
Supporting Use Case based Requirements

Engineering

Stéphane S. Somé

School of Information Technology and Engineering (SITE) University of Ottawa
800 King Edward, P.O. Box 450, Stn. A Ottawa, Ontario, K1N 6N5, Canada

ssome@site.uottawa.ca

Abstract

Use Cases that describe possible interactions involving a system and its environ-
ment are increasingly being accepted as effective means for functional requirements
elicitation and analysis. In the current practice, informal definitions of use cases
are used and the analysis process is manual. In this paper, we present an approach
supported by a tool for use cases based requirements engineering. Our approach
includes use cases formalization, a restricted form of natural language for use cases
description, and the derivation of an executable specification as well as a simulation
environment from use cases.

Key words:
Use cases, domain modeling, UML, requirements engineering, prototyping

1 Introduction

Requirements engineering includes the elicitation, understanding and repre-
sentation of customers needs for a system. It is a critical task in software
engineering; the source of a great number of software failures.

The main reason for requirements induced failures is a gap existing between
customers and the system development process. This gap is due to the manual
nature of the requirement engineering process. Requirements are informally
sought by analysts from customers who then pursue other development activ-
ities according to what they understand about customers needs. The under-
standing of requirements is generally represented as an abstract specification
often not comprehensible by customers. That added to the difficulty to auto-
matically ensure consistency between specifications and informal requirements
makes difficult to ascertain, before later phases of a development process, if a

Preprint submitted to Elsevier Science 16 February 2005

specification is right according to its requirements and if there are no missing
requirements.

According to the UML specification (1), a use case is “the specification of a
sequence of actions, including variants, that a system (or a subsystem) can
perform, interacting with actors of the system”. A use case describes a piece of
behavior of a system without revealing that system internal structure. As such
use cases are useful to capture and document external requirements. They
are ideal for requirements validation through prototyping. Several software
development approaches including the Unified Software Development Process
(2) recommend use cases for users’ requirements description.

A use case is a partial behavior description. Stakeholders with different views
of a same system may thus provide different but possibly overlapping use cases
as part of their requirements. It is also possible to develop a system by incre-
mental addition of services. A problem however, is that it is often difficult to
visualize the global behavior resulting from the combination of separate use
cases. Moreover, use cases may be inconsistent one with the other and a set
of use cases may define the requirements of a system incompletely. A common
solution consists of deriving a global specification model integrating all the
related use cases, such that the system can be simulated, its global behavior
can be examined, and verified for inconsistencies as well as incompleteness.
In the current practice specification derivation from use cases is informal and
manual. In this paper, we present an approach to support of use cases based
requirements elicitation, clarification, composition and simulation. We intro-
duce a restricted form of natural language for use cases such that automated
derivation of specification is possible while readability and understandability
of use cases by all stakeholders is retained. Our approach is supported by a
tool called UCEd (Use Case Editor (3)) that takes a set of related use cases
written in a restricted form of natural language and generates an executable
specification integrating the partial behaviors of the use cases. We use a do-
main model for syntactical analysis of use cases and specification generation.
The approach is rooted in the Unified Modeling Language (UML) (1). Domain
models are UML class diagrams (4). We also assume the UML specification
and semantics of use cases. The UML is appealing because of the great accep-
tance it has gained among software developers and tool vendors. An advantage
of using UML is the possibility of integration of UCEd to the various existing
UML based methodologies and tools. UCEd allows importation of XMI (1)
represented use cases and domain models.

This paper is organized as follows. In the next section, we situate our work in
the context of some related works. Section 3 presents and abstract syntax and
a concrete natural language syntax for use cases. The analysis of use cases is
based on a domain model. We describe an extension of UML class diagrams
for domain models in section 4. In section 5 we present an algorithm for

2

state models generation from use cases. Requirements verification is discussed
in section 6 and validation by simulation in section 7. Section 8 presents a
use cases based requirements elaboration approach that involves state model
generation from use cases and simulation. Finally, section 9 concludes the
paper and outlines some future works.

2 Related work

The two main research areas related to our work are natural language analysis
of use cases and scenario composition.

Works on natural language analysis of use cases include (12), (13), (14) and
(15). They mainly focus on providing guidelines and restricted languages for
writing use cases in natural language while avoiding ambiguities and errors.
In (12) Rolland and Ben Achour present an approach for guiding use cases
development. They propose linguistic patterns and structures for use case
specification as well as an iterative process for writing use case specification
as an unambiguous natural language text. A similar approach is discussed in
(14) where a restricted language based on a set of guidelines is defined for
use cases. Fantechi et al (15) use linguistic techniques to analyze use cases
expressed in natural language. They collect quality metrics and detect defects
related to use cases inherent ambiguity. Martin Glinz (13) proposes a natural
language based notation for use cases similar to our notation and a manual
approach for statecharts synthesis. Our work differs from that of Glinz in that
we propose an automated approach for state model synthesis.

Our work is closely related to scenario composition approaches using finite
state machines (16; 17; 18; 19; 20; 21; 22; 23). UCEd is a successor of REST
(Requirements Engineering with Scenario Tool) (24). REST generates timed-
automata specification by incremental composition of scenarios. A key dif-
ference between the present work and scenario-based approaches lies on the
differences between the notion of use cases and that of scenarios. Although
the terms “use case” and “scenario” are often considered synonymous, there
are fundamental differences between the two artifacts. A scenario is a single
linear sequence of interactions between external actors and a system. A use
case integrates a set of scenarios (a main scenario and zero or more secondary
scenarios). While natural language text is used for use cases, scenarios are
often represented using more formal graphical notations such as Sequence Di-
agrams, Message Sequence Charts (MSCs) or Live Sequence Charts (LSCs).
Finally, use cases are considered earlier in the development process and at a
higher level of abstraction than scenarios. In software development approaches
such as the Unified Software Development Process (2), users requirements are
first captured as use cases that are refined afterward into scenarios. A black box

3

view of the system is considered for use cases while a gray box view involving
some internal components of the system is considered for scenarios.

Our work also shares similarities with the play-in/play-out approach of Harel
and Marelly (25). The play-in/play-out approach is a specification method-
ology where a system required behavior is captured (played-in) as scenarios
using a Graphical User Interface. A play-engine automatically generates a for-
mal version of the played scenarios in the language of Live Sequence Charts
(LSCs). This formal specification can then be simulated (played-out) using the
same Graphical User Interface as for scenarios capture. UCEd automatic gen-
eration of a Graphical User Interface and simulation through that interface is
similar to the way scenarios are played-out in the play-in/play-out approach.
Differences between the two approaches include the use of textual use cases
and a domain model as a basis for requirement capture in UCEd. One of our
objectives is to support requirements engineering with textual use cases.

3 Use cases

A use case is a description of interactions between a system and actors in its
environment. A use case model includes use cases, actors and relationships.
A use case diagram is a graphical depiction of a use case model in the UML.
Use case diagrams show use case names, actors, relationships between actors
and use cases, and relationships between use cases. A relationship between
an actor and a use case captures the fact that the actor participates in the
use case. Relationships between use cases include the include and extend re-
lationships. The include relationship denotes the inclusion of a use case as a
sub-process of another use case (the base use case). The extend relationship,
denotes an extension of a use case as addition of “chunks” of behaviors defined
in an extension use case. These chunks of behaviors are included at specific
places in a base use case called extension points. Figure 1 shows a UML graph-
ical representation of use case diagram. The system under consideration is a
Patient Monitoring System (PM System). A system used to monitor patients
vital signs in a hospital.

Use case diagrams are abstract high-level view of functionality. They do not
describe the interactions in use cases. According to the UML specification, the
realization of a use case may be specified by a set of collaborations that define
how instances in the system interact to perform the sequences of the use case.
The collaborations may be captured using a variety of notations including
natural language, sequence diagrams, activity diagrams and state diagrams.

In practice in order to allow for an easy communication with stakeholders, use
cases collaborations are usually written as structured natural language interac-

4

USER

Extension points

pin entered:
after step user insert card

after step user enter pin

card inserted:

Log in

Admit Patient

Log out

PATIENT

Log in secure

NURSE DOCTOR

Discharge Patient

Silence alarm

<<include>>

<<include>>

<<include>>

<<extend>>
System security is high

Fig. 1. Example of Use Case diagram for a PM System.

tions between actors and a system. Different templates and guidelines for use
cases edition have been proposed in the literature. An example is Cockburn’s
template (5) where use cases are described using structured text. Our repre-
sentation of use cases is inspired from that template. In the remainder of this
section, we first present an abstract syntax for use cases collaborations, and
then we present a concrete syntax using a restricted form of natural language.

3.1 Use cases abstract syntax

Figure 2 shows our abstract syntax for use cases in the UML. We distinguish
two kinds of use case descriptions corresponding to the two types of use cases:
normal use cases and extension use cases.

3.1.1 Normal use cases

Figure 3 shows the details of use case Log in (the concrete syntax used is
presented in section 3.2). The use case Log in describes a login procedure that
must be used by the users of the PM System.

A normal use case can be seen as a tuple [Title, Precondition, Steps, Use Case
alternatives, Postcondition,] with: Title a label that uniquely identifies the use
case, Precondition a Constraint that must be true before an instance of the
use case can be executed (the term constraint is used in the UML specification
to refer to conditions), Steps a sequence of steps, Use Case alternatives a set
of alternatives that apply to all the steps in the use case, and Postcondition
a Constraint that must be true at the end of an instance of the use case

5

Constraint
(from Core)

UseCaseOperation

AfterDelay BeforeDelay

NormalUseCase

UseCaseStep

+parts
*

(from Use Cases package)
UseCasedetails

*

* +altsteps

+precondition

UseCase Description

title: String
.....................

(from Use Cases package)
ExtensionPoint

+extpoint

+alt

+postcondition

*

Alternative

+altcond

+aalt

Part

ExtensionUseCase

+oper

AlternativeStep

0..1
+befdelay

+aftdelay

+befdelay
0..1

0..1
+aftdelay
0..1

+altstepoper
+altstepcond
0..1

0..1

+opcond
0..1

+steps +steps
**

+extpoint
0..1

Fig. 2. UML representation of an abstract syntax for use cases description.

execution. As an example the use case in Figure 3 title is “Log in”. The use
case precondition is “PM System is ON”. Use case Log in includes six steps
listed in section titled Steps and the postcondition is “User is logged in”. Use
cases generally include more sections than here. Although all these sections
help requirements documentation, for the purpose of state model generation,
we are interested in only the functional description aspect of use cases defined
by the preconditions, steps, alternatives and postconditions. We also consider
use case titles for traceability.

Each step in Steps is a tuple [Oper, ExtPoint,Alt] with Oper a use case op-
eration, ExtPoint a possibly null definition of an extension point, and Alt a
set of alternatives that are possible after the step. We distinguish the follow-
ing types of use case operations: instances of concept operations, branching
statements and use cases inclusion directives. Examples of instances of con-
cept operations in use case Log in are “insert a Card” by concept “User”
and “ask for PIN” by concept “PMSystem”. Extension step 4a1 includes a
branching to Step 2. A use case operation may include a guard (OpCond),
an AfterDelay and a BeforeDelay. OpCond is an additional condition that
must hold for the operation to be possible. Step 5 operation is constrained
by the condition “USER identification is valid”. Step 6 operation includes an
AfterDelay “After 45 sec”. Delays are counted from the completion moment of
the previous step or from when the precondition became true when applied to
the first step of a use case. An AfterDelay specifies a minimum time amount
that must pass for the operation to be possible while a BeforeDelay specifies
a maximum time amount after which an operation is no more possible. As an
example step 6 delay means that 45 seconds must pass before the execution

6

Title: Log in

Primary Actor: User

Participants:

Goal: A User wants to identify herself in order to be able to use the PM system
to perform a task such as admitting a patient or changing silencing an alarm.

Precondition: PMSystem is ON

Postcondition: User is logged in

Steps:1: User inserts a Card in the card slot
Extension Point ==> card inserted

2: PMSystem asks for PIN
3: User types her PIN

Extension Point ==> pin entered
4: PMSystem validates the User identification
5: IF the User identification is valid THEN PMSystem displays a welcome mes-

sage to User
6: AFTER 45 sec PMSystem ejects the User Card

Alternatives:

1a: User Card status is irregular
1a1: PMSystem starts System status alarm
1a2: AFTER 20 sec PMSystem ejects Card

2a: AFTER 60 seconds
2a1: PMSystem starts System status alarm
2a2: AFTER 20 sec PMSystem ejects Card

4a: User identification is invalid AND User number of attempts is less than 4
4a1 GO TO Step 2

4b: User identification is invalid AND User number of attempts is equal to 4
4b1: PMSystem starts System status alarm
4b2: AFTER 20 sec PMSystem ejects Card

Fig. 3. Use case describing a login procedure in a Patient Monitoring System.

of operation “eject card” by the “PMSystem”. An extension point is a label
that references a particular point in a use case where interactions defined in
extension use cases may be inserted. Use case Log in includes extension points
card inserted at step 1 and pin entered at step 3.

An alternative specifies a possible continuation of a use case after a step.
Alternatives describe exceptions, error situations or less common courses of
events. Formally an alternative is a tuple [AltCond, AftDelay, BefDelay, Alt-
Steps] with AltCond a constraint that must be true for the alternative to be
possible, AftDelay a possibly null AfterDelay, BefDelay a possibly null Before-
Delay and AltSteps a sequence of alternative steps. Each of an alternative step

7

in turn is a tuple [AltStepCond, AltStepOper] with AltStepCond a constraint
and AltStepOper a use case operation. Use Case Log in includes alternatives
to steps 1 (1a), 2 (2a) and 4 (4a and 4b). Alternative 1a condition is “User
Card is not regular”. Alternative 2a is constrained by an AfterDelay. That de-
lay is related to the completion of step 2 operation. In order to keep use cases
complexity low, we make the restriction that there cannot be alternatives to
alternatives. Situations requiring several levels of alternatives are conveniently
specified with included use cases.

3.1.2 Extension use cases

An extension use case includes one or more parts. These parts are inserted at
specific extension points in a base use case in presence of an extend relation-
ship. An extension use case is formally a tuple [Title, Parts] with: Title as
previously defined , and Parts a set of parts. Each part is a tuple [ExtPoint,
Steps]. ExtPoint is a reference to an extension point (defined in the UML
specification) and Steps a sequence of steps. As an example, use case Log in
secure shown in Figure 4 is an extension use case with two parts. One to be

Title: Log in secure

Parts: At extension point card inserted

1: System logs transaction
At extension point pin entered

1: System logs transaction

Fig. 4. Extension use case.

included at an extension point card inserted, and the other at an extension
point pin entered. In the use case diagram shown in Figure 1, there is and
extend relationship between Log in secure and the base use case Log in. Ac-
cording this relationship, use case Log in secure extends use case Log in when
condition PMSystem security is high holds. Data provided by users logging in
are then recorder. Formally, an extend relationship between a base use case
UCbase and an extension use case UCext is a tuple [UCbase, UCext, ExtCond,
ExtPoints], where ExtCond is a constraint under which the extension can take
place and ExtPoints is a set of extension points referred to in the extension
use case.

3.1.3 Scenarios

A use case consists of a set of scenarios each being a sequence of events
from the beginning of the use case to one of its possible ends. Each use case
includes a primary scenario (or main course of events) and 0 or more secondary
scenarios that are alternative courses of events to the primary scenario (6). In

8

our notation, primary scenarios are described in the section titled Steps while
secondary scenarios consist of interactions in the primary scenario followed by
interactions defined in the section titled Alternative.

Figure 5 shows a partial list of use case Log in scenarios. The number of

Scenario Sequence of Events Type

1 1 - 2 - 3 - 4 - 5 - 6 Primary scenario

2 1 - 1a1 - 1a2 Secondary scenario

3 1 - 2 - 2a1 - 2a2 Secondary scenario

4 1 - 2 - 3 - 4 - 4a1 - 2 - 3 - 4 - 5 - 6 Secondary scenario

5 1 - 2 - 3 - 4 - 4a1 - 2 - 3 - 4 - 4a1 - Secondary scenario

2 - 3 - 4- 5 - 6

6 1 - 2 - 3 - 4 - 4b1 - 4b2 Secondary scenario

· · · · · · · · ·

Fig. 5. Use Case Log in scenarios.

scenarios in a use case may be infinite in presence of branching statements. In
use case Log in, the number of scenarios is limited by conditions at lines 4a
and 4b.

3.1.4 Conditions

Several elements in our abstract syntax are conditions. These elements include
preconditions, postconditions operation guards and alternative conditions. We
formally define conditions as predicates or combinations of predicates. A pred-
icate is a pair <E,V > where E is an entity and V a value. Entities refer to
concepts (actors or the system under consideration) or attributes of concepts.
We distinguish atomic values and set values. Atomic values are denoted as
units such as ’ON’ or ’logged in’, while set values are denoted by way of com-
parisons. We also consider a special value ‘unknown’ that may be used with
any entity.

As an example, condition “User Card is not regular” is formally a predicate
<User Card,not regular> that evaluates to true when the concept User Card
has the value not regular. An example of set value denoted by “less than 4” is
used in condition “User number of attempts is less than 4”.

9

3.2 A concrete natural language syntax

The basic components of use cases are conditions and operations. We propose
a form of natural language for the concrete description of these elements. This
language is context dependent. The context information needed for use case
analysis is provided in a domain model, which is described in section 4.

3.2.1 Concrete syntax for conditions

Figure 6 outlines our grammar for conditions. Conditions are predicative sen-
tences describing situations prevailing within the system and its environment.
We distinguish simple conditions from composite conditions. Composite con-

<condition> -> <acondition> "and" <condition>

| <acondition> "or" <condition>

| "("<condition>")"

| <negation> <condition>

<acondition> -> [<determinant>] <entity> [<verb>] <value>

<determinant> -> "a" | "an" | "the"

<negation> -> "not" | "no"

<entity> -> <concept> | <attribute>

<concept> -> (<word>)+ {member of the model concepts}

<attribute> -> (<word>)+ {attribute of concept}

<verb> -> {derived from to be in present tense}

<value> -> (<word>)+ {value of the entity}

| <comparison> {entity is non-discrete ?}

<comparison> -> <comparator> <word>

<comparator> -> ">" | "<" | "=" | "<=" | ">=" | "<>"

| "greater than" | "less than" | "equal to" | "different to"

| "greater or equal to" | "less or equal to"

Fig. 6. Grammar for conditions. Elements between ’<>’ are non-terminals and
those between ’”’ are terminals. Elements between “[]” are optional and | is used
for alternative rules.

ditions are negations, conjunctions or disjunctions of conditions. A simple
condition starts with an optional determinant followed by an entity, a verb,
and a value. An entity refers to a concept or an attribute of a concept. Concepts
are elements of the domain. They include the system under consideration as
well as actors of the system environment. The verb is derived from the verb to
be and the present tense must be used. A value is an entity qualifier. Atomic
values are declared as possible values of corresponding entities in the domain
model. As an example the precondition “PMSystem is ON ” is a clause where
the system has the quality of being ON. The entity is PMSystem; the system
under consideration. The verb form “is” is used and the value used as qualifier
is the atomic element “ON”.

10

3.2.2 Concrete syntax for use case operations

Figure 7 shows our syntax for use case operations. A use case operation may be

<operation_spec> -> <concept_operation> | <branching_statement>

| <useCase_inclusion>

<concept_operation> -> [<before_delay>] [<after_delay>]

[<condition_spec>] <operation_reference>

<condition_spec> -> "IF" <condition> "THEN"

<operation_reference> -> (<word>)+ {derived from an operation of

the current entity}

<after_delay> -> "AFTER" <duration_spec>

<before_delay> -> "BEFORE" <duration_spec>

<duration_value> -> <duration_value> <duration_unit>

<branching_statement> ->

"GO" "TO" "Step" <word> {corresponding to a step label}

<useCase_inclusion> -> [<condition_spec>]

"INCLUDE" <use-case-name>

Fig. 7. Grammar for use case operations. The grammar refers to some definitions
in Figure 6.

an instance of concept operation, a branching statement, or a use case inclusion
directive.

An instance of concept operation denotes the execution of an operation by a
concept. It is active sentence in which a component performs an action given
as a verb. We assume concept operations declaration in the format action verb
[action object];
where the action verb is a verb in infinitive and the action object refers to
a concept or an attribute of a concept affected by the action. As an exam-
ple, “validate user identification” is an operation name where the action verb
is “validate” and the action object is “user identification” (an attribute of
concept User). Given this naming convention, an operation reference has the
following form:

[determinant] concept name action specification [preposition action participant]

The action specification has the form

conjugated action verb [action object]

The conjugated action verb is the action verb used in the concept operation
declaration in the present tense.

As an example, given the operation “validate user identification”, “The System
validates user identification with the Branch” is an operation reference where:

• the active concept name is “System”,

11

• the action specification is “validates user identification”, and
• “Branch” is an action participant introduced by the preposition “with”.

4 Domain model

A domain model is a high-level class model that captures domain concepts and
their relationships. Domain concepts are the most important types of objects
in the context of a system. They include the system as a black box with
the “things” that exist or events that transpire in the environment in which
the system works (2). A domain model is essential for use cases analysis. It
serves as a lexicon for natural language analysis of use cases, and provides a
formalization of operations necessary to state model generation.

Figure 8 shows a graphical representation of the PMSystem domain model.
We use the UML class diagrams (4) to describe domain models. The basic

Doctor Nurse

<<concept>>

Patient

log transaction
prompt vital signs
prompt patient information

eject card
display welcome message

ask PIN
validate USER identification

possible values:
ON, OFF

PM System

security
possible values: high

<<system concept>>

start patient monitoring
display logout acknowledgment

monitors

used by

<<concept>>
Card

identification
possible values:

valid, invalid

choose patient admission function
enter vital signs
connect cables

<<concept>>

USER

possible values:
logged in

number of attempts

press cancel button
press logout button

insert card

type PIN
enter patient information status

possible values: irregular

start System status alarm possible values:
inserted

Display
<<concept>>

logout acknowledgment

possible values:
 welcome message,

 patient info prompt

 vital signs prompt

Fig. 8. Partial representation of the PM system domain model.

UML class diagram notation needed to be extended such that it is possible to
specify possible values of entities. Indeed, in the concrete syntax of conditions,
when a value qualifies an entity, that value must be known as a possible value
of the entity. The traditional way to extend the UML is through stereotypes,
tagged values and constraints. We defined a stereotype of the UML metaclass

12

Class called <<concept>> to represent concepts. This stereotype includes a
tag possibleValues for the enumeration of the possible values of the concept.
We also added a constraint to <<concept>> such that the attributes of a
Concept are instances of a stereotype <<conceptAttribute>>, and each op-
eration of a Concept is an instance of a stereotype <<conceptOperation>>.
The stereotype <<conceptAttribute>> extends the metaclass Attribute with
a tag possibleValues.

We define the following sets for each operation.

• An operation added-conditions set is a set of predicates that become true
after the operation execution.

• An operation withdrawn-conditions set is a set of predicates that are re-
moved after the operation execution.
More formally, the semantic of a withdrawn-condition <E,V > is as follow.
“If the entity E value is V before the invocation of the operation, E value
becomes unknown after the operation”.

In the UML, it is possible to attach preconditons and postconditions to oper-
ations. A preconditon denotes a constraint that must hold for the invocation
of the operation while a postcondition denotes a constraint that must hold
after the invocation of the operation. Added-conditions and withdrawn-con-
ditions are postconditions. We defined stereotype <<conceptOperation>>

for the specialization of operations postconditions as added-conditions and
withdrawn-conditions. Figure 9 shows added-conditions and withdrawn-con-
ditions in the PMSystem example.

Withdrawn-conditions can be expressed as any-conditions. An any condition
refers to a set of predicates on a same entity. Recall that withdrawn postcondi-
tions are conditions that are removed or become irrelevant after an operation.
As shown in the PM System domain model, a withdrawn condition may be
specified as a ’single’ condition the same way as an added-condition. However,
it is sometime useful to refer to all the conditions on an entity. As an example
let us assume that after his/her card has been ejected, no information about a
User is anymore relevant (in order words, the System forgets all about the User
i.e. identification, numbers of attempts made, etc). It is not always feasible as
in that case to list all the possible individual conditions that must be with-
drawn. An any condition can be conveniently used in that case. More formally
given an entity E, an any-conditions written as “ANY ON E” correspond to
a set of predicates P = {<E,V >}. A wildcard ’*’ may be used to refer to the
sub-entities of an entity in addition to the entity itself. As an example ’ANY
ON User’ refers to all the predicates with ’User’ as entity (e.g. User is logged
in), but does not include conditions on ’User Card’ or ’User identification’.
The withdrawn-condition ’ANY ON User*’ on the other hand refers to all
the predicates on ’User’, as well as predicates on ’User identification’, ’User

13

CONCEPT: PMSystem

Operation:display logout acknowledgment message

WithdrawConditions:ANY ON USER*

Operation:ask Pin

Operation:eject Card

AddedCondition:Not USER card is inserted

WithdrawCondition:ANY ON PMSystem Alarm

Operation:validate USER identification

AddedConditions:User identification is valid OR

User identification is invalid

WithdrawConditions:ANY ON PMSystem display

Operation:display welcome message

AddedConditions:PMSystem display is welcome message, User is logged in

WithdrawConditions:ANY ON USER identification

Operation:start System status alarm

Operation:prompt patient information

AddedConditions:PMSystem display is patient info prompt

Operation:prompt vital signs

AddedConditions:PMSystem display is vital signs prompt

Operation:log transaction

AddedConditions:PMSystem log status is logged

Operation:start patient monitoring

AddedConditions:Patient status is monitoring

CONCEPT: User

Operation:press logout button

AddedConditions:USER is loging out

Operation:insert card

AddedConditions:USER Card is inserted

Operation:type PIN

AddedConditions:USER identification is entered

WithdrawConditions:ANY ON PMSystem Display

Operation:enter patient information

AddedConditions:Patient status is identification entered

Operation:choose patient admission

AddedConditions:Patient status is admission initiated

WithdrawConditions:ANY ON PMSystem Display

Operation:enter vital signs

AddedConditions:Patient status is vital signs entered

WithdrawConditions:PMSystem Display is vital signs prompt

Operation:connect cables

AddedConditions:Patient status is connected

Fig. 9. Added and withdrawn conditions for domain operations.

number of attempts’, and ’User Card’.

5 State Models generation from Use Cases

In (7; 8), we presented an algorithm for the generation of a hierarchical type of
finite state transition machines from use cases. We briefly provide an outline
of the algorithm here.

State model generation is based on: the specification of operations effects
(withdrawn and added-conditions), and a relation between states and condi-
tions. Each state is defined by characteristic conditions holding in it. These
conditions are formulated as predicates <E,V > with E a domain entity, and
V a value. We consider a special value “unknown” that may qualify any entity.
By default any entity whose value is not explicit in a state has an unknown

14

value.

We define a state machine M as a tuple [Trigc, Reacc, Gc, Sc, S0c, Fc, Tc].

• Trigc is a set of triggers. Trigc includes operations from the environment
and timeout events.

• Reacc is a set of reactions that are operations executed by the system.
• Gc is a set of guard conditions.
• Sc is a set of states.
• S0c ∈ Sc is the initial state of the state machine.
• Fc is a transition function in domain Sc × Trigc × 2Gc × 2Reacc × Sc. Each

transition s× trig×g×reac×s′ includes a start state s, an optional trigger
trig, a set of guards g, a set of reactions reac and an ending state s′.

• Tc is a set of timers.

Given a use case uc and a state model M, we create states and transitions
into M such that the following are true.

(1) M includes a state s0 with s0 characteristic conditions cond(s0) equal to
use case uc preconditions.

(2) For each actor operation op in use case uc, Fc includes a transition s ×
op × g × reac × s′ with:
• s the state from which op is considered,
• reac a set of all the system operation that may follow op according to

use case uc,
• g additional conditions constraining the operations, and
• s′ a state with characteristic conditions cond(s′). cond(s′) is a set of

conditions obtained by considering operation op and operations in reac
effects given the characteristic conditions of state s.

(3) Fc includes timeout triggered transitions reflecting delays in the use case.

M is an initially empty state model, which is incrementally expanded with
states and transitions.

Our algorithm supports overlapping and connected use cases. We also support
UML relationships << extends >> and << include >>. As an example,
consider use case Admit patient of the PMSystem shown in Figure 10. Admit
patient includes use case Log out and is supposed to follow use case “Log in”.
Figure 11 shows a state model obtained from use cases Log in, Admit patient
and Log in secure. The state model description includes a definition of states in
term of characteristic conditions followed by state transitions. Characteristic
conditions define a hierarchy of state inclusion. A state s is a substate of a
state s′ if s′ characteristic conditions include those of s. For instance, state 3
is a substate of state 1. Transitions are in the format trigger/reactions or
conditions/reactions. Any transition going from a state s also applies to
all substates of s.

15

Title: Admit patient
Primary Actor: User
Participants: Patient
Goal: A User wants to perform the admission of a patient on a Monitor.
Precondition: User is logged in AND PMSystem Display is welcome mes-

sage AND PMSystem is ON
Postcondition: Patient is admitted
Steps:1: User chooses patient admission function
2: PMSystem prompts for Patient information
3: User enters Patient information
4: PSystem prompts for vital signs
5: User enters vital signs
6: User connects cables to the Patient
7: PMSystem starts patient monitoring
8: Include Log out

Title: Log out
Primary Actor: User
Participants:

Goal: An authorized user want to logout from the PMS system
Precondition: User is logged in
Postcondition:

Steps:1: User presses logout button
2: PMSystem displays logout acknowledgment message

Fig. 10. Use case describing a patient admission procedure to the Patient Monitoring
System with included use case “Log out”.

A state machine generated from a use case includes all the use case scenarios. It
is possible to find a sequence of transitions in the state machine corresponding
to the sequence of operations of each scenario. A generated state machine
may however include extra sequences of events that do not correspond to any
scenario. These extra sequences are a consequence of the relation between
the specification of operation effects in the domain model and the generated
state machine. An insufficiency of information in the domain model might
result in generalizations in generated state machines. In the extreme case that
no operation effect is defined, the resulting system would be modeless. The
generated state model would include a single state with looping transitions
and every possible input would be accepted at any moment. Although, such
a system would allow the sequence of events defined in the use cases, many
other additional sequences would also be permitted.

Notice that such extra behaviors are not necessarily bad. We consider use cases
as possible behavior descriptions from which more behavior can be inferred.
Some of the extra sequences allowed by generalization may therefore be valid.

16

**** STATES ****

1: [PMSystem is ON]

3: [USER Card is inserted, PMSystem is ON]

4: [USER Card is NOT inserted, PMSystem is ON]

6: [USER Card is inserted, PMSystem is ON, USER Card status is

irregular]

7: [USER Card status is irregular, USER Card is NOT inserted, PMSystem is ON]

9: [USER Card is inserted, PMSystem Display is welcome message,

USER is logged in, PMSystem is ON]

11: [USER Card is inserted, PMSystem is ON, USER identification is invalid,

USER number of attempts == 4]

12: [USER Card is NOT inserted, PMSystem is ON, USER number of attempts == 4,

USER identification is invalid]

13: [PMSystem Display is welcome message, USER is logged in, USER Card

is NOT inserted, PMSystem is ON]

14: [USER Card is inserted, PMSystem security is high,

PMSystem log status is logged, PMSystem is ON]

15: [PMSystem Display is welcome message, USER is logged in, PMSystem is ON]

16: [Patient status is admission initiated, PMSystem Display is patient info prompt,

USER is logged in, PMSystem is ON]

17: [PMSystem Display is vital signs prompt, USER is logged in,

Patient status is identification entered, PMSystem is ON]

18: [Patient status is vital signs entered, USER is logged in, PMSystem is ON]

19: [USER is logged in, Patient status is monitoring, PMSystem is ON]

20: [Patient status is monitoring, PMSystem is ON]

21: [USER Card is inserted, PMSystem is ON, USER identification is invalid]

**** TRANSITIONS ***

1---insert card/-->2

2---[PMSystem security is high]/log transaction, ask Pin-->3

2---[USER Card status is NOT irregular, PMSystem security is NOT high]/ask Pin-->3

2---[USER Card status is irregular]/start System status alarm-->6

3---TIMEOUT(Timer2:20.0 second)/eject Card-->4

3---TIMEOUT(Timer2:60.0 second)/start System status alarm-->2

3---type PIN/-->5

5---[PMSystem security is NOT high]/validate USER identification-->8

5---[PMSystem security is high]/log transaction, validate USER identification-->8

6---TIMEOUT(Timer3:20.0 second)/eject Card-->7

8---[USER identification is invalid]/-->10

8---[USER identification is valid]/display welcome message-->9

9---TIMEOUT(Timer17:45.0 second)/eject Card-->13

10---[USER number of attempts < 4]/-->2

10---[USER number of attempts == 4]/start System status alarm-->11

10---[USER number of attempts > 4]/-->21

11---TIMEOUT(Timer13:20.0 second)/eject Card-->12

14---TIMEOUT(Timer2:20.0 second)/eject Card-->4

14---TIMEOUT(Timer2:60.0 second)/start System status alarm-->2

14---type PIN/-->5

15---choose patient admission/prompt patient information-->16

16---enter patient information/prompt vital signs-->17

17---enter vital signs/-->18

18---connect cables/start patient monitoring-->19

19---press logout button/display logout acknowledgment message-->20

Fig. 11. State machine obtained from use cases “Log in”, “Admit pa-
tient” and “Log in secure”. Transitions are specified in the UML format:
[guard]trigger/reaction1, · · · reactionn.

However, in case an extra sequence is unwanted, use cases and/or the domain
model need to be modified in order to remove it. We present a process by
which a generated state model is validated and then corrected in section 8.

17

6 Requirements verification

A single unifying domain model as advocated by our approach helps avoid
some inherent ambiguities such as the use of different names for a same entity.

Conflicts can arise at four levels in our requirements model: between elements
of a domain model, between a domain model and use cases, within a use case,
and between separate use cases. We detect inconsistencies during syntactic
analysis of domain and use case models, during use cases composition, and
during state machines generation.

The syntactical analysis of a domain model ensures that there is no duplicate
declaration (use of same name to refer to different things). Syntactical analysis
of the domain model also ensures that references made in conditions are valid.
As an example, when analyzing a condition, we check if the entity used exists
in the model, and if the condition refers to an atomic value, we also check that
that value is declared as a possible value of the entity.

A contradiction between an after and a before delay is an example of inconsis-
tency detected simply by syntactical analysis of use cases. When both types
of delays constraint an operation, the before-delay value must be greater than
the after-delay value. Otherwise the timeout value used in step 4.4’ of our
delays consideration algorithm would be negative. We also perform use cases
verification against the domain model during use case syntactical analysis.
The verification is based on the following rules: each operation in a use case
must refer to a concept operation in the domain model, each condition must
refer to an entity declared in the domain model and any atomic value must
be a possible value of that entity.

During use case composition, we check for inconsistent states, use cases post-
conditions and preconditions of operations.
We define an inconsistent state as a state with a logically “unsatisfiable” set
of characteristic predicates. Our composition algorithm avoids inconsistent
states. Before creating a state characterized by a predicate set PSet, we en-
sure that PSet doesn’t include contradictions. Suppose for example adding
an alternative from a state with predicate c when the alternative condition is
not c. The resulting set {c, not c} is unsatisfiable. Therefore the composition
algorithm would not create a state, but would rather report an inconsistency.
In general, two predicates p1 =< E1, V1 > and p2 =< E2, V2 > are contra-
dictory if (1) they refer to a same entity (E1 = E2), and (2) the values V1

and V2 are not consistent one with the other. Values consistency is defined as
follow. Two atomic values are not consistent if different. Two set values are
not consistent if their intersection is empty. For instance, set values V1 defined
as “> 10” and V2 defined as “< 5” are not consistent while “> 10” and “> 20”

18

are consistent.

A type of use cases inconsistencies results from contradictions between use
cases. Typically two use cases are inconsistent when following a same actor
action (trigger event), in a same situation, and given similar timing constraints;
the two use cases specify different system reactions. That type of inconsistency
constitutes a class of the feature interaction problem in the telecommunication
industry (9). We detect this type of inconsistency by analyzing the reactive
state model (presented in section 7) resulting from use cases composition. As in
(10) and (11), the inconsistencies produce non-deterministic transitions that
go from a same state, with same stimuli.

We do not directly use use cases postconditions for finite state machine gen-
eration. Postconditions are rather used for verification. We consider postcon-
ditions as contractual statements of guarantees at end of the successful exe-
cution of a use case (the primary scenario). Therefore, the postconditions of
a use case should be included in the characteristic predicates of the last state
corresponding to the use case main course of events. Similarly, we check the
precondition of operations by looking at characteristic conditions of the states
from which these operations are added. An operation precondition specifies
necessary conditions for the operation to be applicable.

7 Use cases simulation

Simulation is an effective technique used for requirements elicitation, require-
ments validation and requirements completion. A drawback with simulation
is in the necessity of developing a prototype. Manual derivation of prototypes
from requirements can be error prone and costly. State machines have the
property of being executable and used as prototypes. Consequently, simula-
tion can be efficiently applied within our approach. UCEd includes a simulator
tool that allows use cases simulation using generated state machines as pro-
totypes. The objective of simulation is to reproduce the reactive behavior
described in use cases and to exhibit the global behavior resulting from their
integration.

Simulation with UCEd is conducted through a graphical user interface gener-
ated from the specification of actors. Figure 12 shows a view of UCEd simu-
lator tool for the PMSystem. The simulator includes an “actor events panel”
(left panel) and a “simulation results panel” (right panel). UCEd generates
a button corresponding to each actor operation in the “actor events panel”
such that clicking on the button simulates the given operation. The operations
are obtained from the domain model. The “simulation results panel” includes
areas for the state prior to the latest actor operation, the system reactions in

19

Fig. 12. Simulator tool view

response and the new state reached. Initially, the previous state area is empty
and the current state area shows the label and characteristic conditions of the
initial state.

The simulator handles selected actor operations according to the underlying
state machine. If the state machine doesn’t include a transition triggered by
the selected operation from the current state, the simulator displays a mes-
sage and the current state remains unchanged. If there is a single transition
triggered by the actor operation from the current state, the simulator moves
to the resulting state of that transition and adds all the system operations
on the outgoing transition to the reactions area. The transition ending state
then becomes the new current simulation state. When a simulated transition
includes guards or is triggered by a timeout event, the simulator prompts the
user for selection.

As an example suppose the simulation of the state machine shown in Figure
11. The simulation starts in state 1 the state machine initial state. Suppose
the user chooses operation insert card. Three transitions are possible from
state 1 on operation insert card. The choice of transition depends on guards.
Therefore, the simulator will prompts the user such that one of the conditions
“Card status is irregular” or “Card status is not irregular”, and one of the

20

conditions “Security is high” or “Security is not high” is selected. Suppose the
user chooses to enable the two conditions: “Security is not high” and “Card
status is not irregular”, the simulator would select transition
2---[USER Card status is NOT irregular, PMSystem security is NOT high]/ask Pin-->3, display op-
eration ask Pin in the system reactions area and state 3 characteristic con-
ditions in the new state area. Since there are timeout event based transitions
from state 3, the simulator would prompt again the user to select whether a
delay of 20 or 60 seconds has passed while waiting in state 3 or not. Depending
on the choice, the system reaction eject Card would be displayed and state 4
selected.

8 Use Cases based Requirements Elaboration

Figure 13 describes our use case based requirement engineering process. The
process is supported by a Use Case Editor (UCEd). It starts with an early view

domain elements

domain elements

use cases

use cases
elements

domain

changes to
use cases

state
model

changes to

use cases

domain model

Edition

Domain Model

Use Cases

elements
domain
changes to

elements
domain
changes to

Composition

Use Cases
Capture

Requirements
Validation

Fig. 13. Use Case based requirements engineering process. The boxes are activities
and the arrows show data elements exchanged between these activities.

of requirements consisting of “rough” domain model and use cases. It produces
a high-level state model specification of the system as well as clarified use cases
and domain model. Several iterations are involved. Each iteration includes the
following activities.

• Capture of use cases.
Use case capture is done through a Use Case Writing module of UCEd.
This module provides an interface for the edition of use case models and

21

details. Figure 14 shows a view of UCEd Use Case Writing module with
the use case model described in Figure 1. Use cases are captured through a

Fig. 14. UCEd Use Case Writing module.

field-oriented editor in a restricted form of natural language. A field-oriented
form offers the advantage that writers do not have to worry about delimiting
the different parts of their use cases. UCEd checks use cases and the domain
model against each other and reports inconsistencies and omissions.

• Capture of domain elements.
This activity aims at defining enough elements to allow use cases syntactical
analysis. Another objective is to define operations effects for state model
generation. UCEd allows an automated extraction of domain entities names
from use cases.

• Generation of a state model.
State model generation is done automatically with UCEd based on our state
model generation algorithm. Use cases composition is incremental. Each use
case is analyzed and its partial behavior merged in a state model obtained
from previously composed use cases. The composition process is driven by
information in the domain model. Some inconsistencies in the use cases and
in the domain can be found and reported during use cases composition.
Use cases composition results in a state model specification that combines
all the use cases partial behaviors.

• Requirements validation.
The objective of requirements validation is to ensure that the combination of
use cases and domain model satisfies the intended behavior for the system.
Validation consists of a manual inspection of generated state model, as well
as simulation with UCEd. Validation may uncover possible extra sequences
of events that should not be supported. In that case, an alteration of use

22

cases and/or the domain model is needed for correction.
For instance, suppose use cases “Log in” shown in Figure 3, “Log in secure”
shown in Figure 4, “Admit patient” shown in Figure 10 and the postcon-
ditions shown in Figure 9. The state model generated from these use cases
based on the specified postconditions is shown in Figure 11. The sequence:
User insert card - PMSystem ask pin - User insert card is possible accord-
ing to the generated state machine. State 3 is a sub-state of state 1 and
therefore any operation possible from state 1 such as User insert card is
also possible from state 3. This extra sequence is invalid. It should not be
possible to insert a card while there is already another card inserted. In a
situation such as this one, some use cases or some operation effects in the
domain model must be altered to remove the unwanted sequence. In the
present case, a correction could be made by simply adding condition “User
Card is not inserted” to the preconditions of use case “Log in”. Another
possible sequence is: User insert card - [USER Card status is irregular]
PMSystem start System status alarm - User type pin. In this sequence, a
User insert an irregular card, the system rightfully starts an alarm. How-
ever, the user could still enter a pin an continue with a normal interaction.
The sequence is caused by the fact that state 6 is a sub-state of state 3.
In order to avoid that sequence, we need to add postconditions such that
state 6 is not a sub-state of state 3 anymore. A version of use case “Log
in” and the domain model with the necessary corrections is shown in ap-
pendix A. The state model generated from this use case and domain model
does not allow sequence User insert card - [USER Card status is irregular]
PMSystem start System status alarm - User type pin.

9 Conclusions

In this paper, we have presented an approach that aims at helping require-
ments engineering with a framework as well as a tool for use cases edition,
clarification, and early simulation. By using a domain model, the approach
allows capture of the relevant domain concepts, as well as the definition of
operations pre and postconditions in parallel with use cases. Pre and post-
conditions may serve as contract definitions of operations going to the design
phase. Our experience with the approach has mainly been in an academic set-
ting. We are using the approach in combination with UCEd to teach software
engineering students how to better describe use cases and domain model ele-
ments. Examples of projects for which students used UCEd include a “Patient
monitoring system”, an “Automated teller machine”, a “Library system” and
a “Telephone PBX system”. Experimental results show that the notation is
intuitive and easy to master. The approach helps production and communi-
cation of use cases and clarification of the domain. We still need to validate

23

the approach in an industrial setting. A more expressive logic such as OCL
(1) may also be needed to capture and reason about some elaborate situation
such as allowing postcondition to be expressed in term of preconditions.

Differently to several scenario-based approaches, we take a black-box view
where the system under consideration is seen as a single component. This
is motivated by the desire to focus on the system’s external requirements.
Scenario approaches because of the use of formal graphical notations and
their gray-box view of the system are geared more toward software design
than requirement engineering. The use of these approaches follows a necessary
stage of capturing and understanding the high-level goal of the system abstract
from its architectural decomposition. Use cases and scenario approaches are
complementary. An interesting question is how to make the transition from a
use case point of view to a scenario point of view. We plan to look at that
question as part of our future work.

We propose a natural language notation for use cases. Because there is no
standard description of use case contents, several ways of writing use cases
in natural language exist in practice. Some of which are organization specific.
We defined an abstract syntax for use cases such that any concrete syntax
could be used as long as use cases can be unambiguously mapped to the
abstract syntax. One of our plans is to improve UCEd ability to be adapted
to custom notations. We also plan to integrate non-functional requirements
such as performance and security constraints, to use cases.

References

[1] OMG, OMG Unified Modeling Language Specification version 1.4 (2001).
[2] I. Jacobson, G. Booch, J. Rumbaugh, The Unified Software Development

Process, Addison Wesley, 1998.
[3] Use Case Editor (UCEd) toolset,

http://www.site.uottawa.ca/~ssome/Use Case Editor UCEd.html.
[4] J. Rumbaugh, I. Jacobson, G. Booch, The Unified Modeling Language

Reference Manual, Addison-Wesley, 1998.
[5] A. Cockburn, Writing Effective Use Cases, Addison Wesley, 2001.
[6] G. Schneider, J. P. Winters, Applying Use Cases a practical guide,

Addison-Wesley, 1998.
[7] S. Somé, An approach for the synthesis of state transition graphs from

use cases, in: Proceedings of the International Conference on Software
Engineering Research and Practice (SERP’03), Vol. I, 2003, pp. 456–462.

[8] S. Somé. Supporting use cases based requirements simulation. In Proceed-
ings of the International Conference on Software Engineering Research
and Practice (SERP’04), volume I, pages 381–386, 2004.

24

[9] P. Zave, Feature Interactions and Formal Specifications in Telecommuni-
cations, Computer 26 (8) (1993) 20–30.

[10] P. Hsia, J. Samuel, J. Gao, D. Kung, Y. Toyoshima, C. Chen, Formal
approach to scenario analysis, IEEE Software (1994) 33–41.

[11] M. P. Heimdahl, N. G. Leveson, Completeness and Consistency Analysis
of State-Based Requirements, in: Proceedings of the 17th International
Conference on Software Engineering, 1995, pp. 3–14.

[12] C. Rolland, C. B. Achour, Guiding the construction of textual use case
specifications, Data & Knowledge Engineering Journal 25 (1-2) (1998)
125–160.

[13] Glinz, Improving the quality of requirements with scenarios, in: Proceed-
ings of the Second World Congress on Software Quality, 2000, pp. 55–60.

[14] K. Böttger, R. Schwitter, D. Richards, O. Aguilera, D. Mollá, Reconcil-
ing use cases via controlled languages and graphical models, in: INAP
2001, Proceedings of the 14th International Conference on Applications
of Prolog, 2001, pp. 186–195.

[15] A. Fantechi, S. Gnesi, G. Lami, A. Maccari, Application of linguistic
techniques for use case analysis, in: RE’02, Proceedings of the 10th Re-
quirements Engineering Conference, 2002.

[16] K. Koskimies, E. Mäkinen, Automatic Synthesis of State Machines from
Trace Diagrams, Software-Practice and Experience 24 (7) (1994) 643–658.

[17] S. Somé, R. Dssouli, J. Vaucher, From Scenarios to Timed Automata:
Building Specifications from Users Requirements, in: Proceedings of the
2nd Asia Pacific Software Engineering Conference (APSEC’95), IEEE,
1995.

[18] S. Somé, R. Dssouli, An Enhancement of Timed Automata generation
from Timed Scenarios using Grouped States, Electronic Journal on Net-
work and Distributed Processing (EJNDP) (6).

[19] S. Leue, L. Mehrmann, M. Rezai, Synthesizing ROOM Models from Mes-
sage Sequence Chart Specifications, in: 13th IEEE Conference on Auto-
mated Software Engineering, 1998.

[20] J. Whittle, J. Schumann, Generating statechart designs from scenarios, in:
International Conference on Software Engineering (ICSE 2000), Limerick,
Ireland, 2000.

[21] D. Harel, H. Kugler, Synthesizing state-based object systems from LSC
specifications, Lecture Notes in Computer Science 2088.
URL citeseer.nj.nec.com/harel00synthesizing.html

[22] S. Uchitel, J. Kramer, J. Magee, Synthesis of Behavorial Models from
Scenarios, IEEE Transactions on Software Engineering 29 (2).

[23] R. Plösch, Contracts,Scnenarios and Prototypes An Integrated Approach
to High Quality Software, Springer-Verlag, 2004.

[24] R. Dssouli, S. Somé, J. Vaucher, A. Salah, A service creation environ-
ment based on scenarios, Information and Software Technology 41 (11-12)
(1999) 697–713.

[25] D. Harel, R. Marelly, Come, Let’s Play, Springler, 2003.

25

A Improved use cases and domain model

Title: Log in

Primary Actor: User

Participants:

Goal: A User wants to identify herself in order to be able to use the PM system
to perform a task such as admitting a patient or changing silencing an alarm.

Precondition: PMSystem is ON AND User Card is not inserted

Postcondition: User is logged in

Steps:1: User inserts a Card in the card slot
Extension Point ==> card inserted

2: PMSystem asks for PIN
3: User types her PIN

Extension Point ==> pin entered
4: PMSystem validates the User identification
5: IF the User identification is valid THEN PMSystem displays a welcome mes-

sage to User
6: AFTER 45 sec PMSystem ejects the User Card

Alternatives:

1a: User Card status is irregular
1a1: PMSystem starts System status alarm
1a2: AFTER 20 sec PMSystem ejects Card

2a: AFTER 60 seconds
2a1: PMSystem starts System status alarm
2a2: AFTER 20 sec PMSystem ejects Card

4a: User identification is invalid AND User number of attempts is less than 4
4a1 GO TO Step 2

4b: User identification is invalid AND User number of attempts is equal to 4
4b1: PMSystem starts System status alarm
4b2: AFTER 20 sec PMSystem ejects Card

Fig. A.1. Modified version of use case log in with a pre-condition such that sequence
User insert card - PMSystem ask pin - User insert card is not allowed.

26

CONCEPT: PMSystem

Operation:display logout acknowledgment message

WithdrawConditions:ANY ON USER*

Operation:ask Pin

AddedConditions:PMSystem display is pin enter prompt

Operation:eject Card

AddedCondition:Not USER card is inserted

WithdrawCondition:ANY ON PMSystem Alarm

Operation:validate USER identification

AddedConditions:User identification is valid OR

User identification is invalid

WithdrawConditions:ANY ON PMSystem display

Operation:display welcome message

AddedConditions:PMSystem display is welcome message, User is logged in

WithdrawConditions:ANY ON USER identification

Operation:start System status alarm

AddedConditions:PMSystem Alarm is System Status

WithdrawConditions:ANY ON PMSystem Display

Operation:prompt patient information

AddedConditions:PMSystem display is patient info prompt

Operation:prompt vital signs

AddedConditions:PMSystem display is vital signs prompt

Operation:log transaction

AddedConditions:PMSystem log status is logged

Operation:start patient monitoring

AddedConditions:Patient status is monitoring

CONCEPT: User

Operation:press logout button

AddedConditions:USER is loging out

Operation:insert card

AddedConditions:USER Card is inserted

Operation:type PIN

AddedConditions:USER identification is entered

WithdrawConditions:ANY ON PMSystem Display

Operation:enter patient information

AddedConditions:Patient status is identification entered

Operation:choose patient admission

AddedConditions:Patient status is admission initiated

WithdrawConditions:ANY ON PMSystem Display

Operation:enter vital signs

AddedConditions:Patient status is vital signs entered

WithdrawConditions:PMSystem Display is vital signs prompt

Operation:connect cables

AddedConditions:Patient status is connected

Fig. A.2. Added and withdrawn conditions for domain operations to avoid sequence:
User insert card - [USER Card status is irregular] - PMSystem start System status
alarm - User type pin (see section 8). Postconditions have been added to operations
“ask Pin” and “start System status alarm”.

27

**** STATES ****

1: [USER Card is NOT inserted, PMSystem is ON]

3: [USER Card is inserted, PMSystem Alarm is System Status,

USER Card status is irregular, PMSystem is ON]

4: [USER Card status is irregular, USER Card is NOT inserted, PMSystem is ON]

5: [USER Card is inserted, PMSystem Display is pin enter prompt, PMSystem is ON]

6: [USER Card is inserted, PMSystem Alarm is System Status, PMSystem is ON]

10: [USER Card is inserted, PMSystem Display is welcome message,

USER is logged in, PMSystem is ON]

11: [USER Card is inserted, PMSystem Alarm is System Status, PMSystem is ON,

USER number of attempts == 4, USER identification is invalid]

12: [USER Card is NOT inserted, PMSystem is ON, USER number of attempts == 4,

USER identification is invalid]

13: [PMSystem Display is welcome message, USER is logged in,

USER Card is NOT inserted, PMSystem is ON]

14: [PMSystem Display is welcome message, USER is logged in, PMSystem is ON]

15: [Patient status is admission initiated, PMSystem Display is patient info prompt,

USER is logged in, PMSystem is ON]

16: [PMSystem Display is vital signs prompt, USER is logged in,

Patient status is identification entered,

PMSystem is ON]

17: [Patient status is vital signs entered, USER is logged in, PMSystem is ON]

18: [USER is logged in, Patient status is monitoring, PMSystem is ON]

19: [Patient status is monitoring, PMSystem is ON]

20: [USER Card is inserted, PMSystem is ON, USER identification is invalid]

**** SCTRANSITIONS ***

1---insert card/-->2

2---[PMSystem security is high]/log transaction, ask Pin-->5

2---[USER Card status is NOT irregular, PMSystem security is NOT high]/ask Pin-->5

2---[USER Card status is irregular]/start System status alarm-->3

3---TIMEOUT(Timer4:20.0 second)/eject Card-->4

5---TIMEOUT(Timer7:60.0 second)/start System status alarm-->6

5---type PIN/-->7

6---TIMEOUT(Timer9:20.0 second)/eject Card-->1

7---[PMSystem security is NOT high]/validate USER identification-->8

7---[PMSystem security is high]/log transaction, validate USER identification-->8

8---[USER identification is invalid]/-->9

8---[USER identification is valid]/display welcome message-->10

9---[USER number of attempts < 4]/-->2

9---[USER number of attempts == 4]/start System status alarm-->11

9---[USER number of attempts > 4]/-->20

10---TIMEOUT(Timer20:45.0 second)/eject Card-->13

11---TIMEOUT(Timer16:20.0 second)/eject Card-->12

14---choose patient admission/prompt patient information-->15

15---enter patient information/prompt vital signs-->16

16---enter vital signs/-->17

17---connect cables/start patient monitoring-->18

18---press logout button/display logout acknowledgment message-->19

Fig. A.3. State machine obtained from the new version of use cases “Log in”, use
cases “Admit patient” and use case “Log in secure”, with operations specified in
Figure A.2. This state model does not allow sequence: User insert card - [USER
Card status is irregular] - PMSystem start System status alarm - User type pin (see
section 8).

28

