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Optimal Signaling for Secure Communications
Over Gaussian MIMO Wiretap Channels

Sergey Loyka and Charalambos D. Charalambous

Abstract— Optimal signaling over the Gaussian multiple-input
multiple-output wire-tap channel is studied under the total
transmit power constraint. A closed-form solution for an optimal
transmit covariance matrix is obtained when the channel is
strictly degraded. In combination with the rank-1 solution, this
provides the complete characterization of the optimal covariance
for the case of two transmit antennas. The cases of weak
eavesdropper and high SNR are considered. It is shown that
the optimal covariance does not converge to a scaled identity
in the high-SNR regime. Necessary optimality conditions and a
tight upper bound on the rank of an optimal covariance matrix
are established for the general case, along with a lower bound
to the secrecy capacity, which is tight in a number of scenarios.

Index Terms— MIMO, wiretap channel, secrecy capacity,
optimal signalling.

I. INTRODUCTION

MULTIPLE-INPUT multiple-output (MIMO) architec-
ture has gained prominence in both academia and

industry as a spectrally-efficient approach to wireless com-
munications [1]. With wide deployment of wireless net-
works, security issues have recently gained additional
importance, including information-theoretic approach at the
physical layer [2]. The physical-layer security in MIMO
systems has been recently under active investigation [3]–[10].
It was demonstrated that Gaussian signaling is optimal over the
Gaussian MIMO wire-tap channels (MIMO-WTC) [6]–[10]
and the optimal transmit covariance has been found for MISO
systems [3], the 2-2-1 system [7], for the parallel channels
(where independent signalling is optimal) [11], [12], all under
the total power constraint, and in the general MIMO case under
the transmit covariance matrix constraint [5]. The high-SNR
regime (SNR → ∞) has been studied in [9]. The general case
is still an open problem under the total power constraint, since
the underlying optimization problem is not convex and explicit
solutions are not known, except for some special cases. In fact,
an optimal covariance is not known even when the channel
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is degraded (so that the respective optimization problem is
convex), except for the special cases mentioned above.

The main contribution of this paper is a closed-form solution
for the optimal covariance when the latter is of full rank
under the total power constraint at finite SNR and the con-
ditions for this to be the case in Theorem 1. The optimal
covariance is shown to have some properties similar to those
of the conventional water-filling, but with a few remarkable
differences. In particular, the optimal covariance does not
converge to a scaled identity in the high-SNR case and thus
isotropic signaling is sub-optimal in this regime. Theorem 1,
in combination with the rank-1 solution, provides the complete
characterization of the optimal covariance for the case of two
transmit antennas (for any channel, degraded or not). The
cases of high-SNR and of weak eavesdropper are elaborated in
Corollaries 1 and 2. An optimal covariance matrix for the gen-
eral case (degraded or not) is characterized in Proposition 2,
which shows that there is hidden convexity in the respective
optimization problem, even when the channel is not degraded.

Proposition 3 gives a necessary condition of optimality
for the general case, which is a transmission of the positive
directions of the difference channel where the main channel
is stronger than the eavesdropper one. This strengthens the
earlier result in [13] (transmission on non-negative rather
than positive directions). While the proof in [13] is rather
straightforward and is based on a singular transformation
(multiplication by a matrix that is singular when the covariance
matrix is rank-deficient) of the KKT conditions, significantly
more effort and a new approach are required to establish
the stronger result. It avoids using a singular transformation
(since some information about active signalling sub-space
is irreversibly lost in the process) but relies on a novel
property of positive semi-definite matrices (Lemma 2) and
their block-partitioned representation to establish a property of
dual variables from which the desired result follow. This result
also allows one to establish a tighter bound on the rank of an
optimal covariance matrix (Corollary 3) than those available
in the literature for the general case.

A lower bound on the secrecy capacity in the general case
is established in Proposition 4. While the original problem
is non-convex so that all powerful tools of convex opti-
mization [17] cannot be used, the lower bound is expressed
via a convex problem and thus can be solved efficiently by
a numerical algorithm. This bound is tight (achieved with
equality) in a number of cases: when the SNR is low, or
when the legitimate and eavesdropper channels have the same
right singular vectors, or when the channel is degraded, thus
providing an additional insight into optimal signalling.
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An upper bound on the rank of an optimal covariance matrix
is given in Corollary 3 for the general case: the rank is bounded
by the dimensionality of a positive sub-space of the difference
channel. This bound is stronger than those in [10] and [13]
and can be further used to identify the cases for which an
optimal covariance is of rank one (when the difference channel
has just one strictly positive eigenvalue). Since the rank-1
structure of optimal covariance is known (unlike the sufficient
and necessary conditions under which an optimal covariance
is of rank-1, for which only limited knowledge is available),
this extends the earlier results in [3], [7], [13], and [14] and
provides not only the rank but also an optimal covariance itself
in those cases.

II. GAUSSIAN MIMO WIRE-TAP CHANNEL MODEL

Let us consider the standard Gaussian MIMO-WTC model,

y1 = H1x + ξ1, y2 = H2x + ξ2 (1)

where x = [x1, x2, ...xm]T ∈ Cm,1 is the transmitted complex-
valued signal vector of dimension m × 1, “T” denotes trans-
position, y1(2) ∈ Cn,1 are the received vectors at the receiver
(eavesdropper), ξ1(2) is the circularly-symmetric additive white
Gaussian noise at the receiver (eavesdropper) normalized to
unit variance in each dimension, H1(2) ∈ Cn1(2),m is the
n1(2) × m matrix of the complex channel gains between
each Tx and each receive (eavesdropper) antenna, n1(2) and
m are the numbers of Rx (eavesdropper) and Tx antennas
respectively. The channels H1(2) are assumed to be quasistatic
(i.e., constant for a sufficiently long period of time so that
the standard random coding arguments can be invoked within
each coherence block) and frequency-flat, with full channel
state information (CSI) at the Rx and Tx ends.

For a given transmit covariance matrix R = E
{
xx+}

, where
E {·} is statistical expectation, the maximum achievable secure
rate between the Tx and Rx (so that the leakage rate between
the Tx and eavesdropper converges to zero) is [5]–[10]

C(R) = ln
|I + W1R|
|I + W2R| = C1(R) − C2(R) (2)

where negative C(R) is interpreted as zero rate, Wi = H+
i Hi ,

()+ means Hermitian conjugation, Ci (R) = ln |I+Wi R|. The
secrecy capacity subject to the total Tx power constraint is

Cs = max
R≥0

C(R) s.t. trR ≤ PT (3)

where PT is the total transmit power (also the SNR since the
noise is normalized). It is well-known that the problem in (3)
is not convex in general and explicit solutions for the optimal
Tx covariance are not known except for some special cases
(e.g. low-SNR, MISO or parallel channels). It was conjectured
in [10] that an optimal transmission in (3) is on the directions
where the main channel is stronger than the eavesdropper one
(i.e. on the positive directions of the difference channel W1 −
W2). A similar conclusion, albeit in a different (indirect) form,
has been obtained in [9] using the degraded channel approach.

Theorem 1 below gives an explicit, closed-form solution
for the optimal full-rank covariance in (3) at finite SNR.
A number of additional insights and properties follow.

III. CLOSED-FORM SOLUTIONS

In this section, we consider the problem in (3) and obtain
its closed-form solutions. The following theorem establishes
the optimal covariance R∗ for the strictly-degraded channel,
W1 > W2, where A > B means that A−B is positive definite.

Theorem 1: Let W1 > W2 and PT > PT 0, where PT 0 is a
threshold power given by (8). Then, R∗ is of full rank and is
given by:

R∗ = U�1U+ − W−1
1 (4)

where the columns of the unitary matrix U are the eigenvectors
of Z = W2 + W2(W1 − W2)

−1W2, �1 = diag{λ1i} > 0 is a
diagonal positive-definite matrix,

λ1i = 2

λ

(√

1 + 4μi

λ
+ 1

)−1

(5)

and μi ≥ 0 are the eigenvalues of Z; λ > 0 is found from the
total power constraint trR∗ = PT as a unique solution of the
following equation:

2

λ

∑

i

(√

1 + 4μi

λ
+ 1

)−1

= PT + trW−1
1 (6)

The corresponding secrecy capacity is

Cs = ln
|W1| |�1|

|I − W2(W−1
1 − U�1U+)|

= ln
|W1|
|W2| + ln

|�1|
|�2| (7)

where �2 = �1 + diag{μ−1
i } and 2nd equality holds when

W2 > 0. PT 0 can be expressed as follows:

PT 0 = 2(μ1 + λmin )

λ2
min

∑

i

(√

1 + 4μi (μ1 + λmin)

λ2
min

+ 1

)−1

− trW−1
1 (8)

where λmin is the minimum eigenvalue of W1 and μ1 is the
maximum eigenvalue of Z.

Proof: See Appendix. �
It should be pointed out that Theorem 1 gives an exact (not

approximate) optimal covariance at finite SNR (PT → ∞ is
not required) since PT 0 is a finite constant that depends only
on W1 and W2 and this constant is small in some cases: it
follows from (8) that PT 0 → 0 if λmin → ∞, i.e. PT 0 is
small if λmin is large. In particular, PT 0 can be upper bounded
as

PT 0 ≤ mμ1

λ2
min

+ m − 1

λmin
(9)

and if λmin � μ1, then

PT 0 ≈ m

λmin
− trW−1

1 ≤ m − 1

λmin
≤ 1 (10)

where the last inequality holds if λmin ≥ m − 1. Fig. 1
illustrates this case. On the other hand, when W1 − W2
approaches a singular matrix, it follows that PT 0 → ∞, so
that PT 0 is large iff W1 − W2 is close to singular.
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Fig. 1. Secrecy capacity and the rank of R∗ vs. SNR [dB] for the channel
in (11). The transition to full-rank covariance takes place at about −6 dB.

Theorem 1, in combination with rank-1 solution in (28),
provides the complete solution for the optimal covariance in
the m = 2 case: if the channel is not strictly degraded or if the
SNR is not above the threshold, the rank-1 solution in (28)
applies; otherwise, Theorem 1 applies. Fig. 1 illustrates this
for the following channel:

W1 =
[

1.5 0.5
0.5 1.5

]
, W2 =

[
0.35 0.15
0.15 0.35

]
(11)

Note that the transition to full-rank covariance takes place at
low SNR of about -6 dB, i.e. PT 0 is not high at all in this
case.

We further observe that 1st term in (7) C∞ = ln |W1||W2|
is SNR-independent and the 2nd one �C = ln |�1||�2| < 0
monotonically increases with the SNR. Furthermore, Cs →
C∞, �C → 0 as PT → ∞, in agreement with [9, Th. 2].
This is also clear from Fig. 1.

Note also that the second term in (4) de-emphasizes weak
eigenmodes of W1. Since λ is monotonically decreasing as PT

increases (this follows from (6)), λ1i monotonically increases
with PT , and approaches λ1i ≈ 1/

√
μiλ at sufficiently

high SNR, which is in contrast with the conventional water-
filling (WF), where the uniform power allocation is optimal at
high SNR. Furthermore, it follows from (5) that λ1i decreases
with μi , i.e. stronger eigenmodes of W−1

2 − W−1
1 = Z−1

(which correspond to larger eigenmodes of W1 and weaker
ones of W2) receive larger power allocation, which follows the
same tendency as the conventional WF. It further follows from
(4) that when W1 and W2 have the same eigenvectors, R∗ also
has the same eigenvectors, i.e. the optimal signaling is on the
eigenvectors of W1(2). While the necessary condition for full-
rank R∗ (W1 > W2) has been obtained before in [10], no
solution was found for R∗, which is given in Theorem 1 here.

The case of singular W1 can also be included by observing
that, under certain conditions, R∗ puts no power on the null
space of W1 so that all matrices can be projected, without loss
of generality, on the positive eigenspace of W1 and Theorem 1
will apply. The following Proposition makes this precise.

Proposition 1: Consider the problem in (3) when N (W1) ∈
N (W2), where N (W) = {x : Wx = 0} is the null space of

matrix W [19], and assume that

x+(W1 − W2)x > 0 ∀x ∈ N⊥, x 
= 0, (12)

where N⊥ is orthogonal complement of N (W1), i.e. W1 −W2
is positive definite on N⊥. When the SNR exceeds a threshold
(as in Theorem 1), the optimal covariance in (3) is

R∗ = U⊥R̃∗U+
⊥ (13)

where R̃∗ is the optimal covariance of Theorem 1 when applied
to the projected matrices W̃i = U+

⊥Wi U⊥ and the columns
of semi-unitary matrix U⊥ form an orthonormal basis of N⊥.
Furthermore, rank(R∗) = rank(W1).

Proof: Observe that Wi x = Wi x⊥, where x⊥ = U⊥U+
⊥x

is the orthogonal projection of x on N⊥, so that

|I + Wi R| = |I + Wi U⊥U+
⊥RU⊥U+

⊥|
= |I + U+

⊥Wi U⊥U+
⊥RU⊥| (14)

and tr(U+
⊥RU⊥) ≤ tr(R) so that one can use the projected

matrices R̃ = U+
⊥RU⊥, W̃i = U+

⊥Wi U⊥ in Theorem 1 to
obtain the desired solution. (12) insures that W̃1 − W̃2 > 0 so
that Theorem 1 applies. �

With Proposition 1 in mind, the conditions of Theorem 1 are
both sufficient and necessary (except for the power threshold
PT 0 which may be less than in (8)) for an optimal covariance
to be of full-rank.

It is instructive to consider the case when the required
channel is much stronger than the eavesdropper one,
W1 � W2, meaning that all eigenvalues of W1 are much
larger than those of W2.

Corollary 1: Consider the MIMO-WTC in (1) under the
conditions of Theorem 1 and when the eavesdropper channel
is much weaker than the required one,

λi (W2) � m(PT + trW−1
1 )−1/4 (15)

where λi (W2) is i -th eigenvalue of W2, e.g. when W2 → 0
and fixed W1. Then the optimal covariance in (4) becomes

R∗ ≈ U1(λ
−1I − D−1

1 )U+
1 − λ−2W2 (16)

where W1 = U1D1U+
1 is the eigenvalue decomposition, so

that the columns of U1 are the eigenvectors, and the diagonal
entries of D1 are the eigenvalues.

Proof: See Appendix. �
An interpretation of (16) is immediate: the first term is the

standard water-filling on the eigenmodes of W1 (which is the
capacity-achieving strategy for the regular MIMO channel)
and the second term is a correction due to the secrecy
requirement: those modes that spill over into the eavesdropper
channel get less power to accommodate the secrecy require-
ment.

Let us know consider the high-SNR regime.
Corollary 2: When W2 > 0, the optimal covariance R∗

in (4) in the high-SNR regime

PT � μ
−1/2
m

∑

i
μ

−1/2
i (17)

(e.g. when PT → ∞), where μm = mini μi , simplifies to

R∗ ≈ Udiag{di}U+, di = PT μ
−1/2
i

∑
i μ

−1/2
i

(18)
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The corresponding secrecy capacity is

Cs ≈ ln
|W1|
|W2| − 1

PT

(∑

i

1√
μi

)2

(19)

where we have neglected 2nd and higher order effects
in 1/PT .

Proof: Follows from Theorem 1 along the same lines as
that of Corollary 1. �

Note that the optimal signaling is on the eigenmodes of
W−1

2 − W−1
1 with the optimal power allocation given by {di }.

This somewhat resembles the conventional water-filling, but
also has a remarkable difference: unlike the conventional WF,
the secure WF in (18) does not converge to the uniform one in
the high-SNR regime.1 However, strong eigenmodes of W−1

2 −
W−1

1 (which corresponds to weak modes of W2 and strong
ones of W1) do get more power, albeit in a form different
from that of the conventional WF.

While Theorem 1 gives a closed-form full-rank optimal
covariance for the strictly degraded channel, the general case
remains an open problem. The proposition below provides
a characterization of an optimal covariance for the general
case.

Proposition 2: Consider the general Gaussian MIMO-WTC
(not necessarily degraded). Let the columns of semi-unitary
matrix Ua span the same subspace as the columns of optimal
covariance R∗ in (3): span{Ua} = span{R∗}. Then, the
optimal covariance can be expressed in the following form:

R∗ = UaR′U+
a (20)

where R′ is given by Theorem 1 with the substitutions Wi →
W̃i = U+

a Wi Ua (i.e. applied to the channels projected on
span{Ua}), and W̃1 > W̃2.

Proof: See Appendix. �
Remark 1: Proposition 2 gives a closed-from solution for

the general (non-degraded) case provided that the active
subspace (i.e. the subspace spanned by the columns or active
eigenvectors of R∗) is already known. Note that the knowledge
of eigenvectors of R∗ is not required, but only the subspace
they span. This in fact splits the entire problem P into two
sub-problems P1 and P2:

P = P1 × P2 (21)

where P1 is a non-convex problem of finding the active
sub-space (or the active eigenvectors) and P2 is the convex
problem of finding the optimal covariance based on the
found active subspace, hence revealing the hidden convexity
in the original non-convex problem P . While P2 is always
convex, P1 and thus P become convex when the channel is
degraded.

IV. NECESSARY OPTIMALITY CONDITIONS

AND PROPERTIES

In this section, we establish the necessary optimality con-
ditions for the problem in (3) and, based on these conditions,
some properties of the optimal solutions when the latter are

1The sub-optimality of the isotropic signalling suggested in [9, Th. 2] is
hiding in the o(1) term there. 2nd term of Eq. (19) above refines that o(1)
term.

rank-deficient. In particular, we establish an upper bound on
the rank of optimal covariance matrix which is tighter than the
known bounds. In some cases, this bound results in an explicit
closed-form solution for the optimal covariance.

The following Proposition gives a necessary condition of
the optimality in (3).

Proposition 3: Let R∗ be an optimal covariance in (3) and
let Ur+ be a semi-unitary matrix whose columns are the active
eigenvectors {ui+} (i.e. corresponding to positive eigenvalues)
of R∗. Then, the following holds:

U+
r+(W1 − W2)Ur+ > 0 (22)

so that

x+(W1 − W2)x > 0 ∀x ∈ span{ui+} (23)

i.e. a necessary condition for an optimal signaling strat-
egy in (3) is to transit over the positive directions of
W1 − W2 (where the legitimate channel is stronger than the
eavesdropper).2

Proof: See the Appendix. �
It was demonstrated in [10] that rank(R∗) < m unless

W1 > W2, i.e. an optimal transmission is of low-rank over
a non-degraded channel. The Corollary below gives more
precise characterization.

Corollary 3: Let W1 − W2 = W+ + W−, where W+(−)

collects positive (negative and zero) eigenmodes of W1 − W2
(found from its eigenvalue decomposition). Then,

rank(R∗) ≤ rank(W+) ≤ m, (24)

i.e. the rank of an optimal covariance R∗ does not exceed the
number of positive eigenvalues of W1 −W2 (the rank of W+).

Proof: We need the following technical Lemma, which is
a direct consequence of [22, Corollary 4.5.11]:

Lemma 1: Let A be Hermitian and r+(A) be its number
of positive eigenvalues. Then r+(S+AS) ≤ r+(A), where S is
any matrix of appropriate size.

Lemma 1 says that applying the transformation S+AS to A
cannot increase the number of its positive eigenvalues (since S
can be singular; this number stays the same if S is full rank).
Using this Lemma with S = R∗1/2 and A = W1 − W2 + M,
one obtains:

r+(R∗) = r+(R∗1/2(W1 − W2 + M)R∗1/2) (25)

= r+(R∗1/2(W1 − W2)R∗1/2) (26)

≤ r+(W1 − W2) = rank(W+) (27)

where 1st equality follows from the fact that W1−W2+M > 0
(which has been established in the proof of Proposition 3), 2nd
equality follows from MR∗ = 0, and the inequality follows
from Lemma 1. �

2After the conference version of this paper has been submitted, we were
informed that a weaker result (≥ instead of >) was established in [13].
The proof in [13] is based on a singular transformation (multiplication by
a singular matrix when R is singular), so that some information about the
active signalling sub-space is lost and strict inequality cannot be established.
On the other hand, we avoid using such transformation and base our proof on
some novel properties of positive semi-definite matrices (see Lemma 2) and
their block-partitioned representation so that the active signaling sub-space
can be characterized more precisely and a tighter upper bound on the rank of
an optimal covariance can be established.
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Note that the rank bound in Corollary 3 is stronger than the
corresponding bound in [13], rank(R∗) ≤ rank(W1 − W2),
especially when the difference matrix W1 − W2 has many
negative eigenvalues (e.g. when the eigenvalues of W1 − W2
are {1,−1, ..,−1}, the bound in [13] is trivial: rank(R∗) ≤ m,
while our bound gives the true rank: rank(R∗) = 1).

When rank(W+) = 1, the optimal covariance R∗ is of
rank-1 from Corollary 3 and hence the capacity and the
covariance follow from (3)3:

Cs = ln λ1, R∗ = PT u1u+
1 (28)

where λ1, u1 are the largest eigenvalue and corresponding
eigenvector of (I + PT W2)

−1(I + PT W1) or, equivalently, the
largest generalized eigenvalue and corresponding eigenvector
of (I + PT W1, I + PT W2), so that transmit beamforming on
u1 is the optimal strategy. Note that this result is more general
than those in [3] and [7] as the latter two apply to a single
antenna channel (either at the receiver or eavesdropper) while
the result above holds for any number of antennas at any
end. Furthermore, the signaling in (28) is also optimal for
any rank(W+) ≥ 1 at sufficiently small SNR, where λ1, u1
become the largest eigenvalue and corresponding eigenvector
of the difference channel W1 − W2.

The following Proposition establishes a lower bound to the
non-convex problem in (3) via a convex optimization problem
(for any channel, degraded or not).

Proposition 4: The secrecy capacity can be lower bounded
as follows:

Cs ≥ max
R≥0

C+(R) s.t. trR ≤ PT , (29)

where

C+(R) = ln
|I + W1+R|
|I + W2+R| (30)

and Wi+ = P+Wi P+, P+ = U+U++ is the projection matrix
on the positive eigenspace of W1 − W2, U+ is a semi-unitary
matrix whose columns are the eigenvectors of W1 − W2 cor-
responding to its positive eigenvalues: W+ = U+D+U++, and
D+ is the diagonal matrix of the positive eigenvalues; C+(R)
is a non-negative, concave and non-decreasing function of R
or strictly positive, concave and increasing when the active
eigenmodes of R are in the span of the active eigenmodes of
W+. The lower bound is tight (achieved with equality) when
the channel is degraded or when W1 and W2 have the same
eigenvectors, or in the low-SNR regime.

Proof: see Appendix. �
The problem in (29) has further significance: while the prob-

lem Cs = maxR≥0 C(R) is not convex when the channel is not
degraded, so that powerful tools of convex optimization [17]
cannot be used, the problem maxR≥0 C+(R) is convex for any
channel (degraded or not), to which all machinery of convex
optimization can be applied and a lower bound (achievable
rate) to the secrecy capacity can be evaluated using any
standard convex solver.

3This result has been obtained before, albeit in a different way, in [13].
Note however, that our result here is stronger: it does not require W1 − W2
to be non-singular while [13] does, so that the latter result does not apply
when the eigenvalues of W1 − W2 are e.g. {1, 0, .., 0,−1, .., −1} while our
result does apply to such scenario.

V. CONCLUSION

Optimal signalling over the Gaussian MIMO wire-tap
channel has been studied under the total power constraint.
A closed-form solution is given for the optimal transmit
covariance matrix when the channel is strictly degraded.
While the optimal signalling has some similarities to the
conventional water-filling, it also reveals a number of
differences: the optimal signalling does not converge to
isotropic at high SNR. The weak eavesdropper and high-SNR
regimes are considered, and a tighter upper bound on the
rank of the optimal covariance matrix is given for the general
case, along with the lower bound to the secrecy capacity,
which is tight in a number of cases. While the general case is
still an open problem (even when the channel is degraded), a
characterization of an optimal covariance based on the active
signaling subspace is given, which reveals hidden convexity
in the underlying optimization problem.

APPENDIX

A. Proof of Theorem 1

Using the Lagrange multiplier technique [17], [18], the
optimization problem in (3) has the following Lagrangian:

L =−ln |I+W1R| + ln |I + W2R| + λ(trR − PT ) − tr(MR)

(31)

where λ ≥ 0 is a Lagrange multiplier responsible for
the power constraint trR ≤ PT and M ≥ 0 is a (pos-
itive semi-definite) matrix Lagrange multiplier responsible
for the constraint R ≥ 0. The associated KKT conditions
(see e.g. [17]) can be expressed as:

λ(I + W1R)(I + RW2) = W1 − W2 + M (32)

MR = 0, λ(trR − PT ) = 0, (33)

R ≥ 0, M ≥ 0, λ≥0, trR≤ PT (34)

where (32) is obtained from ∂L/∂R = 0,

∂L

∂R
= (I + W2R)−1W2 − (I + W1R)−1W1 + λI − M

= 0 (35)

and the two equalities in (33) are the complementary slackness
conditions while (34) are the primal and dual feasibility
conditions.

Note that the (affine) constraints trR ≤ PT , R ≥ 0 clearly
satisfy the Slater condition [17], [18]. It also follows from
Proposition 4 that C(R) is concave when W1 > W2 (no need
for projection) so that the problem in (3) is convex and thus
the KKT conditions are sufficient for global optimality when
the channel is strictly degraded.

Let us consider first the case of W2 > 0 and extend it to
the singular case later. Assuming R > 0 and using M = 0
(which follows from MR = 0), one obtains from (35),

R−1
1 − R−1

2 = λI (36)

where Ri = W−1
i + R, i = 1, 2. Let R1 = U�1U+ be

the eigenvalue decomposition, where the columns of unitary
matrix U are the eigenvectors, and �1 > 0 is a diagonal
matrix of the corresponding eigenvalues. Using this in (36),
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one obtains �−1
1 −(U+R2U)−1 = λI and therefore U+R2U =

�2 is diagonal, so that R2 = U�2U+ is the eigenvalue
decomposition of R2, from which it follows that R1 and R2
have the same eigenvectors. Using this in (36) one obtains

�1 = (λI + �−1
2 )−1 (37)

Furthermore,

R2 − R1 = W−1
2 − W−1

1 = U(�2 − �1)U+ (38)

so that the columns of U are also the eigenvectors of W−1
2 −

W−1
1 = Z−1 and the diagonal entries of �2−�1 = diag{μ−1

i }
are its eigenvalues. Combining the latter with (37), one obtains
after some manipulations (5). (4) follows from R1 = W−1

1 +R
and R1 = U�1U+. It is straightforward to see that λ > 0
(otherwise W1 ≤ W2), so that transmission with the full
power is optimal and (6) follows from the power constraint
trR = PT . For (4) to be a valid solution, we need U�1U+ >
W−1

1 . This is insured by observing that the left-hand side
of (6) is monotonically decreasing in λ, so that the latter is
monotonically decreasing as PT increases and, from (5), λ1i

also monotonically increases. Therefore, for sufficiently large
PT , PT > PT 0 for some finite PT 0, the minimum eigenvalue of
�1 exceeds the maximum one of W−1

1 and thus the condition
U�1U+ > W−1

1 follows. Therefore, (4)-(6) solve the KKT
conditions and thus achieve the global optimum. It can be
further seen that the solution is unique.

It can be seen that (6) is monotonically decreasing in λ over
the interval (0,∞) when λ ∈ (0,∞) so that a solution exists
and unique for any PT .

The condition W2 > 0 can be further removed via the
standard continuity argument [19]: use W2ε = W2 + εI > 0,
ε > 0, instead of W2 in Theorem 1 and then take ε → 0.
Alternatively, one may observe that W and W−1 have the
same eigenvectors and inverse eigenvalues and use the matrix
inversion lemma [19], [22] to obtain:

(W−1
2 − W−1

1 )−1 = W2 + W2(W1 − W2)
−1W2 = Z (39)

Note that Z is well-defined even for singular W2 (since W1 >
W2), its eigenvectors are those of W−1

2 − W−1
1 and μi =

λi (Z) so that Theorem 1 applies. Furthermore, λi (Z) = 0 iff
λi (W2) = 0, the corresponding eigenvectors are those of W2
and μi = 0 implies λ1i = 1/λ. The equalities in (7) follow
by observing that

|I + R∗W1| = |W1U�1U+| = |W1||�1| (40)

and

|I + R∗W2| = |I − W2(W
−1
1 − U�1U+)|

= |W2||�2| (41)

where 2nd equality holds when W2 > 0 (1st one allows for
singular W2). Note that W1/2

2 (W−1
1 − U�1U+)W1/2

2 < I
(which follows from W1/2

2 W−1
1 W1/2

2 < I which in turn is
implied by W1 > W2) so that 2nd determinant is indeed
strictly positive.

To show (8), observe that R∗ > 0. Using (4), this requires
U�1U+ > W−1

1 , which is insured by λ1minλmin > 1, where
λ1min = mini {λ1i } and λmin is the minimum eigenvalue of

W1 (this follows from the fact that W1 > W2 is implied by
λmin(W1) > λmax (W2)). Therefore, the threshold power PT 0
can be found from the boundary condition λ1min(PT 0) =
1/λmin , which, after some manipulations, can be
expressed as

√
λ2 + 4μ1λ = 2λmin − λ (42)

and can be solved for λ:

λ = λ2
min

μ1 + λmin
(43)

Substituting this in (6), one finally obtains (8). �

B. Proof of Corollary 1

Using
√

1 + x ≈ 1 + x/2 − x2/8 when x � 1 in (5),
one obtains λ1i ≈ λ−1 + μiλ

−2, and using this in (6), one
obtains λ ≈ m(PT + trW−1

1 )−1. The condition x � 1 is
equivalent to λ/μi � 4, which in turn is equivalent to (15),
and the latter also implies mini λi (W1) � maxi λi (W2)
(i.e. the eavesdropper channel is indeed much weaker than the
main one), from which it follows that W−1

2 − W−1
1 ≈ W−1

2 ,
and applying these in (4), one obtains (16). �

C. Proof of Proposition 2

Let R∗ be optimal covariance in (3). Observe that

Cs = C(R∗) (44)

= ln
|I + W1R∗|
|I + W2R∗| (45)

= ln
|I + W1PaR∗Pa|
|I + W2PaR∗Pa | (46)

= ln
|I + W̃1R̃∗|
|I + W̃2R̃∗| (47)

≤ max
R̃

ln
|I + W̃1R̃|
|I + W̃2R̃| s.t. R̃ ≥ 0, trR̃ ≤ PT (48)

where Pa = UaU+
a is the projection matrix on the subspace

span{Ua} and R̃∗ = U+
a R∗Ua ; (46) follows from PaR∗Pa =

R∗, (47) follows from

|I + Wi PaR∗Pa| = |I + U+
a Wi UaU+

a R∗Ua | (49)

(48) follows from trR̃∗ ≤ trR∗ ≤ PT (since Ua is semi-
unitary). The 1st inequality in (48) holds with equality, as can
be proved by contradiction: assume that the inequality is strict
so that

ln
|I + W̃1R̃∗|
|I + W̃2R̃∗| = ln

|I + W1UaR̃∗U+
a |

|I + W2UaR̃∗U+
a |

= C(R′)
> C(R∗) (50)

where R′ = UaR̃∗U+
a . Now note that trR′ = trR̃∗ ≤ PT so

that R′ is feasible and hence the strict inequality is impossible.
Further note that W̃1 > W̃2 (this follows from (22)) and that
R̃∗ is of full rank. Therefore, the problems in (3) and (48)
are equivalent and Theorem 1 applies, from which the desired
result follows. �



LOYKA AND CHARALAMBOUS: OPTIMAL SIGNALING FOR SECURE COMMUNICATIONS 7213

D. Proof of Proposition 3

Observe that the KKT conditions in (31)-(34) are not
sufficient for optimality in the general (non-degraded) case
since the original problem is not convex (see e.g. [17]).
However, since the (affine) constraints trR ≤ PT , R ≥ 0
clearly satisfy the Slater condition [17], [18] and since the
maximum is achievable (since the constraint set is compact and
the objective function is continuous), the KKT conditions are
necessary for optimality [18]. We further need the following
technical Lemma.

Lemma 2: Let A, B, C ≥ 0 be positive semi-definite matri-
ces and let ABC be Hermitian. Then ABC ≥ 0.

Proof: Since A, C ≥ 0, there exists a non-singular
matrix S such that SAS+ = Da ≥ 0, SCS+ = Dc ≥ 0 are
diagonal [19]. Using the latter,

ABC = SDaBDcS+ (51)

where B = S+BS ≥ 0. Observe further that

λi (DaBDc) = λi (BDcDa) (52)

= λi ((DcDa)1/2B(DcDa)
1/2) ≥ 0 (53)

since (DcDa)
1/2B(DcDa)1/2 ≥ 0, where λi (B) means an

eigenvalue of matrix B. Since DaBDc is Hermitian (because
ABC is) and has non-negative eigenvalues, it is positive
semi-definite [19], DaBDc ≥ 0. It follows that ABC =
SDaBDcS+ ≥ 0. �

Note that this Lemma is a generalization of a well known
fact: AB ≥ 0 if A, B ≥ 0 and AB is Hermitian [19]. We first
prove that Z = (I + W1R)(I + RW2) > 0 when R > 0. In
this case, Z can be expressed as

Z = (R−1 + W1)R2(R−1 + W2) (54)

Now identify the right-hand side of (54) with A, B, C and
use Lemma 2 to obtain Z ≥ 0 (noting that Z is Hermitian
from (32)). Therefore, it follows from (32) that

W1 − W2 + M ≥ 0 (55)

since λ > 0, as λ = 0 implies W1 ≤ W2 and
thus Cs = 0 - trivial case not considered here. Since
|(I + W1R)(I + RW2)| > 0, it further follows that Z > 0 and

W1 − W2 + M > 0. (56)

The case of singular R is somewhat more involved. Let
R = U�U+ be the eigenvalue decomposition of R. Consider

Z̃ = U+ZU

= (I + W̃1�)(I + �W̃2)

= W̃1 − W̃2 + �M (57)

where W̃i = U+Wi U, �M = U+MU, and block-partition
�, W̃i as follows:

� =
[

�r 0
0 0

]
, W̃i =

[
W11

i W12
i

W21
i W22

i

]
(58)

where �r is a diagonal matrix collecting r positive eigenvalues
of R. Using this in (57), one obtains, after some manipulations,

Z̃ =
[
(W11

1 �r + Ir )(�r W11
2 + Ir ) (W11

1 �r + Ir )�r W12
2

W21
1 �r (�r W11

2 + Ir ) W21
1 �2

r W12
2 + Ir

]

(59)

where Ir is r × r identity matrix. Note that Z̃ is Hermitian
(since Z is) and use the following fact [19]:

[
A B

B+ X

]

≥ 0 ↔ X ≥ B+A−1B (60)

where X, A are Hermitian (and so is the block-partitioned
matrix) and ↔ means that the conditions are equivalent. Apply
this to (59) to obtain

B+A−1B = W21
1 �r (�r W11

2 + Ir )((W11
1 �r + Ir )

×(�r W11
2 + Ir ))

−1(W11
1 �r + Ir )�r W12

2

= W21
1 �2

r W12
2

≤ W21
1 �2

r W12
2 + Ir

= X (61)

so that Z̃ ≥ 0 and thus Z ≥ 0 follow. Since |Z| 
= 0, it further
follows that Z > 0 and thus

W1 − W2 + M > 0 (62)

To prove (22), note that

0 < U+
r+(W1 − W2 + M)Ur+ = U+

r+(W1 − W2)U (63)

where the columns of Ur+ are the active eigenvectors {ui+}.
The inequality follows since W1 − W2 + M > 0 and the
columns of Ur+ being linearly independent:

x+U+
r+(W1 − W2 + M)Ur+x

= x̃+(W1 − W2 + M)x̃ > 0 ∀x 
= 0 (64)

where x̃ = Ur+x 
= 0 since the columns of Ur+ are linearly
independent. The equality follows since MR = 0 implies
MUr+ = 0. (23) follows from (22) by expressing x = Ur+z
for some z.

E. Proof of Proposition 4

We will need the following technical Lemma.
Lemma 3: Consider the function

f (X) = ln
∣
∣
∣I − B(A + X)−1B

∣
∣
∣ ,

where A, B, X ≥ 0 are positive semi-definite matrices, I is the
identity matrix, BA−1B ≤ I. It has the following properties:

1) f (X) is increasing in X: X1 ≤ X2 → f (X1) ≤ f (X2).
2) f (X) is concave in X:

f (αX1 + βX2) ≥ α f (X1) + β f (X2),

for α + β = 1, 0 ≤ α, β ≤ 1.

proof: 1st property follows from the (easy to verify) fact
that −B(A + X)−1B is increasing in X (in the matrix positive
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definite ordering sense [19]). 2nd one is obtained from the
following chain argument:

f (αX1 + βX2) = ln
∣
∣
∣I − B(A + αX1 + βX2)

−1B
∣
∣
∣

(a)≥ ln
∣
∣∣I − αBA−1

1 B − βBA−1
2 B

∣
∣∣

(b)≥ α ln
∣
∣
∣I − BA−1

1 B
∣
∣
∣ + β ln

∣
∣
∣I − BA−1

2 B
∣
∣
∣

= α f (X1) + β f (X2) (65)

where Ai = A + Xi ; (a) follows from the facts that F(X) =
X−1 is convex in X and F(X) = ln |X| is increasing
[17], [19]; (b) follows from the fact that F(X) = ln |X| is
concave [17]. �

We now assume that Wi+ > 0. The case of singular Wi+
will follow from the standard continuity argument [19] (i.e.
use Wiε = Wi+ + εI, ε > 0, instead of Wi+ and then take
ε → 0; see [19, Sec. 2.6] for more details and examples).
Observe that

C+(R) = ln
|W1+|
|W2+| + ln

∣
∣
∣W−1

1+ + R
∣
∣
∣

∣
∣
∣W−1

2+ + R
∣
∣
∣

= c + ln
∣
∣∣I − �W(W−1

2+ + R)−1
∣
∣∣

= c + ln
∣
∣
∣I − �W1/2(W−1

2+ + R)−1�W1/2
∣
∣
∣ (66)

where c = ln |W1+| − ln |W2+| and �W = W−1
2+ − W−1

1+,
and apply Lemma 3 to the last term of the last expression
in (66). It is easy to verify that BA−1B ≤ I (since W−1

2+ −
W−1

1+ ≤ W−1
2+) and that B ≥ 0 (since W1+ ≥ W2+), so that

the properties of C+(R) follow. To prove the lower bound, note
that the problem in (29) limits the optimization to the positive
eigenspace of W1 − W2 and thus is sub-optimal. To prove
the achievability of the lower bound, note that, in the low-
SNR regime, one obtains C(R) ≈ tr(W1 − W2)R so that
rank-1 transmission on the largest eigenmode of W1 − W2 is
optimal. But this eigenmode is in the positive eigenspace of
W1 − W2 (unless it is negative, in which case the capacity is
zero) so that this transmission is also optimal for the projected
problem. When eigenvectors of W1 and W2 are the same,
the achievability follows from the respective result for parallel
channels in [11] and [12] (since an optimal covariance also
has the same eigenvectors). When the channel is degraded,
the projection has no effect since W1 − W2 ≥ 0 so that the
problems in (3) and (29) are identical. �
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