
Enhancement of a Use Cases based Requirements Engineering approach with
Scenarios

Stéphane S. Somé
School of Information Technology and Engineering (SITE) University of Ottawa

800 King Edward, P.O. Box 450, Stn. A Ottawa, Ontario, K1N 6N5, Canada
ssome@site.uottawa.ca

Abstract

Use Cases and Scenarios are sometimes considered as
analogous. In this paper, we take the position that use cases
and scenarios are different but play complementary roles
in requirements engineering. A use case is a collection of
scenarios. Use cases are appropriate as specification of
a system required behavior in interaction with its actors.
A scenario is an example of execution involving a system
and its actors. A scenario may be defined with the intention
that it should be supported or the intention that it should
be avoided. Scenarios can thus be used to validate func-
tional as well as non-functional requirements specification.
We present an integration of scenarios to a use case based
requirements engineering approach and discuss the merits
of such integration.

1. Introduction

Requirements engineering is known as a critical task in
the software life cycle. According to different studies, a
great number of project failures can be traced to poor re-
quirements definition and lack of users involvement in the
requirements engineering process. Early validation of re-
quirements in conjunction with users is generally consid-
ered as a promising solution to that problem. The objective
of requirements validation is to ensure requirements cap-
tured from users effectively describe their wishes for a sys-
tem being developed. Because they are the source of re-
quirements, users are the ultimate judges on the accuracy
of what is specified as their requirements. Users involve-
ment is therefore necessary for effective requirements vali-
dation. Not surprisingly users simulation of prototypes de-
rived from requirements is one of the most effective require-
ments validation approaches. A problem with simulation
is the time and effort needed to build prototypes. For the
approach to be efficient, prototypes should be easy to ob-

tain from requirements. A good prototype should also have
a high degree of modifiability in order to quickly adapt to
requirements volatility in the early stages of requirements
engineering.

We are developing an approach where use cases are used
to capture requirements [11]. A use case is the specifica-
tion of a sequence of actions, including variants, that a sys-
tem can perform, interacting with actors of the system [10].
Use cases have become one of the favorite approaches for
requirements capture more so ever since their adoption by
software development approaches such as the Unified Pro-
cess [7]. We automatically generate executable state ma-
chines from use cases using information in a domain model
[12]. The generated state machines are used as prototypes
for requirements validation by simulation. Because of the
automated generation, prototypes in our approach are ob-
tained from requirements in a timely manner and with little
effort. However, initial applications of the approach brought
some requests for improvement from the users of the ap-
proach. One of these requests is to provide a mechanism
that would facilitate repeatability of simulation sessions.

In this paper, we introduce scenarios as a response to
this requirement. The terms “use case” and “scenario” are
sometimes wrongly considered synonymous. We see a sce-
nario as a single linear sequence of interactions between
external actors and a system, while a use case integrates
a set of scenarios (a main scenario and zero or more sec-
ondary scenarios). Moreover, use cases and scenarios have
different purposes in the development process. As pointed
out by Ian Alexander and Neil Maiden, there are two po-
sitions on the usage of scenarios/use cases: a modernist
view and a traditionalist view [1]. We consider use cases
for the modernist view and scenarios for the traditionalist
view. In accordance with the modernist view, use cases
are analytical description of how the system should react
in interaction with actors. Use cases are part of the sys-
tem functional specification. Scenarios on the other hand,
are used in the traditionalist view. They are samples of in-
teractions between actors and a system. As specifications,

use cases needs to be complete. Scenarios are unlikely to
be complete. An infinite number of scenario is possible in
presence of loops. We consider use cases and scenarios as
complimentary; use cases define what the system should do,
and scenarios are used to validate use cases. Another inter-
esting distinction is that use cases are limited to description
of the functional aspect of a system, while scenarios may
be used to capture some non-functional properties such as
safety and security.

The main contributions of the paper are a definition of
scenarios in relation with use cases and, the integration of
scenarios to a use cases based requirements engineering ap-
proach. The rest of the paper is organized as follow. In the
next section, we describe our use case based requirements
engineering approach, and identify some limitations lead-
ing to the introduction of scenarios. We define scenarios as
well as scenario execution in section 3. Section 4 discusses
some related work and finally, section 5 concludes the paper
with some future works.

2. Requirements engineering process

Figure 1 describes our use cases based requirements en-
gineering process. It is an enhancement of an approach pre-
sented in [11]. The process is supported by a tool called
Use Case Editor (UCEd) [13]. The following activities are

Use Cases

Composition
Scenario

Capture

state
model

changes to

use cases

changes to

elements
domain

Use Cases
Simulation

elements
domain

scenarios

scenarios

use cases

domain elements

use casesdomain model

Capture

Domain Model Use Cases
Capturedomain elements

scenarios

Figure 1. Use cases based requirements engi-
neering process. The boxes are activities and
the arrows show data elements exchanged
between these activities.

included in the approach reported in [11]: domain model
capture, use cases capture, use cases composition
and use cases simulation. These activities are reviewed
and illustrated with a case study in the remainder of this
section. In this paper, we introduce scenarios as part of
requirements, and add a scenario capture activity to the
requirements engineering process. Our motivations are dis-
cussed in section 3. They can be summarized as (1) a ne-
cessity to make simulation recordable and repeatable, and

(2) a necessity to be able to define what behaviors should
be avoided in addition to required behaviors.

2.1. Use Cases

Use cases are defined in a Use Case model along with
actors and relationships. Figure 2 shows a UML use case
model for a web based Electronic Voting System (EVote
System) and Figure 3 shows the description of three of
the use cases. The use case template is based on Cock-

Voter

Candidate

Election Officer

Validate ballots

Officer Login

Register for vote

Perform vote

<<include>>

Voter Login

Register as candidate

<<include>>

Modify profile

<<include>>

Register to election

Validate candidates

<<include>> <<include>>

Figure 2. UML representation of a use case
diagram for a web based EVote System.

burn’s [3] and the restricted form of natural language used
for use case description is presented in [11]. Each use case
includes a precondition and a postcondition. The precon-
dition must hold before the use case is executed, while the
postcondition need to be true after a successful completion
of the use case. A use case is collection of related scenar-
ios. Each being a linear sequence of actor actions (triggers)
and system reactions. Each use case includes a primary sce-
nario (or main course of events) and 0 or more secondary
scenarios that are alternative courses of events to the pri-
mary scenario. For instance, use case Register for vote pri-
mary scenario consists of lines 1 to 6. Secondary scenarios
from the same use cases are sequences 1 - 1.a.1, 1 - 2 - 2.a.1,
1 - 2 - 3 - 3.a.1 and 1 - 2 - 3 - 4 - 5 - 5.a.1.

2.2. Domain Model

A Domain Model is a high level UML class model
that captures domain concepts and their relationships. Do-
main concepts include the system as a black box with the
“things” that exist or events that transpire in the environ-
ment in which the system works [7]. For instance, actors
that interact with the system are part of domain concepts.

Title: Register for vote
Primary Actor: Voter
Goal: An unregistered voter want to register
in order to be able to vote. If successful,
the system generates a login id and
password for the voter.

Precondition: EVote System is online
Postcondition: Voter is registered
1. Voter loads EVote System web page
2. Voter selects voter registration option
3. EVote System asks for name, social

security number, date of birth, adress
4. Voter provides name, social security

number, date of birth, adress
5. EVote System checks Voter status
6. EVote System generates Voter login id

and password
1.a. After 60 sec
1.a.1. EVote System displays time out page
2.a. After 60 sec
2.a.1. EVote System displays time out page
3.a. After 60 sec
3.a.1. EVote System displays time out page
5.a. Voter data is not in record
5.a.1. EVote System displays incorrect

information error page

Title: Perform vote
Primary Actor: Voter
Precondition: EVote System is online
1. INCLUDE Voter log in
2. Voter selects register vote operation
3. EVote System displays open ballots page
4. Voter selects a ballot
5. EVote System displays selected ballot page
6. Voter marks his vote
7. EVote System prompts Voter for more votes
8. IF Voter prompt response is more votes

THEN Go back to Step 3
3.a. After 60 sec
3.a.1. EVote System displays time out page
Title: Voter log in
Primary Actor: Voter
Precondition: EVote System is online
Postcondition: Voter is logged in
1. Voter loads login page
2. Voter enters login id and password
3. EVote System displays voter operation page
1.a. After 60 sec
1.a. 1. EVote System displays time out page
2.a. Voter is not registered
2.a. 1. EVote System displays incorrect

information error page

Figure 3. EVote System use cases “Register for Vote”, “Perform Vote” and “Voter log in”.

We use definitions in the domain model as a knowledge
base for the syntactical analysis of the natural language de-
scriptions in use cases. Another important role of the do-
main model is the specification of concept operations effects
as preconditions and postconditions. We refine operation
postconditions into added-conditions and withdrawn-condi-
tions. An added-condition becomes true after an operation.
Withdrawn-conditions denote conditions that are removed
after the operation execution. We consider a domain model
as an integral part of requirements. Discovery of domain
elements, particularly operation effects is an important part
of the requirement engineering process.

Figure 4 shows a domain model for the EVote System.
This model includes enough definitions for the syntactical
analysis of use cases in Figure 3. Domain concepts are
EVote System, the system under consideration, and Voter an
actor. Specification of a concept includes attributes and op-
erations. Operations in turn may be specified using precon-
ditions, withdrawn-conditions and added-conditions. As an
example, operation select register vote operation of concept
Voter precondition is “Voter is logged in”. That condition
needs to be true for the operation to be possible. After com-
pletion of the operation, condition “Voter transaction status
is vote operation selected” becomes true.

2.3. State Model

A state model includes states and transitions. States are
defined by characteristic conditions holding in them. The

principle of state model generation [12] is for each use case,
to augment an initially empty state model with states and
transitions such that all the scenarios in the use case are in-
cluded as state transition sequences in the state transition
machine. We use the operations’ added and withdrawn-
conditions to determine states. Suppose “-” is an operator
such that C1 and C2 being 2 sets of predicates, C1 −C2 is a
set obtained by removing all the predicates in C2 from C1,
and C1 + C2 is a set obtained by adding all the predicates
in C2 to C1. Given a state s such that pred(s) are the char-
acteristic conditions of s, the execution of operation op with
added-condition add conds(op) and withdrawn conditions
withdr conds(op) produces a state s′ such that
pred(s′) = (pred(s) - withdr conds(op)) + add conds(op).

Figure 5 shows a state model generated from use cases
in Figure 3 based on operation effects in Figure 4. The
state model description includes a definition of states
in term of characteristic conditions followed by state
transitions. Characteristic conditions define a hierarchy
of state inclusion. A state s is a substate of a state s′

if s′ characteristic conditions include those of s. For
instance, state 2 is a substate of state 1. Transitions are
in the format sd---trigger/reactions-->sa,
sd---guards/reactions-->sa, or
sd---TIMEOUT(delay)/reactions-->sa. sd
is a transition departing state, sa an arrival state, trigger an
actor operation, reactions a sequence of system operations,
and guards a set of conditions that need to evaluate to
true for the transition to be possible. TIMEOUT(delay)

System Concept:EVote System
Attribute:display
Operation:ask name social security number
Operation:check Voter status
AddedCondition:Voter data is not in record

OR Voter data is in record
Operation:generate Voter login id password
AddedCondition:Voter is registered

Operation:display incorrect information error
AddedCondition:EVote System display is

incorrect information page
Operation:display voter operation page
AddedCondition:EVote System display is

voter operation page
AddedCondition:Voter is logged in

Operation:display open ballots page
AddedCondition:EVote System display is open ballots page

Operation:display selected ballot page
AddedCondition:EVote System display is ballot page

Operation:prompt Voter more votes
AddedCondition:Voter prompt response is more votes
OR Voter prompt response is not more votes

Operation:display time out page
AddedCondition:EVote System display is timeout

Concept:Voter
Attributes:transaction status, prompt response, data
Operation:load EVote System web page
AddedCondition:Voter transaction status is

main page selected
Operation:select voter registration option
AddedCondition:Voter transaction status is

registration selected
Operation:provide name social security number
AddedCondition:Voter transaction status is info entered

Operation:load login page
AddedCondition:Voter transaction status is

login page selected
Operation:enter login id and password
AddedCondition:Voter transaction status is login entered

Operation:select register vote operation
Precondition:Voter is logged in
AddedCondition:Voter transaction status is

vote operation selected
Operation:select ballot
AddedCondition:Voter transaction status is

ballot selected
Operation:mark vote
AddedCondition:Voter transaction status is vote marked

Figure 4. Domain model for the EVote System.

is a timeout condition that indicates the expiry of a timer
set when the departing state was last entered after a given
delay. Any transition going from a state s also applies to
all substates of s. A particular state is chosen as an initial
state. In Figure 5, state 1 is the initial state.

2.4. Simulation

We use the state models obtained from use cases compo-
sition as prototypes for requirements validation by simula-
tion. UCEd includes a state model simulation engine and a
graphical user interface that allows simulation by selecting
actors operations. Simulation is basically a run through a
state model. A simulation session starts with the state model
initial state as a current state. When a selected actor opera-
tion is a trigger to a transition going from the current state,
UCEd displays the system reactions of that transition and

State:1[System is online]
State:2[trans status is login page,System online]
State:3[System is online,trans status is main page]
State:4[System is online,trans status is main page,

display is timeout]
State:5[System online,trans status is registration]
State:6[System online, display is timeout,

trans status is registration]
State:8[data is in record, Voter is registered,
trans status is information entered,System online]

State:9[data is NOT in record,System is online,
trans status is information entered,
display is incorrect information page]

State:11[trans status is login page,System online,
display is timeout]

State:12[Voter is logged in, System is online, display is
voter operation page, trans status is login entered]

State:13[Voter logged in,display is open ballots
page,System online,trans status is vote operation]

State:14[System is online,display is timeout,
Voter logged in, trans status is vote operation]

State:15[Voter is logged in, System is online,
display is ballot page, trans status is ballot]

State:17[trans status is vote marked,
prompt response is NOT more votes,System online,
Voter is logged in,display is ballot page]

State:18[Voter NOT registered, System online,
trans status is login entered,
display is incorrect information page]

**** TRANSITIONS ***
1---load EVote System web page/-->3
1---load login page/-->2
2---TIMEOUT(60)/display time out page-->11
2---enter login id and password/-->10
3---TIMEOUT(60)/display time out page-->4
3---select voter registration option/

ask name social security number -->5
5---TIMEOUT(60)/display time out page-->6
5---provide name social security number/check status-->7
7---[data is NOT in record]/

display incorrect information error page-->9
7---[data in record]/generate login password-->8
10---[Voter is NOT registered]/

display incorrect information error page-->18
10---[Voter is registered]/

display voter operation page-->12
12---select register vote operation/

display open ballots page-->13
13---TIMEOUT(60)/display time out page-->14
13---select ballot/display selected ballot page-->15
15---mark vote/prompt more votes-->16
16---[prompt response is NOT more votes]/-->17
16---[prompt response is more votes]/

display open ballots page-->13

Figure 5. State model generated from use
cases “Register for Vote”, “Perform Vote” and
“Voter log in”.

changes the current state to the transition arrival state. The
tool user is prompted for guards and timeout conditions.

Simulation helps validate requirements in collaboration
with users by ensuring that the combination of use cases
and domain description is satisfactory. Given a set of use
cases, the generated state model and hence use cases sim-
ulation results are strongly dependent on the operation ef-
fects defined in the domain model. In the extreme case that
no operation effect is defined, the resulting system would
be modeless. The generated state model would include a
single state with looping transitions and every possible in-

put would be accepted at any moment. Although, such a
system would allow the sequence of events defined in the
use cases, many other additional sequences would also be
permitted. In the EVote example, state 4 is a substate of
state 3. Therefore the sequence of triggers Voter load EVote
System web page - TIMEOUT - select voter registration op-
tion is valid and result in the system operation ask name
social security number. Notice that such extra sequences
are not necessarily bad. We consider use cases as possi-
ble behavior descriptions from which more behavior can be
inferred. However, in a situation where an extra sequence
is deemed unacceptable, some operation effects in the do-
main model must be altered to remove it. In the previous
example, the sequence Voter load EVote System web page -
TIMEOUT - select voter registration option would be pre-
vented by changing added and withdrawn conditions such
that state 4 is not a substate of state 3 anymore. In that case
it is sufficient to add withdrawn-condition “ANY ON Voter
transaction status” to operation display time out page. This
withdrawn condition states that any condition on attribute
transaction status is to be withdrawn-ed after operation dis-
play time out page. Figure 6 shows changes to the generated
state model after the modification to the domain model. The

State:4[System is online,display is timeout]
State:14[Voter is logged in,System is online,
display is timeout]

**** TRANSITIONS ***
2---TIMEOUT(60)/display time out page-->4
5---TIMEOUT(60)/display time out page-->4

Figure 6. Changes to the state model in Figure
5 after a modification to the domain model.

characteristic conditions of states 4 and 14 have been mod-
ified. In addition, transitions from state 2 to 11 and from
state 5 to 6 have been replaced by transitions to state 4. Be-
cause state 4 is not anymore a substate of state 3, trigger
select voter registration option is not acceptable from state
4 in the modified state model. The offending sequence Voter
load EVote System web page - TIMEOUT - select voter reg-
istration option is no more possible.

The previous example is a snapshot of our approach for
use cases elaboration in conjunction with the domain model.
A detailed presentation can be found in [11]. The approach
involves several iterations of use cases and domain specifi-
cation followed by simulation. It is being used in combina-
tion with UCEd to teach software engineering students how
to better describe use cases and domain model elements.
The following limitations became apparent while applying
the approach. Once a sequence that should not be accepted
is encountered and corrections attempted, it is not always
possible to remember the original sequence in order to en-
sure the effectiveness of the corrections made. A related
problem is that valid sequences may also need to be re-

checked after cycles of iteration to ensure the specification
still support them. Finally, it is sometimes useful to define a
sequence beforehand even as simulation is not yet possible.
These shortcoming are similar to what software testers were
faced with before the advent of automated testing. The so-
lution for testing was the introduction of test cases. We use
scenarios to address these shortcomings.

3. Scenarios

Scenarios describe interactions between systems and ac-
tors. A scenario is a sequence of: triggers, system reactions,
waiting delays, guard realizations and assertions. More for-
mally, we define a scenario S as a sequence of elements [e0,
· · ·, en] such that each ei ∈ T ∪R∪D∪Gr∪A with T a set
of triggers, R a set of system reactions, D a set of waiting
delays, Gr a set of guard realizations, and A a set of asser-
tions. We defined triggers and system reactions in section
2.3. A waiting delay specifies a point in a scenario where a
certain amount of time passes without any trigger or system
reaction. A guard realization is a condition set to hold at a
certain point in a scenario. An assertion is a condition that
needs to be true at a certain point in a scenario.

Figure 7 shows and example of scenario that includes all
these types of elements. Assertion “Voter is not logged in”

Scenario: example 1
1. Assertion:Voter is not logged in
2. Trigger:load EVote System web page
3. Trigger:select voter registration option
4. Reaction:ask name social security number
5. Trigger:provide name social security number
6. Reaction:check Voter status
7. Guard:Voter data is in record
8. Reaction:generate Voter login id and password
9. Assertion:Voter is registered AND
10. Trigger:loads login page
11. Wait:60.0 second
12. Reaction:display time out page
13. Assertion:Voter is not logged in

Figure 7. Example of scenario.

must be verified at the beginning of the scenario. The sce-
nario then specifies a sequence of triggers and reactions on
lines 2 to 6. The guard on line 7 means that condition “Voter
data is in record” is set to hold at this point in the scenario
if possible. Line 11 includes a waiting delay such that 60.0
seconds passes with the system waiting at that point in the
scenario. Line 13 specifies an assertion stating that condi-
tion “Voter is not logged in” must hold at the end of the sce-
nario. This assertion can be seen as a statement of a safety
property.

Scenarios and use cases are related. A use case consists
of a collection of scenarios. However, we define scenarios
independently from use cases as they may cross over several

use cases. Scenarios are assumed to start from the system’s
initial state, while use cases are guarded by a precondition.

We use scenarios as persistent artifacts for simulation.
Given a state model, the execution of a scenario is similar
to a manual simulation discussed in section 2.4. However,
all selections are taken from the executed scenario as fol-
low. A triggers in a scenario corresponds to an actor opera-
tion selection. A guard realization corresponds to a choice
among several possible guards. A waiting delay may enable
a timeout condition. Finally, an assertion specifies a prop-
erty that need to hold at a specific moment during a system
run. Execution of a scenario passes if all its assertions are
verified, all its triggers accepted by the system and all its re-
actions are produced whenever they appear. The execution
fails otherwise.

3.1. Positive and negative scenarios

A scenario may be “positive” or “negative”. A positive
scenario describes interactions that must be supported. For
instance, scenario “example 1” in Figure 7 is positive. Its
execution against a state model generated from use cases in
Figure 3 and the domain model in Figure 4 must pass for
these requirements to be valid.

A negative scenario describes interactions that need to
be avoided. Scenario “Multiple registrations” in Figure 8
is negative its execution against the state model generated
from use cases in Figure 3 and the domain model in Figure
4 must fail. An interesting feature of negative scenarios,

Scenario:Multiple registrations
1. Trigger:load EVote System web page
2. Trigger:select voter registration option
3. Reaction:ask name social security number
4. Trigger:provide name social security number
5. Reaction:check Voter status
6. Guard:Voter data is in record
7. Reaction:generate Voter login id and password
8. Trigger:load EVote System web page
9. Trigger:select voter registration option
10. Trigger:provide name social security number
11. Guard:Voter data is in record
12. Reaction:generate Voter login id and password

Figure 8. Example of scenario.

is that they can be related to properties such as safety and
security [4]. For instance, suppose the following statement
of a security requirement for the EVote System:

NFR1: The Evote system should prevent multiple
registrations by a same Voter.

Scenario “Multiple registrations” describes a sequence
where a Voter successfully registers twice. A system sup-
porting this scenario would not satisfy requirement NFR1.
“Multiple registrations” may therefore be defined as a nega-
tive scenario attached to requirement NFR1 such that a valid

system in regard to the requirement should be such that the
scenario is not accepted.

Notice that in the above example, we realize that sce-
nario “Multiple registrations” may be acceptable if the two
registration attempts are made by different Voters. How-
ever, the example is still pertinent as nothing specifies that
it can not be a same Voter.

3.2. Requirements elaboration with scenarios

In order to support scenarios in our approach, we added
a scenario editor to the UCEd toolset for scenario editing.
We also altered UCEd simulator such that interaction se-
quences during simulation are recorded as scenarios. These
scenarios can then be moved to the scenario editor for edit-
ing. The scenario editor allows different operations includ-
ing changing a scenario from positive to negative (and con-
versely from negative to positive), adding a description to
scenarios, and simulation of scenarios.

An important goal of scenario simulation is to give feed-
back to help eventually correct unsatisfactory requirements.
For that purpose, scenario simulation results include a de-
scription of conditions holding before and after each op-
eration. These conditions are characteristic conditions of
states before and after the operation. The requirements an-
alyst needs to identify a deviation point in a scenario where
the behavior resulting from simulation deviates from the ex-
pected behavior. For a positive scenario that fails, the devia-
tion point is the event at which the simulation stopped. For a
negative scenario that passes, the deviation point is the first
event (trigger, assertion) in the scenario that shouldn’t have
been accepted, or the first system reaction that shouldn’t
have been produced by the system. Based on conditions
shown as part of a simulation results, correction generally
consists of: modification of the operation at or just before
the deviation point pre/postconditions, and/or addition of
guards to use cases such that the operation at or just before
the deviation point is better constrained.

As an example, Figure 9 shows the simulation results
of negative scenario “Multiple registrations”. The scenario
passes, which is an un-desired outcome. The use cases
and/or the domain model need to be modified such that this
scenario rather fails. The deviation point here is the system
reaction at line 12. Operation generate Voter login id and
password should be prevented when dealing with a previ-
ously registered Voter. Looking at the simulation result, we
can realize that Voter registration status is never checked.
Therefore, a possible correction consists of adding an alter-
native to step 5 of use case Register for vote in Figure 3 such
that the use case become as shown in Figure 10. Alternative
5.b covers the situation where condition “Voter status is reg-
istered” hold. Consequently, step 6 will only be possible
when a Voter is not already registered. The introduction

Figure 9. UCEd Scenario Editor showing re-
sults of a scenario simulation.

Title: Register for vote
Primary Actor: Voter
Goal: An unregistered voter want to register
in order to be able to vote. If successful,
the system generates a login id and
password for the voter.

Precondition: EVote System is online
Postcondition: Voter is registered
1. Voter loads EVote System web page
2. Voter selects voter registration option
3. EVote System asks for name, social

security number, date of birth, adress
4. Voter provides name, social security

number, date of birth, adress
5. EVote System checks Voter status
6. EVote System generates Voter login id

and password
1. a. After 60 sec
1. a. 1. EVote System displays time out page
2. a. After 60 sec
2. a. 1. EVote System displays time out page
3. a. After 60 sec
3. a. 1. EVote System displays time out page
5. a. Voter data is not in record
5. a. 1. EVote System displays incorrect

information error page
5. b Voter status is registered
5. b. 1 EVote System displays already

registered message

Figure 10. New version of use case “Register
for Vote” to prevent scenario “Multiple regis-
trations”.

of alternative 5.b might also trigger modification of opera-
tion check Voter status effects in the domain model shown
in Figure 4, such that “Voter status is registered OR Voter
status is not registered” is an added-condition.

4. Related work

A work related to ours is the play-in/play-out approach
developed by Harel and Marelly [6]. The play-in/play-out
approach is a specification methodology where a system re-
quired behavior is captured (played-in) as scenarios using a
Graphical User Interface. A play-engine automatically gen-
erates a formal version of the played scenarios in the lan-
guage of Live Sequence Charts (LSCs). This formal speci-
fication can then be simulated (played-out) using the same
Graphical User Interface as for scenarios capture. UCEd
automatic generation of a Graphical User Interface and sim-
ulation through that interface is similar to the way scenarios
are played-out in the play-in/play-out approach. The LSC
language also allows expression of anti-scenarios similar to
our negative scenarios. Differences between the two ap-
proaches include the use of textual use cases and a domain
model as a basis for requirement capture in our approach.
One of our objectives is to support textual use cases defini-
tion. Another of our objectives is to help capture of domain
elements including a specification of operations.

Negative scenarios can be related to misuse cases intro-
duced by Guttorm Sindre and Andreas Opdahl [4, 5]. A
misuse case is a reverse use case where an actor (a mis-
actor) intentionally or accidentally uses a system in a way
that is harmful to some of the system’s stakeholders. We
do not consider negative scenarios at the same level as use
cases mainly because we see scenarios in general as ex-
amples of execution sequences, and use cases as part of
the specification. However, we believe the concept of mis-
use cases could be integrated to our approach as an addi-
tional way of expressing non-functional properties. Threat
and hazard analysis are used in [1] to systematically dis-
cover mis-actors and mis-use cases, and investigate mitiga-
tion strategies. Similar techniques could be used to discover
negative scenarios in our approach.

Another work that deals with negative scenario is pre-
sented in [14]. Requirements in this approach are defined
as Message Sequence Charts (MSCs). Specifications ex-
pressed as Labeled Transition Systems (LTSs) are automat-
ically generated from the MSCs. A LTS analyzer is used to
detect implied scenarios [2] from generated specifications.
An implied scenario is an extra behavior not defined by the
MSCs. Detected implied scenarios may then be accepted
as new MSCs or rejected as negative scenarios. The itera-
tive approach for requirements elaboration in [14] is similar
to ours. However, the level of abstraction in the descrip-
tion of systems is different. We see a system as a black box

completely abstract from internal details. The approach in
[14] deals with intra objects interactions at the architectural
level. In fact, an implied scenario results from a mismatch
between architecture and MSC description of behavior.

The same difference in abstraction level can be estab-
lished between this work and different scenario based ap-
proaches [8, 9, 15]. Scenarios are described in these ap-
proaches as MSCs or sequence diagrams and, state ma-
chines are generated from the scenarios. In addition to this
difference, our position is that a requirements specification
needs a fair degree of completion and structure. A pure sce-
nario approach for requirements specification suffers from
problems such as scenario explosion and redundancy, since
several separate scenarios are needed to cover all the ex-
ceptional cases. Use cases provide a framework for group-
ing and organizing related scenarios. Completeness can be
achieved by ensuring through a careful analysis that excep-
tional cases are covered. An advantage is that these excep-
tional cases are integrated in a single description. Use cases
modeling also includes structuring mechanisms such as “in-
clude” and “extends” relations useful for dealing with large
descriptions. Although these elements add more power of
expression to use cases, a drawback is that use cases lose
some of the simplicity and intuitiveness that made scenario
approaches so successful. Another common criticism of use
cases is their inability to capture non-functional properties.
We believe scenarios can be used in conjunction with use
cases as a solution to these problems. Scenarios describe
linear interaction sequences. They can span over several
use cases and be used to capture some non-functional re-
quirements.

5. Conclusions

In this paper, we discussed scenarios integration to a
use cases based requirements engineering approach. Use
cases are requirements artifacts used to specify how a sys-
tem should behave from its users point of view. Our ap-
proach allows definition of domain operations required pre
and postconditions such that use cases can be effectively re-
alized without undesirable side effects. Simulation is used
for validation.

The integration of scenarios to our use cases based re-
quirements engineering approach aims at improving simu-
lation. It is a response to a requirement from the approach
users. According to our preliminary observations, scenarios
effectively solve the initial problem of being able to rep-
resent simulation sequences in a persistent form. Because
scenarios allow expression of some non-functional proper-
ties, an additional benefit is an expansion of requirements
expressiveness.

We made an analogy between our work and testing. Sce-
narios can be seen in the context of use cases based require-

ments engineering as corresponding to test cases in the con-
text of testing. The parallel can be pushed further by defin-
ing a notion corresponding to coverage for use cases valida-
tion. More precisely and as future works, we would like to
be able to define degrees of satisfaction regarding use cases
validation, how much simulation is enough for a specific
degree of satisfaction, and which scenarios need to be tried.
A related question is helping generate these scenarios.

References

[1] I. Alexander and N. Maiden. Scenarios, Stories, Use Cases
Through the Systems Development Life-Cycle. Wiley, 2004.

[2] R. Alur, K. Etessami, and M. Yannakakis. Inference of Mes-
sage Sequence Charts. In 22nd IEEE International Confer-
ence on Software Engineering (ICSE’00), 2000.

[3] A. Cockburn. Writing Effective Use Cases. Addison Wesley,
2001.

[4] S. Guttorm and A. L. Opdahl. Eliciting Security Re-
quirements by Misuse Cases. In International Conference
on Technology of Object-Oriented Languages and Systems
(TOOLS-37’00), pages 120–131, 2000.

[5] S. Guttorm and A. L. Opdahl. Templates for misuse case
description. In Proc. Seventh International Workshop on
Requirements Engineering: Foundation of Software Quality
(REFSQ’2001), June 2001.

[6] D. Harel and R. Marelly. Come, Let’s Play. Springler, 2003.
[7] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Soft-

ware Development Process. Addison Wesley, 1998.
[8] K. Koskimies and E. Mäkinen. Automatic Synthesis of State

Machines from Trace Diagrams. Software-Practice and Ex-
perience, 24(7):643–658, July 1994.

[9] S. Leue, L. Mehrmann, and M. Rezai. Synthesizing soft-
ware architecture descriptions from message sequence chart
specifications. In ASE, pages 192–195, 1998.

[10] OMG. OMG Unified Modeling Language Specification ver-
sion 1.4, 2001.

[11] S. Somé. Supporting use cases based requirements engineer-
ing. Information and Software Technology (article in press).
available at doi:10.1016/j.infsof.2005.02.006.

[12] S. Somé. An approach for the synthesis of state transition
graphs from use cases. In Proceedings of the International
Conference on Software Engineering Research and Practice
(SERP’03), volume I, pages 456–462, june 2003.

[13] S. Somé. An Environment for Use Cases based Require-
ments Engineering. In 12th IEEE International Conference
on Requirements Engineering (RE’04), Kyoto, Japan, pages
364–365. IEEE Computer Society, 2004.

[14] S. Uchitel, J. Kramer, and J. Magee. Negative Scenar-
ios for Implied Scenario Elicitation. In 10th ACM SIG-
SOFT Symposium on the Foundations of Software Engineer-
ing (FSE’02), 2002.

[15] J. Whittle and J. Schumann. Generating statechart designs
from scenarios. In International Conference on Software
Engineering (ICSE 2000), Limerick, Ireland, jun 2000.

