Beyond Scenarios: Generating State Models from Use
Cases’

Stéphane S. Somé
School of Information Technology and Engineering (SITE)
University of Ottawa
150 Louis Pasteur, P.O. Box 450, Stn. A
Ottawa, Ontario, K1IN 6N5, Canada

ssome@site.uottawa.ca

ABSTRACT

A Use Case is a textual representation of requirements con-
sisting of related scenarios. This paper discusses state mod-
els generation from Use Cases. We propose a formalization
of use cases, a natural language based syntax for use cases
description, and an algorithm that incrementally composes
a set of use cases as a finite state transition machine.

1. INTRODUCTION

The terms “use case” and “scenario” are often considered
synonymous. However, there is a fundamental difference be-
tween the two artifacts. A use case is a collection of possible
scenarios between the system under discussion and external
actors [3], while a scenario is a linear sequence of interactions
between external actors and a system. In the Unified Mod-
eling Language (UML) [5], a use case is ”the specification of
a sequence of actions, including variants, that a system (or
other entity) can perform, interacting with actors of the sys-
tem”. Typically each use case includes a primary scenario
(or main course of events) and 0 or more secondary scenar-
108 that are alternative courses of events to the primary sce-
nario. In software development approaches such as the Uni-
fied Software Development Process [4], users requirements
are first captured as use cases that are refined afterward
into scenarios. The scenarios are usually represented graph-
ically as Sequence Diagrams or Message Sequence Charts
(MSCs).

In the recent years lot of progresses have been made on au-
tomatic generation of state models from scenarios (reviews
on the subject are presented in [9, 1, 2]). These progresses
bring us one step closer to bridging the gap between re-
quirements and the design process. However, most of the
scenario-based approaches start from sequence diagram or

*This work is funded by the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

MSCs. Supposing a manual derivation of scenarios from use
cases.

In this paper, we discuss the generation of state transition
graphs from use cases. Because state transition models are
executable, one of the possible applications of our work is
early simulation of users requirements. Simulation helps un-
covering hidden behaviors and making requirement changes
happen earlier in the development process. Other applica-
tions include verification of use cases and conformance vali-
dation of the early requirement model with models derived
at later stages from refinements of uses cases.

The informal nature of use cases is a problem with our
proposed approach. Automatic generation of specification
from free form use cases resumes to the analysis and un-
derstanding of unconstrained natural language; a task that
is virtually impossible. Fortunately much of the use cases
based approaches advocate the use of restricted forms of nat-
ural language [7, 3]. As an example, according to [3], action
steps in use cases should: (1) be sentences in the present
tense, (2) with an active verb in the active voice, and (3)
describing an actor successfully achieving a goal that moves
the process forward. We propose a restricted form of nat-
ural language, which in combination with a dedicated Use
Case Editor (see section 4) helps writing textual use cases
in natural language that can still be automatically analyzed
with little effort. The use cases in our approach have formal
semantics with a front-end language based on a restricted
form of English.

The rest of the paper is organized as follow. We present
our notation and formalization of use cases in the next sec-
tion. Section 3 presents an approach for the generation of
state transition models from use cases. Our work is being
implemented in a tool called Use Case Editor (UCEd). We
briefly outline this tool in section 4. Finally section 5 con-
cludes the paper.

2. USE CASES

Figure 1 shows an example of use case. The format used
is from [3]. A use case includes sections such as title, scope,
level, etc. The description of these different parts is beyond
the scope of this paper.

The use case in Figure 1 describes a login procedure that
must be used by doctors and nurses for a Patient Monitoring
System (PM System). Although all the parts in a use case
help requirements documentation, for the purpose of state
model generation, we are interested in only the functional

Title: User login

Scope: Patient Monitoring System

Level: Sub function

Primary Actor: User (e.g. Doctor, Nurse)
Participants: User

Goal: A User wants to use a PM system to perform an
activity such as admitting a patient or changing
system parameters.

Precondition: System is ON AND NO user is logged
in AND NO card is inserted

Steps: 1: User inserts a Card

2: System asks for Personal Identification
Number (PIN)

3: User types PIN
4: System validates USER identification

5: System displays a welcome message to
USER

6: System ejects Card

Exceptions: 1la: Card is not regular
lal: System emits alarm
la2: System ejects Card
4a: User identification is invalid
4al: IF number of attempts < 4
4all Go back to Step 2
4a2: IF number of attempts > 4
4a21: System emits alarm
4a22: System ejects Card

Postcondition: User is logged in

Figure 1: Use case describing a login procedure in a
Patient Monitoring System.

description aspect of use cases defined by the preconditions,
the steps, the exceptions and the postcondition. We also
consider use case titles for traceability. In the following, we
restrict our view of use cases on these parts.

2.1 Elements of use cases

A use case can be seen as a tuple [T'itle, Pre, Steps, Post]
with Title a label that uniquely identifies a use case, Pre a
set of preconditions, Steps an ordered set of steps, and Post
a set of postconditions.

Each step in Steps is a tuple [SCond, Oper, Ext] with
SCond a set of conditions, Oper an operation, and Ext a set
of extensions starting at this point.

The conditions in §Cond are additional conditions that
must hold for the step to be possible. An operation Oper
is an actor action or a system response. An operation may
also be a branching statement to a step in the use case as
in step 4al of the use case User login.

An extension defines alternative behaviors that are pos-
sible following a step. An extension is a tuple [EzCond,

EzSteps] with EzCond set of the extension conditions, and
EzSteps an ordered set of extension steps. Each extension
step is a tuple [EzStep Cond, ExStepOper] with EzStepCond
a set of conditions and FzStepOper an operation (actor ac-
tion or system reaction).

Formally, a use case is a graph of behavior sequences
where each node represents a state and links correspond to
operations. Figure shows the graph of behavior sequences
corresponding to the use case User login.

atior

emit darm

Figure 2: Graph of behavior sequence corresponding
to use case User login. The graph corresponds to a
network of connected scenarios.

2.2 Domain modd

A domain model is an integral part of requirements in
approaches such as the Unified Software Development Pro-
cess. We use a domain model as a complementary part of use
cases description. Preconditions, postconditions and other
conditions in use cases are predicates on elements from the
domain model. The application domain model also formal-
izes the operations referred in use cases (actor actions and
system responses).

A domain model is a high-level class model that captures
the most important types of objects in the context of the
system. The domain concepts include the system as a black
box with the “things” that exist or events that transpire
in environment in which the system works [4]. In the PM
system, domain concepts include the PM system and User
(a generalization of Doctor and Nurse). These concepts in
turn may have sub-concepts, attributes and operations.

Figure 3 shows a graphical representation of the PM sys-
tem domain model using the UML notation. In the UML,
the description of each class includes attributes, associations
and operations. We extend this description as follow.

e Domain entities (concepts and sub-concepts) and their
attributes have possible values. We distinguish be-
tween discrete and non-discrete entities (such as nu-
merical ones). The domain model enumerates all the
possible values of discrete entities.

USER

PM System
pOﬁbleVa'UeS. ON, OFF pOSSiblevalueS: |Ogged in

number of attempts: numerical

ask for PIN identificati
validate USER identification | | | e valLes:
display welcome message b dvalid, invalid
) car
gject card Y possible values: inserted,
emit alarm regular
prompt for patient information insert card
prompt for vital signs type PIN

enter patient information

log transaction
choose patient admission
includes enter vital signs
Display connect cables to patient
possible values:
pin enter prompt ’—l—‘
welcome message,
patient info prompt Doctor Nurse
vital signs prompt

Operation: ask for PIN
added-conditions: Display is pin enter prompt
Operation: validate USER identification
added-conditions: USER identification is valid
OR USER identification is invalid
withdrawn-conditions: Display is pin enter prompt
Operation: display welcome message
added-conditions: Display is welcome message,
USER is logged in
Operation: eject card
added-conditions: NOT Card is inserted
withdrawn-conditions: all conditions on Card
Operation: prompt for patient information
added-conditions: Display is patient prompt info
Operation: prompt for vital signs
added-conditions: Display is vital sign prompt
Operation: insert card
added-conditions: USER card is inserted

Figure 3: Partial representation of the PM system
domain model.

o We specify operations by giving a set of effects con-
sisting of withdrawn-conditions and added-conditions.
Withdrawn-conditions are conditions that are removed
after the operation execution, while added-conditions
are conditions that are known to hold after the op-
eration execution. These conditions are expressed as
predicates on the domain entities. We use the same
natural language form of description for conditions in
the use cases and the domain model. Withdrawn-
conditions and added-conditions could be expressed in
OCL [5]. However, the natural language form provides
a single simple notation in both use cases and the do-
main model.

The domain model serves two purposes: it is a knowledge
base for natural language analysis of use cases, and a basis
for state model generation from use cases.

2.3 Natural languagein use cases

We use a form of natural language for conditions and op-
erations. Conditions describe situations prevailing within a
system and environment. Operations are active sentences
in which a component performs an action given as a verb.

Another component may be included in the sentence as the
one affected by the operation. We briefly present a part of
the syntax used for conditions in the rest of this section.

A condition is written as a predicative phrase, seeking a
certain quality on an entity of the domain model. As an
example the precondition of the above use case is a clause
where the system has the quality of being ON. Figure 4
shows an excerpt of a Definite Clause Grammar (DCG) [6]
for conditions. DCGs are contextual grammars used for nat-
ural language description. The context in a DCG is defined
as predicates that are checked with the grammar produc-
tions. The domain model provides the context in our case.

condition —> pred_phrase

condition — pred_phrase, conj, condition

condition — negation, condition

pred_phrase > noun_phrase(N), verb, value(IN)

noun_phrase(C) — determinant, [C] {concept(C)}

noun_phrase([C,A]) — determinant, [C], [A],
{concept_attribute(C,A)}

value(N) — determinant [A], {discrete(N),
possible_value(N,A)}

value(N) —> comparison
{not(discrete(N))}

conj ~— [AND]|[OR]

verb — {derived_from(be)}

verb —> {derived_from(become)}

Figure 4: A partial DCG for conditions.

The DCG in Figure 4 references the domain model through
the predicates concept, concept_attribute, discrete, and pos-
stble_value. The domain model definition is mapped into
these predicates. As an example, some of predicates cor-
responding to the model in Figure 3 are concept(“User”),
concept(“PM System”), concept_atiribute(“User”, “number
of attempts”), concept_attribute(“User”, “Card”),

discrete(“Card”), possible_value([“User”, “Card”], “inserted”),
possible_value([“User”, “Card”], “regular”).

3. FROM USE CASESTO STATE MODELS

Based on our formalization, we have developed an algo-
rithm to generate a hierarchical type of finite state transition
machines from use cases. The algorithm is an adaptation of
[8]. It is based on the following.

e Each state is defined by characteristic predicates which
hold in it. These predicates are formulated on the
domain model entities.

Two states are identical if they have the same charac-
teristic predicates.

o A state sp is a sub-state of a state s, (its sup-state), if
its characteristic predicates include those of s, in the
logical sense.

Any transition going from a state s also applies to all
sub-state of s.

For each use case, we augment a state transition graph with
states and transitions such that the graph of behavior se-
quence corresponding to the use case is included as state
transition sequences in the state transition graph. We use

“wn

the operations effects to determine states. Suppose is
an operator such that C1 and C» being 2 sets of predicates,
C1 — C, is a set obtained by removing all the predicates in
Cs from C1, and C1 + C- is a set obtained by adding all the
predicates in C> to C1. Given a state s such that pred(s)
are the characteristic predicates of s, the execution of opera-
tion op with added-condition add_conds(op) and withdrawn
conditions withdr_conds(op) produces a state s’ such that
pred(s') = (pred(s) - withdr_conds(op)) + add_conds(op).

A finite state transition machine is a tuple [2, S, F, S0]
where: X is a finite alphabet, S is a finite set of states,
F is a transition function, and SO0 C S is a set of initial
states. F' is defined as Sx ¥ x §. Given a use case [Title,
Pre, Steps, Post], the algorithm enriches a state transition
machine M as follow. Before the first use case composition,
M is initially such that ¥ = § = F = {.

1 Let s be a state such that pred(s) = Pre
2 For each step = [SCond, Oper, Ext] in Steps

2.1 Let ¢t be a state such that pred(t) = pred(s) +
SCond (t is either identical to s or is a sub-state
of).

2.2 If Oper is an actor action or a system response,
let u be a state obtained by executing Oper from
state t, add a transition ¢ x Oper x u to F, and
add Oper to &

If Oper is a branching to step i, let u be the state
from which step i was considered, add a transition
tx{} xutoF

2.3 For each extension ert = [EzxCond, EzSteps] in
Ext, let u' be a state such that pred(u’') = pred(u)
+ EzCond

For each extension step ezst = [EzStepCond,
EzStepOper] in EzCond

2.4.1 Let v be the state such that pred(v) = pred(u’)
+ EzStepCond

2.4.2 add a transition corresponding to EzStep Oper
the same way as in steps 2.2, suppose v’ the
resulting state, v’ = v’

25 s=u
3 Add any new state to S

Figure 5 shows the finite state transition machine corre-
sponding to the use case User login. State S0 characteristic
predicates are the use case preconditions { “System is ON”,
“No user is logged in”, “No card is inserted”}. State SI is
obtained by considering the use case step 1. It is charac-
terized by the set of predicates { “System is ON”, “No user
is logged in”, “Card is inserted”} since the operation “in-
sert Card” adds the predicate “Card is inserted”, replacing
the previous predicate “No card is inserted”. The algorithm
generates state S2 when adding the extension of step 1 1a.
52 is a sub-state of S1 because of la extension condition
“Card is not regular”. The state S2 characteristic predi-
cates are { “System is ON”, “No user logged in”, “Card is
inserted”, “Card is not regular”}. The extension step lal
creates a transition that loops back to state §2. This is
due to the fact that the operation “emit alarm” has no
effects according to the domain model shown in Figure 3.
Therefore, the resulting state obtained by considering this

insert card
gject card

typepin
[

¢validate user

| display welcome

¢eject card

Figure 5: Finite state transition machine generated
from use case User login.

operation is identical to the originating state. The extension
step 1a2 operation “eject card” withdraws all the predicates
on Card and add the predicate “No Card is inserted” to
S2 characteristic predicates, resulting in the characteristic
predicates { “System is ON”, “No wuser is logged in”, “No
Card is inserted”} of state S0. The remaining states are
as follow. State S8 characteristic predicates are { “System
is ON”, “No user is logged in”, “Card is inserted”, “Dis-
play is pin enter prompt”}. State S4 is characterized by
{ “System is ON”; “No user is logged in”, “Card is inserted”,
“USER identification is valid OR USER identification is in-
valid”}. States S5 and S6 are sub-states of S/ because
their characteristic predicates logically include those of S4.
S5 characteristic predicates are { “System is ON”, “No user
s logged in”, “Card is inserted”, “USER identification is
invalid”, “number of attempts < 4”7}, while S6 characteris-
tic predicates are { “System is ON”, “No user is logged in”,
“Card is inserted”, “USER identification is invalid”, “num-
ber of attempts > 4”}. States S7 characteristic predicates
are {“System is ON”, “USER is logged in”, “Card is in-
serted”, “USER identification is valid”, “Display is welcome
message”}. Finally states S8 is characterized by { “System
is ON”, “USER is logged in”, “No Card is inserted”, “USER
identification is valid”, “Display is welcome message”}.

We do not directly use use cases postconditions for finite
state machine generation. Postconditions are rather used
for verification. The postconditions of a use case should
be included in the characteristic predicates of the last state
corresponding to the use case main course of events. In the
above example, state S8 characteristic predicates effectively
includes the postcondition of the use case which is “USER
is logged in”.

Our algorithm supports overlapping and connected use
cases. Suppose the use case Admit patient of the PM System

shown in Figure 6. Admit patient is supposed to follow the

Use case name: Admit patient
Actor: User (e.g. doctor, nurse)
Participants: Patient

Goal: A User wants to perform the admission of a
patient on a Monitor.

Precondition: User is logged in AND NOT Patient
is admitted to the Monitor

Steps: 1: User chooses patient admission

: System prompts for patient information
: User enters patient information

: System prompts for vital signs

2

3

4

5: User enters vital signs

6: User connects cables to the Patient
7

: System logs transaction

Postcondition: Patient is admitted to the Monitor

Figure 6: Use case describing a patient admission
procedure to the Patient Monitoring System.

use case User login. The algorithm adds Admit patient from
sub-states of states S7 and S8 since the predicate “User is
logged in” holds in both these states.

4. USE CASE EDITOR

We are implementing our results in a Use Case Editor
(UCEd). The objective of UCEd is to help use cases ac-
quisition, use cases verification, prototype generation, and
simulation. UCEd will include a Use Case Writing Tool, a
Domain Model Editor, a Use Case Composition Module and
a Use Case Simulator.

The Use Case Writing Tool shown in Figure 7 is a graph-
ical interface for the edition of use cases. The Use Case
Writing Tool allows use cases to be entered in a field-oriented
form. Use cases elements are written in a restricted form of
natural language according to the syntax outlined in section
2.3. The benefit of a field-oriented form is that use case
writers do not have to worry about delimiting the different
parts of their use cases. The Domain Model Editor allows
users to describe application domain models as in section
2.2. Since we use the UML notation, one of our plans is
to provide a UXF (UML eXchange Format) based interface
for interoperability with UML diagramming tools. UCEd
checks use cases and the domain model against each other
and reports inconsistencies and omissions.

The Use Case Composition Module implements the finite
state transition machine generation algorithm presented in
Section 3. The state models generated can be used as pro-
totypes and animated with the Use Case Simulator.

5. CONCLUSION

We propose generating state transition models from use
cases by looking at a use case as a network of connected sce-
narios. Our work aims at helping use cases based require-
ments engineering with a framework as well as a tool for

Title : Userlogin
Scope ; [Patient Monitoring System

Level : [Subfunction

Primary Actor: User {e.q: doctor, nurse)
Precondition @ [System is ON AND NOT Useris logged i
Stakeholders : User

Minimal Guarantees :

Success Guarantees :

Actor Action [
Main Success Scenario
User inserts @ Card
Usertypes PIN_

System Response

|System asks for FIN

|system validates USER identif...
|system displays welcome me...
[system ejects Card

Figure 7: UCEd Use Case Writing Tool.

use case edition, clarification, and early prototyping. This
paper presented an ongoing work. We plan to extend the
scenario notation and support other aspects of uses cases
such as sub use cases and extension of use cases.

6. REFERENCES

[1] C. B. Achour and C. Souveyet. Bridging the gap
between users and requirements engineering the
scenario-based approach. Technical Report 99-07,
Cooperative Requirements Engineering With Scenarios
(CREWS), 1999.

[2] D. Amyot and A. Eberlein. An Evaluation of Scenario
Notations for Telecommunication Systems
Development. In Proceedings 9 th ICTS, March 2001.

[3] A. Cockburn. Writing Effective Use Cases. Addison
Wesley, 2001.

[4] 1. Jacobson, G. Booch, and J. Rumbaugh. The Unified
Software Development Process. Addison Wesley, 1998.

[6] OMG. Unified modeling language specification, 1999.

[6] F. C. N. Pereira and D. H. D. Warren. Definite clause
grammars for language analysis—a survey of the
formalism and comparison with augmented transition
networks. Artificial Intelligence, 13:231-278, 1980.

[7] C. Rolland and C. B. Achour. Guiding the construction
of textual use case specifications. Data & Knowledge
Engineering Journal, 25(1-2):125-160, march 1998.

[8] S. Somé and R. Dssouli. An Enhancement of Timed
Automata generation from Timed Scenarios using
Grouped States. Electronic Journal on Network and
Distributed Processing (EJNDP), (6), 1998.

[9] K. Weidenhaupt, K. Pohl, M. Jarke, and P. Haumer.
Scenario Usage in System Development: A Report on
Current Practice. IEEE Software, March 1998.

