
Specifying Use Case Sequencing Constraints using Description Elements

Stéphane S. Somé
School of Information Technology and Engineering (SITE) University of Ottawa

800 King Edward, P.O. Box 450, Stn. A Ottawa, Ontario, K1N 6N5, Canada
ssome@site.uottawa.ca

Abstract

The ability to express sequencing constraints is critical
to use case based software development. These constraints
are needed to effectively compose use case behavior and
support verification and validation activities such as simu-
lation and testing.

In this paper, we consider the addition of use case de-
scription elements to explicitly express sequencing con-
straints between use cases. We introduce two complemen-
tary constructs. One allows to specify which use cases need
to precede a use case and how these preceding use cases
are synchronized. The second construct allows to specify
which use cases are enabled from a use case and how these
use cases execute concurrently. We relate the introduced el-
ements to UML activity diagrams and implicit sequencing
based on preconditions and postconditions.

1. Introduction

Use case modeling is considered an effective approach
for requirements elicitation and analysis. Use cases allow
functional requirements to be expressed from users point of
view as a set of interactions in an intuitive way. The nature
of use cases makes them well suited for user requirements
capture. At the same time, with little structuring and for-
malization, use cases can also serve as functional require-
ments specification. Use case modelling thus constitutes a
promising approach for bridging the gap between users and
specifications.

The possibility for validation is an invaluable benefit for
any requirements engineering approach. Validation aims at
getting confidence that a specification effectively captures
users concerns and needs. Typical validation approaches in-
clude simulation and acceptance testing. Use cases supports
both approaches. Because they are description of users in-
teractions, use cases are well suited to simulation. A use
case based requirements specification can be validated by
showing users that it captures their required interactions

with the envisioned system rightfully [12]. Use cases are
also good sources for acceptance test cases as illustrated by
approaches such as [3, 10, 1].

An impediment to use cases based requirements vali-
dation is the necessity to combine sequentially related use
cases in a global executable behavior model. For instance
in a library system it is clear that a use case which goal is
to perform a customer registration would have to be com-
pleted before a use case which goal is to hire books is pos-
sible. Similarly books need to be hired before they can be
returned. This type of use case sequencing can not be di-
rectly expressed using UML use case relationships (include,
extend and generalization). An attempt to force sequencing
using these UML relationships results in poorly written use
case models that suffer from the functional decomposition
problem [2].

In different approaches [10, 14], graph-based models
similar or derived from UML activity diagrams [9] are
used to explicitly express use cases sequencing constraints.
Other approaches including our previous work specify these
sequencing constraints in a more implicit way using precon-
ditions and postconditions [11, 8]. In this paper we consider
an alternative approach for the expression of use case se-
quencing constraints. We exploit the potential of extension
offered by use case templates to explicitly specify how use
cases need to execute each in relation to the others. We com-
pare our use case sequencing constructs to activity diagram
and pre/postconditions based approaches.

The remainder of this paper is organized as follow. We
introduce use case description as well as a running example
in the next section. In section 3, we present our use case
sequencing elements and compare with UML activity dia-
gram as well as pre/postconditions based sequencing. We
discuss some related works in section 4. Finally section 5
concludes the paper.

2. Use Case Description

Use cases related to a system are described in a use case
diagram [9] that shows use case names, actors, relationships

Sixth International Workshop on Scenarios and State Machines (SCESM'07)
0-7695-2958-5/07 $20.00  © 2007



between actors and use cases, and relationships between
use cases. As an example, Figure 1 describes a UML use
case model for an “Online Broker System”. The goal of the

Figure 1. UML representation of a use case
diagram for an Online Broker System.

system is to allow customers to find the best supplier for a
given order. A customer fills up an online order form and
after submission, the system broadcast it to suppliers. We
assume three suppliers in this example, “SupplierA”, “Sup-
plierB” and “SupplierC”. Each supplier after examining the
order may decide to decline or submit a bid. Submitted bids
are sent back to the broker to be shown to the customer, who
eventually ask the system to proceed with a bid.

Different templates have been proposed for use cases de-
scription. These templates propose different sections for
recording use case related information. Examples of sec-
tions are: title, system under design, precondition, post-
condition and steps. Figure 2 shows a description of the
use cases in the “Online Broker System” using our use case
template introduced in [11].

Two main parts can be distinguished in a use case de-
scription. A static part consisting of sections title, sys-
tem under design, precondition, postcondition and a dy-
namic part consisting of sections Steps and Alternatives.
The dynamic part describes interactions between the system
under consideration and actors in the environment. Beside
events such as triggers from actors and system reactions, a
use case dynamic part may also include directives such as
the use case inclusion directive.

Each use case consists of a primary scenario and zero
or more secondary scenarios. The primary scenario is the
sequence of events in the section titled “Steps”. Secondary

Title: Take Order
System Under Design: Broker System
Precondition: System is online
Steps
1.Customer loads the order page,
creates an order by filling a list of items
2.Customer submits the order
3.System broadcast the order
Success Postcondition: The Order has been broadcasted

Title: SupplierA Bid
System Under Design: Broker System
Precondition: An Order has been broadcasted
Steps
1.SupplierA receives the order and examines it
2.SupplierA submits a bid for order
3.The System shows the Bid to the Customer
Alternatives
1.a.SupplierA can not satisfy the Order
1.a.1.SupplierA passes on the Order
Success Postcondition: SupplierA has submitted a bid

Title: SupplierB Bid
System Under Design: Broker System
Precondition: An Order has been broadcasted
Steps
1.SupplierB receives the order and examines it
2.SupplierB submits a bid for order
3.The System shows the Bid to the Customer
Alternatives 1.a.SupplierB can not satisfy the Order
1.a.1.SupplierB passes on the Order
Success Postcondition: SupplierB has submitted a bid

Title: SupplierC Bid
System Under Design: Broker System
Precondition: An Order has been broadcasted
Steps
1.SupplierC receives the order and examines it
2.SupplierC submits a bid for order
3.The System shows the Bid to the Customer
Alternatives
1.a.SupplierC can not satisfy the Order
1.a.1.SupplierC passes on the Order
Success Postcondition: SupplierC has submitted a bid

Title: Process Bids
System Under Design: Broker System
Precondition: SupplierA has bidded or SupplierB has
bidded or SupplierC has bidded
Steps
1.Customer examines the bid
2.Customer signals the system to proceed with bid
3.System put an order with the selected bidder

Figure 2. Use cases for the Online Broker
System.

Sixth International Workshop on Scenarios and State Machines (SCESM'07)
0-7695-2958-5/07 $20.00  © 2007



scenarios include events from the section titled “Steps” fol-
lowed by events in the section titled “Alternatives”. For
instance, use case “SupplierA Bid” includes a primary sce-
nario and one secondary scenario. The primary scenario
consists of the sequence of steps: 1-2-3, while the sec-
ondary scenario consists of: 1-1.a.1.

A use case execution corresponds to an instantiation of
one of its scenarios. For instance, use case “SupplierA Bid”
execution would result in the instantiation of one of the two
scenario above with the occurrence of the corresponding se-
quence of events.

A use case model does not show use cases sequencing
constraints. For instance, the use cases in the Broker ex-
ample are sequentially related. Use cases “SupplierA Bid”,
“SupplierB Bid” and “SupplierC Bid” are supposed to exe-
cute concurrently following use case “Take Order”. An in-
stance of use case “Process Order” may be started following
any of use cases “SupplierA Bid”, “SupplierB Bid” or “Sup-
plierC Bid”. However these relations can not be modeled in
the use case diagram shown in Figure 1 because there is no
provision in the UML for the specification of such sequenc-
ing relations. Preconditions and postconditions can be used
to express some of these relations. However, by only re-
lying on preconditions and postconditions, some nuances
such as the distinction between concurrent and alternative
execution can not be expressed. Moreover, according to our
experience, use case modelers have difficulty finding pre
and postconditions at the early stages of use case modeling.
Preconditions and postconditions are often too broad or too
restrictive. On the other hand there is usually a clear idea of
how use cases should follow each other.

3. Use case sequencing elements

We propose to enhance use case description with ele-
ments allowing to express sequencing relations. We first
present our use case sequencing requirements. Then, we in-
troduce two use case sequencing constructs and compare to
UML activity diagram as well as pre/postconditions based
sequencing.

3.1. Use case sequencing requirements

The following are our initial requirements for use case
sequencing.

Req1 It should be possible to specify which use cases must
precede a given use case.

Req2 It should be possible to specify how the use cases
preceding a use case are synchronized in relation to
that use case.

Req3 It should be possible to specify which use case is en-
abled to execute by the execution of a use case.

Req4 When more than one use cases are enabled by a use
case, it should be possible to specify whether these use
cases execute concurrently or alternatively.

These requirements should be considered as minimal re-
quirements for modelling the most common use case se-
quencing situations such as the ones in the “Online Broker
System” example. They cover situations related to sequen-
tial execution, iterative execution, concurrent execution and
alternative execution. We do not consider data flow issues.

3.2. Use case sequencing constructs

We introduce two constructs for expressing sequencing
constraints in use case descriptions. Figure 3 shows the
use cases in the Online Broker example rewritten to include
these sequencing constructs1.
For requirement Req1, we introduce a section in use cases
static part titled “Follows” (follow section). The follow sec-
tion introduces a set of use cases that need to be executed
before the described use case. For instance, use case “Sup-
plierA Bid” follows section refers to use case “Take Order”
to express that an execution of “Take Order” must precede
an execution of “SupplierA Bid”.
In order to satisfy requirement Req2, the use cases in a
follow section are specified as an expression reflecting how
they should be synchronized in relation to the described use
case. We use the two boolean operators AND and OR with
the following meaning. Operator AND expresses synchro-
nization while OR captures asynchronism. Given use cases
uc0, uc1, uc2, · · ·, ucn, the following interpretation is given.

• If the follows section of uc0 is specified as
“uc1 AND uc2 AND · · ·ucn”, all of uc1, uc2, · · ·,
ucn must reach a point from which use case uc0 is
enabled before use case uc0 (synchronism).

• If the follow section of uc0 is specified as
“uc1 OR uc2 OR · · ·ucn”, use case uc0 may be exe-
cuted as soon as any of use cases uc1, · · ·, ucn reach
a point from which use case uc0 is enabled (asynchro-
nism).

For instance use case “Process bids” follows section
“SupplierA Bid OR SupplierB Bid OR SupplierC
Bid” interpretation is that “Process bids” can be ex-
ecuted whenever any of use cases “SupplierA Bid”,
“SupplierB Bid” or “SupplierC Bid” has reached a
point where “Process Bids” is enabled. In other words,
the three use cases execution is not synchronized.

Operators AND and OR may be combined to express more
complex sequential relations.

1We only show use case “SupplierA Bid” as “SupplierB Bid” and “Sup-
plierC Bid” are similar.

Sixth International Workshop on Scenarios and State Machines (SCESM'07)
0-7695-2958-5/07 $20.00  © 2007



Title: Take Order
System Under Design: Broker System
Precondition: System is online
Steps
1.Customer loads the order page,
creates an order by filling a list of items
2.Customer submits the order
3.System broadcast the order
4.Enable in parallel: SupplierA Bid, SupplierB
Bid, SupplierC Bid
Success Postcondition: The Order has been broadcasted

Title: SupplierA Bid
System Under Design: Broker System
Follows: Take Order
Precondition: An Order has been broadcasted
Steps
1.SupplierA receives the order and examines it
2.SupplierA submits a bid for order
3.The System shows the Bid to the Customer
4.Enable: Process Bids
Alternatives
1.a.SupplierA can not satisfy the Order
1.a.1.SupplierA passes on the Order
Success Postcondition: SupplierA has submitted a bid

Title: Process Bids
System Under Design: Broker System
Follows: SupplierA Bid OR SupplierB
Bid OR SupplierC Bid
Precondition: SupplierA has bidded or SupplierB has
bidded or SupplierC has bidded
Steps
1.Customer examines the bid
2.Customer signals the system to proceed with bid
3.System put an order with the selected bidder

Figure 3. Use cases for the Online Broker
System enhanced with use case sequencing
elements.

For requirement Req3, we introduce a directive similar to
the use case inclusion directive. We refer to this
directive as a use case enabling directive as it allows
to explicitly state which use case is enabled for execution.
For instance, use case “Process Bids” is enabled in step 4 of
use case “SupplierA Bid”. An execution of “Process Bids”
becomes therefore possible from that point according to this
use case follows section.

We distinguish a parallel variant of the use case
enabling directive in order to satisfy requirement Req4.
This variant allows stating that enabled use cases execute
all concurrently. For instance step 4 of use case “Take Or-

der” specifies that “SupplierA Bid”, “SupplierB Bid” and
“SupplierC Bid” are enabled in parallel. As a result, a sce-
nario from each of the use cases might proceed concurrently
with the others. The non-parallel variant of the use case
enabling directive may also specify more than one use
case. In that case however, the other use cases are disabled
as soon as one of the use case starts executing. In order to
avoid non deterministic situations, all use cases involved in
a non-paralleluse case enabling directive must have
a distinct triggering event. More formally, firstEvent and
trigger being two functions such that given a use case uc
firstEvent(uc) is the first event of uc and trigger(ev) returns
true if ev is a trigger event, the following rule needs to be
satisfied.

Rule 1 Given UC = {uc1, · · ·, ucn} a set of use cases re-
ferred to in a non-parallel enabling directive, ∀uci ∈
UC, trigger(firstEvent(uci)) is true and � ∃ ucj (i �= j) ∈
UC such that firstEvent(uci) = firstEvent(ucj).

A use case enabling directive may appear at any
point in a use case. In a situation where an enabling direc-
tive is not the last element of a scenario, all events following
that directive are concurrent with the enabled use cases. We
also allow a use case to enable itself. Thus modelling an
iterative behavior.

Follow sections and use case enabling directives depend
each on the other. The following rule must be satisfied for
consistency.

Rule 2 When a use case uci refers to a use case ucj in
its follow section, use case ucj must include an enabling
directive referring to use case uci. Conversely, for each
use case referred to in an enabling directive, the enabled
use case must include the enabling use case in its follow
section.

Both constructs are necessary to fully satisfy requirements
Req1 to Req4. The use of a Follow section alone would
not allow to express concurrency (Req4) additionally, it
wouldn’t be possible to specify at which point a use case
becomes possible. Conversely, the use case enabling direc-
tive alone would not make it possible to specify how the use
cases preceding a use case should be synchronized (Req2).

3.3. Comparison with UML activity dia-
grams

Figure 4 shows how our use case sequencing constructs
are related to UML activity diagrams [9], and Figure 5
shows a UML activity diagram representation of the se-
quencing relations specified in Figure 3. Figure 4 only
considers enabling directives at the end of scenarios. We
can not directly map situations where enabling directives
are not at the end of scenarios to activity diagrams because

Sixth International Workshop on Scenarios and State Machines (SCESM'07)
0-7695-2958-5/07 $20.00  © 2007



Use Case Construct Corresponding Activity Dia-
gram

Title: uc0
1. ...
...
n. Enable: uc1
Title: uc1
...
Follows: uc0

(a)

flow

Title: uc0
...
Follows: uc1 AND
uc2

(b)

join

Title: uc0
...
Follows: uc1 OR uc2

(c)

merge

Title: uc0
1. ...
...
n. Enable: uc1, uc2

(d)

decision

Title: uc0
1. ...
...
n. Enable in parallel:
uc1, uc2

(e)

fork

Figure 4. Mappings between use case se-
quencing constructs and UML activity dia-
grams.

Figure 5. Description of Figure 3 sequencing
relations as a UML activity diagram.

of the level of granularity of actions in activity diagrams.
In order to describe situations where enabling directives are
not the last elements of scenarios using UML activity dia-
grams, the use cases need to be rewritten such that all use
case enabling directives are last in their scenario.

An enabling directive that refers to a single use case
(with its matching follow section) corresponds to a simple
flow from one use case to the other (Figure 4-a). Situa-
tions where a follow section refers to more than one use
case correspond to a join when operator AND is used (Fig-
ure 4-b), or a merge when operator OR is used (Figure
4-c). We can infer from Figure 4-b and 4-c that a situation
involving a combination of operators AND and OR corre-
sponds to a sequencing of join and merge nodes. Figures
4-d and 4-e show that a non-parallel use case enabling direc-
tive corresponds to a decision modelling a deferred choice
[13] based on the next event occurrence, while a parallel use
case enabling directive corresponds to a fork. Decisions in-
volving conditions can be modeled by embedding enabling
directives in different alternatives of a use case.

3.4. Comparison with preconditions and
postconditions

Most use case templates include sections for precondi-
tions and postconditions. A use case precondition is a con-
dition that needs to hold before the use case, while a use
case postcondition is a condition that is guaranteed to hold
at the end of the use case. We distinguish success post-
conditions that hold at the end of primary scenarios from
alternative postconditions that hold at the end of secondary
scenarios. Preconditions are assumed to be verified before

Sixth International Workshop on Scenarios and State Machines (SCESM'07)
0-7695-2958-5/07 $20.00  © 2007



a use case is invoked. They usually result from the execu-
tion of other use cases. As such, preconditions and post-
conditions are implicit specification of use case sequencing
constraints.

A connection can be made between our use case se-
quencing constructs and pre/postconditions. Assuming
functions pre and post such that: pre(uc) is the precondi-
tion of a use case uc and given a scenario sc in use case uc,
post(sc) is the postcondition associated with scenario sc.
The inclusion of use case uci in the follow section of use
case ucj (and/or the presence of a use case enabling direc-
tive referring to use case ucj as the last element of scenario
sci) correspond to having post(sci) ⇒ pre(ucj) true, with
sci a scenario in use case uci.

Preconditions and postconditions allows to specify
which use case must precede a given use case (Req1) and
which use cases are enabled after a use case (Req3). How-
ever, they do not offer a possibility to specify how use cases
are synchronized (Req2) or whether several enabled use
cases execute concurrently or alternatively (Req4). For
instance, by analyzing the pre and postconditions of use
cases in Figure 2 , we can infer that use case “Take Order”
could be followed by use cases “SupplierA Bid”, “Suppli-
erB Bid” and “SupplierC Bid”. However, there is no indica-
tion to how these use cases would execute. Similarly we can
infer the sequencing relations between use cases “Suppli-
erA Bid”, “SupplierB Bid”, “SupplierC Bid”, and “Process
Bids” without any information on how they are synchro-
nized. Additionally, since postconditions are only checked
at the end of a scenario, situations where enabling direc-
tives are not the last elements of scenarios do not have an
equivalent.

We do not suggest a replacement of implicit sequenc-
ing provided by preconditions and postconditions with our
use case sequencing constructs. Beside allowing to express
some sequencing constraints, preconditions and postcon-
ditions play an important role in use case documentation.
They provide a description of system states before and after
the execution of use cases as conditions. Use case sequenc-
ing is only implicitly inferred from matching these states.
The relation of states and conditions, with an extension of
pre/postconditions to the description of operations are the
basis for state machine synthesis from use cases [11]. In
that context, the full extent of use case sequencing descrip-
tion capabilities obtained by our sequencing constructs can
be implicitly obtained from pre/postconditions2. However,
there is still a drawback with preconditions and postcondi-
tions as use case sequencing description mechanisms. In-
formation needed to accurately specify pre/postconditions
is usually not evident at the early stages of use case mod-
elling. This makes pre/postconditions specification an error
prone process.

2Further discussion on this topic is out of the scope of this paper.

We suggest using implicit sequencing constructs and
pre/postconditions in conjunction. Typically, the require-
ments and assumptions about use cases sequencing would
be transcribed as early as possible using the explicit se-
quencing constructs. These requirements and assumptions
would then be elaborated using pre and postconditions
when more information become available. Explicit con-
straints specified by use case sequencing constructs and
implicit constraints derived from pre/postconditions must
comply with the following consistency rules. We assume
functions pre and post as above.

Rule 3 Given use cases uci and ucj , if uci is included in
the follow section of ucj , there must exist a scenario sci in
uci such that post(sci) ⇒ pre(ucj) (notice that in accor-
dance with rule 2, scenario sci must include an enabling
directive referring to use case ucj).

Rule 4 Given use cases uci and ucj , if there is a scenario
sci in uci such that post(sci) ⇒ pre(ucj), use case uci

must be included in the follow section of ucj and there must
be a use case enabling directive referring to ucj in scenario
sci.

4. Related work

Different approaches related to the specification of sce-
nario and use case sequencing constraints are based on
graphical models where nodes are scenarios/use cases and
edges capture information on how the scenarios or use cases
execute in sequence. The ITU-T recommendation Z.120
[6] introduced High-Level MSC (HMSC) to graphically
model Message Sequence Charts sequencing. Interaction
Overview Diagrams [9] in the UML offer a mechanism sim-
ilar to HMSC for the expression of sequencing relations be-
tween UML Sequence Diagrams.

Glinz [4] proposed an approach for use case composi-
tion where use case sequencing relations (sequence, alter-
native, iteration and concurrency) are captured in a deriva-
tive of Jackson diagram. The TOTEM approach [1] uses
a UML activity diagram to model use case sequencing for
system level test cases derivation. In [14], a graphical no-
tation called “Use Case Charts” is proposed for use case
specification. Use case charts represent use case models
over three levels. Levels 1 and 2 are variants of UML ac-
tivity diagrams used to model sequencing relations at the
use cases level and at the scenarios level respectively. The
SCENT approach [10] also makes use of a graphical model.
The model referred to as a “Dependency Chart” allows to
graphically specify use cases sequencing constraints. De-
pendency Charts are also used to describe other dependen-
cies such as data and resource dependencies.

Our main criticism of graphical models including UML
activity diagrams boils down to the granularity of ele-

Sixth International Workshop on Scenarios and State Machines (SCESM'07)
0-7695-2958-5/07 $20.00  © 2007



ments. Graphical models specify relations between whole
use cases. However, sequencing is usually dependent on
scenarios within use cases. For instance, in an online order-
ing system, a primary scenario in a user identification use
case would likely enable use cases allowing products order-
ing, while secondary scenarios that describe unsuccessful
identification would enable other use cases. Other limita-
tions as discussed in Section 3.3, include the inability to
specify precisely when a use case becomes enabled.

An advantage offered by graphical approaches is that
they provide a visual depiction of use case sequencing rela-
tions. This allows to quickly validate sequencing assump-
tions by inspection. Mappings between use case sequenc-
ing constructs and UML activity diagrams presented in Fig-
ure 4 and illustrated in Figure 5 allow to envision automated
derivation of UML activity diagram depicting sequencing
relations from use cases augmented with sequencing con-
structs.

We extended a use case description template to include
the possibility to specify sequencing constraints. Different
templates include sections similar to our follow section [5].
The basic objective of the follow section is to provide an
ability to specify which use cases precede (or follow) a
given use case. However, to the best of our knowledge, no
template formally defines the content of that section to the
degree of this paper. We are also not aware of any previous
work on use case enabling directive.

5. Conclusions

In this paper we presented two complementary con-
structs for the specification of use case sequencing con-
straints. These constructs allow to express common use
case dependencies such as sequential execution, alterna-
tive execution, concurrent execution and iterative execu-
tion without relying on an additional model. We defined
mappings between our use case sequencing constructs and
UML activity diagrams that would allow synthesis of the
later from the former and consistency checking.

Use case sequencing constraints capture is an important
step toward use case composition and global behavior syn-
thesis. In our previous work, we developed a toolset for use
case based requirements definition and elaboration called
Use Case Editor (UCEd) [12]. We updated UCEd template
and language with the use case sequencing constructs dis-
cussed in this paper. We also implemented use case verifi-
cation routines for the consistency rules presented in section
3. Given a use case model, these verification routines allows
to check that none of the rules is violated and provide guid-
ance for the removal of eventual inconsistencies. We are
also developing a state machine synthesis approach based
on our sequencing constructs. Our goal is to allow early
validation of use case based requirements by providing fa-

cilities for simulation. The obtained state model would also
be useful for the validation of design and implementation
artefacts by the mean of testing.

The types of sequencing constraints supported in this pa-
per are not exhaustive. Other useful types of constraints
such as preemption [7] exist. In our future work, we will
consider ways to extend use case description to support ad-
ditional sequencing constraints.

References

[1] L. Briand and Y. Labiche. A UML-Based Approach to Sys-
tem Testing. Technical Report TR SCE-01-01, Carleton
University, 2002.

[2] M. Fowler. www.DistributedComputing.com, 1998.
[3] P. Fröhlich and J. Link. Automated test case generation

from dynamic models. In E. Bertino, editor, ECOOP 2000 -
Object-Oriented Programming, 14th European Conference,
pages 472–492. Springer, 2000.

[4] M. Glinz. An Integrated Formal Model of Scenarios Based
on Statecharts. In Software Engineering - ESEC’95. Pro-
ceedings of the 5th European Software Engineering Confer-
ence, pages 254–271. Springler LNCS 989, 1995.

[5] A. Holub. OO design process: Use cases, an introduc-
tion. http://www-128.ibm.com/developerworks/library/co-
design5.html, 2000.

[6] ITU-T. Recommendation Z120, Message Sequence Charts,
2004.

[7] I. Krüger. Modeling and Synthesis with MSC Extensions
for Broadcasting, Overlapping, Preemptive, and Triggered
Collaborations. In Scenarios and state machines: models,
algorithms, and tools (SCESM’03), 2003.

[8] C. Nebut, F. Fleurey, Y. L. Traon, and J.-M. Jézéquel. Au-
tomatic Test Generation: A Use Case Driven Approach.
IEEE Transactions On Software Engineering, 32(3):140–
155, march 2006.

[9] OMG. UML 2.0 Superstructure, 2003. Object Management
Group.

[10] J. Ryser and M. Glinz. Using dependency charts to
improve scenario-based testing. In Proceedings of 17th
International Conference on Testing Computer Software
(TCS2000), 2000.

[11] S. Somé. Beyond Scenarios: Generating State Models from
Use Cases. In Scenarios and state machines: models, algo-
rithms, and tools (SCESM’02), 2002.

[12] S. Somé. Supporting Use Cases based Requirements Engi-
neering. Information and Software Technology, 48(1):43–
58, 2006.

[13] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kie-
puszewski, and A. P. Barros. Workflow patterns. Distributed
and Parallel Databases, 14(1):5–51, 2003.

[14] J. Whittle. Specifying Precise Use Cases with Use Case
Charts. In Satellite Events at the MODELS 2005 Con-
ference, volume 3844 of LNCS, pages 290–301. Springer-
Verlag, 2005.

Sixth International Workshop on Scenarios and State Machines (SCESM'07)
0-7695-2958-5/07 $20.00  © 2007


