of logical statements corresponding to use
case scenarios and state machines, followed by a for-
mal matching of these statements. We use a form of
the Object Constraint Language (OCL) [7] for logical
statements. The approach is based on the assump-
tion that use cases and state machines are syntacti-
cally consistent; that is a same terminology is used in
both models. Another assumption is that states are
formally specified in state machines using predicates.
Because of these assumptions, the approach naturally
fits into the UCEd process [9].

The remainder of this paper is organized as fol-
lows. Section 2 summarizes our use case based re-
quirements engineering approach and its supporting
tool UCEd. In Section 3, we present our verification
approach. This section is subdivided further to explain
the extraction of OCL statements from use cases and
state machines, and the algorithm used for validating
these OCL operations. Finally section 4 presents some
related works and concludes the paper.

2 Use case based requirements engi-

neering

Figure 1 describes our requirements engineering
process as supported by the UCEd tool. Requirements
represented as use cases are captured and executable
state machines are automatically generated using do-
main information [8]. The generated state machines
are used as prototypes for requirements validation by
simulation.
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Figure 1: Use cases based requirements engineering
process.

2.1 Use cases

Figure 2 shows a use case in the context of an
ATM banking application. A use case captures re-
quirements as sequences of interactions between a sys-
tem and its actors. Formally, it is a tuple [Title, Pre-
condition, Steps, Postcondition] with: Title a label
that uniquely identifies the use case, Precondition a
condition that must be true before an instance of the
use case can be executed, Steps a sequence of steps,
and Postcondition a condition that must be true at
the end of the normal execution of an instance of the
use case. Each step in a use case may include a set of
extensions which are alternative behaviors that may
follow the step. We developed a restricted form of
natural language for writing use cases [9].

2.2 Domain model

We use a domain model where entities and op-
erations are declared, in order to allow for use cases
parsing and state machine generation. Figure 3 shows
an excerpt of a domain model for the ATM banking
application (because of space limitation, this domain
model is incomplete). Operations are specified using
withdrawn and added conditions. Withdrawn condi-
tions are those conditions that are eliminated after the
operation execution and added conditions are condi-
tion that hold after operation execution.

2.3 State machines

A state machine may integrate one or more use
cases in terms of states and transitions. Figure 4 shows
a state machine (also termed as state chart or state di-
agram) corresponding to the use case in Figure 2. This
state machine is produced automatically using UCEd
according to an algorithm described in [8]. We distin-
guish choice-points from other states. A choice-point
allows only guarded transitions. For instance, state 2
in Figure 4 is a choice-point. A state machine also

Title: Cash withdrawal

Precondition: ATM status is ON and

ATM display is Welcome message

Post condition: ATM status is ON and

ATM display is operation menu

STEPS

1. User inserts card in card reader slot

2 .ATM asks PIN

3. Before 60 sec, user enters PIN

4. ATM asks user validation to bank

5. Bank checks user id

6. If user identification is valid,

ATM display is operation menu

7. User selects cash withdrawal

8. ATM asks withdrawal amount

9. Customer enters withdrawal amount

10.ATM checks customer update

11.If user withdrawal OK,

ATM dispenses cash in cash dispenser slot

and ATM ejects card

12.User takes cash and

ATM display is operation menu

ALTERNATIVES

1.a. User card is not valid

1.a.1. ATM ejects card

1.a.2. ATM displays error message

1.a.3. After 30 sec,

ATM displays welcome message

2.a. After 60 sec,

2.a.1. ATM ejects card

2.a.2. ATM displays error message

2.a.3. After 30 sec,

ATM displays welcome message

5.a. User identification is invalid

5.a.1. ATM ejects card

5.a.2. ATM displays error message

5.a.3. After 30 sec,

ATM displays welcome message

10.a. User withdrawal is not OK

10.a.1. ATM displays error

10.a.2. After 10 sec, Go to step 8

Figure 2: Cash withdrawal Use case.

includes an initial state (state 1 in Figure 4). Each
state s is defined by a set of characteristic conditions
Cond(s), such that all conditions in Cond(s) are veri-
fied when the system is in state s. Figure 5 shows the
characteristic conditions of the states in Figure 4 .

State machine synthesis is based of the specifi-
cation of domain model operations as sets of added
conditions and withdrawn conditions (see Figure 3).
When an operation, op is applied to a state s1
with characteristic conditions Cond(s1), the resulting
state is a state s2 such that Cond(s2) = Cond(s1) -
withdrawn-cond(op) + added-cond(op).



Concept:ATM, Attributes:Display,Transaction status

Operation:display welcome message

AddedCondition:ATM Display is welcome message

WithdrawCondition:ANY ON USER Card

Operation:ask pin

AddedConditions:User PIN is requested, ATM

Display is pin enter prompt

Operation:ask user validation

AddedCondition:User Validation status is bank

inquired

Operation:display operation menu

AddedCondition:ATM Display is operation menu

Operation:eject card

AddedCondition:User Validation status is

card ejected

Operation:display error message

AddedCondition:ATM display is error message

Concept:User, Attributes:PIN, Validation status

Operation:insert Card

AddedCondition:USER Validation status is

card inserted

WithdrawCondition:ANY ON ATM Display

Operation:enter pin

AddedCondition:USER Validation status is

pin entered

Operation:select cash withdrawal

AddedCondition:USER Transaction is cash withdrawal,

ATM Transaction status is withdrawal initiated

WithdrawCondition:ANY ON ATM Display

Figure 3: ATM application domain model.

3 Verification approach

A use case corresponds to a set of scenarios that
are sequences of events. One of these scenarios is usu-
ally referred as the “main scenario” while other sce-
narios are “secondary scenarios”. A precondition and
a postcondition can be associated to each of these sce-
narios. The precondition denotes necessary conditions
for the scenario execution, while the postcondition is
a set of conditions that must hold at the end of the
scenario. The underlying idea of state machines veri-
fication is to check that when a given scenario precon-
dition hold, the state machine ensures that its post-
condition is verified at the end of the scenario. This is
possible if there is a specific mechanism to represent
use case scenarios and state chart diagram into simi-
lar form of logical operational statements. Once this
conversion to logical statements is done, the precondi-
tions to be verified are generated automatically from
these use case based logical statements. Then the post
conditions corresponding to these use case based pre-
condition logical statements are compared against the
post conditions of state chart based logical statements.
Hence, the approach can be decomposed into the fol-
lowing major sequences: (1) conversion of use case sce-
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insert card

[card is not valid]/
eject card,

TIMEOUT/
display welcome
message

4

[card is valid]/

display error message

ask PIN

5

6

TIMEOUT/
eject card,

TIMEOUT/
display welcome
message

enter pin/
ask user validation

7

check User id display
error message

[user id is not valid]/
eject card,
display error message

display operation menu
[user id is valid]/

9

10

select cash withdrawal/
ask withdrawal amount

TIMEOUT/
display operation menu

11

enter amount/
ask customer account update

[withdrawal
 is not ok]/

[withdrawal is ok]
dispense cash,
display operation menu

ask withdrawal amount,
display error message

1312

Figure 4: State Machine corresponding to Use Case
Cash withdrawal.

narios to a form of OCL based operational statements,
(2) conversion of state chart diagrams to OCL based
operational statements, and (3) matching of the sce-
nario based OCL operational statements (step1) and
state chart based OCL operational statements (step2).
It is worth noticing that verification is necessary even
in the context automated state machine generation.
The domain model as well as use cases upon which
state machine generation is based, may be incomplete
and may include inconsistencies. It is also possible
that generated state machines are manually altered
and developers need to ensure that no inconsistency is
introduced.

3.1 Conversion of use case scenarios

We generate pre and post conditions correspond-
ing to scenarios according to the three following cases.



S1 [ATM is ON,ATM Display is welcome message]

S2 Choice point

S3 [Timer11:30.0 second,ATM is ON,

User Validation status is card ejected,

User Card is NOT valid,

ATM Display is error message]

S4 [ATM Display is pin enter prompt,

ATM is ON, User PIN is requested,

User Validation status is card inserted]

S5 [ATM Display is pin enter prompt,

ATM is ON, User PIN is requested,

User Validation status is bank inquired]

S6 [ATM is ON, User Validation status

is card ejected, User PIN is requested,

ATM Display is error message]

S7 Choice point

S8 [ATM Display is operation menu, ATM is ON]

S9 [ATM Display is operation menu, ATM is ON,

User Identification is valid,

User PIN is requested,

User Validation status is bank responded]

S10 [ATM is ON,

ATM Display is withdrawal amount,

User Transaction is cash withdrawal]

S11 ChoicePoint

S12 [ATM Transaction status is amount checking,

User withdrawal is NOT ok,ATM is ON,

ATM Display is error message,

User Transaction is cash withdrawal]

S13 [ATM Display is operation menu,

ATM Transaction status is cash dispensed,

ATM is ON,

User Validation status is card ejected,

User Transaction is cash withdrawal]

Figure 5: Cash withdrawal Use case.

1. The use case precondition and respective postcon-
dition (for the main scenario).

2. Preconditions sequences and their respective post-
conditions sequences for secondary scenarios.

3. Condition sequences to account for conditional
behavior embedded within scenarios.

From the pre and postconditions in Figure 2, we gen-
erate the following OCL statement (A).

Context ATMControl:: cashwithdrawal ()

Pre: (ATM.status=ON) and (ATM.Display=Welcome)

Post: (ATM.status=ON) and

(ATM.Display=Operation menu)

This statement corresponds to the use case main sce-
nario. Notice that the conversion is a straightforward
translation from our natural language based syntax.

For secondary scenarios, the generated precondi-
tion corresponds to the step that has the extension
“anded” with the extension condition. For instance

alternative 10.a in Figure 2 corresponds to the follow-
ing statement (B).

Context ATMControl:: cashwithdrawal ()

Pre: (User.withdrawal = NOT OK) and

(ATM.Transaction status = amount checking)

Post: (ATM.Display = error message) and

(ATM.Display = askwithdrawalmount)

The precondition is obtained from step 10 operation
added-condition combined with the extension condi-
tion “User withdrawal is not OK”. The postcondition
corresponds to the added/withdrawn conditions of the
operations in the extension.

For the third category, the pre condition is the
if part or any other conditional parts present in any
of the use case steps and the corresponding post con-
dition is revealed by the succeeding action sequence.
For instance step 11 in Figure 2 corresponds to the
following statement (C).

Context ATMControl :: cashwithdrawal ()

Pre: (User.withdrawal = OK)

Post: (User.validation status= card ejected) and

(ATM.Transaction status = cash dispensed)

The If statement introduces the precondition and the
operation yields the postcondition. In the remainder
of this paper, we will refer to preconditions and post-
conditions derived from use case scenarios as UCS-pre
and UCS-post respectively.

3.2 Conversion of state machines

State machine conversion is performed according
to the algorithm in Figure 6. We generate plain OCL
based state chart statements (denoted by SCS in fu-
ture explanations) corresponding to each state and
its respective transitions. SCS statements are gen-
erated by pairs. Therefore during the verification,
for a given SCS corresponding to a UCS-pre, the re-
spective post condition will be the next OCL state
chart statement (next SCS) immediately following this
SCS under reference. Procedure generate OCL gen-
erates the SCS corresponding to a state in a simi-
lar way as in section 3.1. A count of the number
of transitions starting from a state is stored in vari-
able SCcount. If there are more than one transitions
starting from a state, procedure generate OCL trans

ensures that the first transition is taken into account
and the corresponding SCS will contain the predi-
cates in that state along with the transition guards
if any. The next SCS will correspond to the resul-
tant state of the transition in the state diagram if
that state has no departing transitions. Otherwise
this process is repeated until a state with no SC tran-
sitions is reached. This particular function is imple-
mented by the procedure, generate OCL resultant.



Procedure Generate_SCL_spec_statechart

(S: state machine)

Begin

Mainpre = generate_SCL(s1:state1,S:state machine);

n= count (S: state chart);

Mainpost = generate_ SCL (sn: last state,

S: state machine);

Print (mainpre, mainpost)

For each state (s S) and (s! = sn) do

Begin

If (SCtransitions! = null)

Begin

SCcount = number_of_trans (s)

I = 0

While (SCcount! = I )

Begin

If (s! = ‘choicepoint’)

Pre = generate_SCL (s,S) U

generate_SCL_trans (s,S,SC)

Post = generate_SCL_resultant (s, S, SC)

Else if (s = ‘choicepoint’)

Pre = generate_SCL_prestate (s, S) U

generate_SCL_trans (s, S, SC)

Post = generate_SCL_resultant (s, S, SC)

End if

Print (pre, post)

I = I +1

End while

Else if (SCtransitions = null)

Pre = generate_SCL (s, S)

Post = generate_SCL_next(s, S)

Print (pre, post)

End if

End for

End

Figure 6: Algorithm for state chart conversion.

The procedure keeps a list of visited states to avoid in-
finite loops. Procedures, generate OCL prestate and
generate OCL resultant are used when considering
a choice point. In this case the corresponding SCS is
obtained from the state that caused the transition to
the choice-point. Figure 7 shows the SCS statements
generated from the state machine in Figure 4.

3.3 Statement Matching

Figure 8 summarizes our matching technique for
logical statements derived from use cases and state ma-
chines. Given a UCS-pre, we first attempt to find a
matching SCS. If successful, we then verify that the
immediate next SCS includes that of the correspond-
ing UCS-post. In case, the UCS-post does not match,
the verification is interrupted by allowing the devel-
oper to see the generated inconsistency details (the
erroneous UCS-pre, UCS-post and SCS).

1. (ATM.status=ON) and (ATM.Display=Welcome)

2. (ATM.Display=Operation menu) and
(ATM.status=ON) and (User.validation status=card
ejected) and (ATM.Transaction status=cash dis-
pensed)

3. (ATM.status=ON) and (ATM.Display=Welcome)
and if (User.validation status = card inserted)

4. (ATM.status=ON) and (ATM.Display=Welcome)
and if (User.validation status=card inserted) and if
(User.card= NOT valid)

5. · · ·

x. (ATM.status=ON) and (ATM.Transaction
status=amount checking) and
(ATM.Display=askwithdrawalamount) and if
(User.withdrawal=NOT OK)

x+1. (ATM.Display=error mes-
sage) and (ATM.status=ON) and and
(ATM.Transaction.status=amount checking)

· · ·

Figure 7: SCL statements generated from state ma-
chine in Figure 4.

Procedure generate_matching (S: state machine;

M: scenario model)

Begin

IN1= Generate_OCL_spec_scenario (M)

IN2= Generate_OCL_spec_statechart (S)

For each pre condition, p in IN1

Pre=Findcorrespre (IN2,IN1,p);

Scenpost = scencheckpost (p, IN1);

Statepost = statecheckpost ( Pre, IN2);

If (statepost = includes (scenpost)) then

Print ("no ambiguity");

Else

Print ("ambiguity", pre, scenpost, statepost);

End for

End

Figure 8: Algorithm for matching statements.

As an example, consider instance A in sec-
tion 3.1. Recall that the OCL statement in this
instance corresponds to use case Cash withdrawal
main scenario. The UCS-pre (ATM.status=ON) and
(ATM.Display=Welcome) matches the SCS statement
1 in Figure 7. So, the next step is to check
the corresponding UCS-post, (ATM.status = ON)
and (ATM.Display = Operation menu) with the SCS
statement 2 (ATM.Display = Operation menu) and
(ATM.status = ON) and (User.validation status =
card ejected) and (ATM.Transaction status = cash dis-
pensed). We can notice that the SCS statement 2 in-
cludes the UCS-post. Therefore, the verification is suc-
cessful.



Consider now instance B. The UCS-pre can
be matched to the SCS statement x. However,
the corresponding UCS-post (ATM.Display = error
message) and (ATM.Display = askwithdrawalmount)
cannot be matched to the SCS statement x+1
(ATM.Display = error message) and (ATM.status = ON)
and and (ATM.Transaction.status=amount checking).
The SCS statement is missing condition (ATM.Display
= askwithdrawalmount), which means that when the
user withdrawal amount is invalid, an error message
is generated but the user is not asked to re-enter the
withdrawal amount. An analysis of the inconsistency
shows a contradiction in use case Cash withdrawal.
According to steps 10.a.1 and 10.a.2 (8 ), if the with-
drawal amount is not OK, ATM Display should be “er-
ror message” and ATM Display should be “ask with-
drawal amount” which suggests two different values
for ATM Display at the same time. The inconsistency
can be eliminated by performing a correction to the
use case. For instance, step 10.a.2 could be rewritten
as “10.a.2. After 30 seconds, Goto step 8”.

4 Conclusions

In this paper, we have proposed an approach to
ensure the consistency of use cases against state ma-
chines. There are very few works related ours. Martin
Giese and Rogardt Heldal [3] suggest an approach for
relating formal and informal requirements using OCL.
However, the focus is on the extraction of OCL state-
ments from use cases formalized as state machines.
In [4], Martin Glinz presents an approach aiming at
improving the quality of requirements with scenarios.
The approach concentrates on systematic representa-
tion of use case relationships. Grieskamp and Lepper
[5] selected Z language to model use cases giving way
to executable specifications, but this was only good
enough to verify the use cases and gives little con-
cern to the informal specifications. Levy, Marcano and
Souquières [6] also used a similar briefed approach as
[2] using the B formal language.

An objective of our approach is to help bridge
the gap between informal and formal requirements by
logically checking the presence of contradictions be-
tween scenarios as stated in use cases and as realized
in state machines. Because our approach relies on a
“contract-like” specification of domain operations, we
also provide an early validation of high-level design
assumptions. The approach does not preclude for ex-
tensive validation for which, we are planning on using
theorem-proving techniques.
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