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A General Formula for Compound
Channel Capacity

Sergey Loyka and Charalambos D. Charalambous

Abstract— A general formula, for the capacity of arbitrary
compound channels with the receiver channel state information,
is obtained using the information density approach. No assump-
tions of ergodicity, stationarity, or information stability are made
and the channel state set is arbitrary. A direct (constructive)
proof is given. To prove achievability, we generalize Feinstein
Lemma to the compound channel setting, and to prove converse,
we generalize Verdu–Han Lemma to the same compound setting.
A notion of a uniform compound channel is introduced and
the general formula is shown to reduce to the familiar sup–inf
expression for such channels. As a by-product, the arbitrary
varying channel capacity is established under maximum error
probability and deterministic coding. Conditions are established
under which the worst-case and compound channel capacities are
equal, so that the full channel state information at the transmitter
brings in no advantage. The compound inf-information rate
plays a prominent role in the general formula. Its properties
are studied and a link between the information-unstable and
information-stable regimes of a compound channel is established.
The results are extended to include ε-capacity of compound
channels. Sufficient and necessary conditions for the strong
converse to hold are given.

Index Terms— Channel capacity, compound channel,
information stability, channel uncertainty, arbitrary-varying
channel.

I. INTRODUCTION

CHANNEL state information (CSI) has a significant
impact on channel performance as well as code design

to achieve that performance. This effect is especially pro-
nounced for wireless channels, due to their dynamic nature,
limitations of a feedback link (if any), channel estimation
errors etc. [1]. When only incomplete or inaccurate CSI is
available, performance analysis and coding techniques have to
be modified properly. The impact of channel uncertainty has
been extensively studied since late 1950s [2]–[6]; see [7] for
an extensive literature review up to late 1990s. Since channel
estimation is done at the receiver (Rx) and then transmitted
to the transmitter (Tx) via a limited (if any) feedback link,
most studies concentrate on limited CSI available at the
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Tx end (CSI-T) assuming full CSI at the Rx end (CSI-R) [1],
the assumption we adopt in this paper. The impact of
mismatched decoding (i.e. imperfect CSI-R) on the capacity
of single-state channels has been studied in [20].

There are several typical approaches to model channel
uncertainty. In the compound channel model, the channel is
unknown to the Tx but is known to belong to a certain set
of channels, the uncertainty set. A member of the channel
uncertainty set (state set) is selected at the beginning and held
constant during the entire transmission [3]–[5], thus modeling
a scenario with little dynamics (channel coherence time signif-
icantly exceeds the codeword duration [1]). A more dynamic
approach is that of the arbitrary-varying channel (AVC), where
the channel is allowed to vary from symbol to symbol being
unknown to the Tx (but also restricted to belong to a certain
class of channels) [6], [7]. A variation of the compound
channel model is that of the composite channel where there
is a probability assigned to each member of the compound
channel set thus avoiding an over-pessimistic nature of the
compound channel capacity when one channel is particularly
bad but occurs with small probability [11]. Finally, incomplete
CSI at the Tx end can be addressed by assuming that the
channel is not known but its distribution is known to the Tx,
the so-called channel distribution information (CDI) [1].

All the studies above of compound channels require
members of the uncertainty (state) set to be information-
stable (e.g. stationary and ergodic), which limits significantly
their applicability, especially in wireless communications,
where the channel behaviour is often non-stationary, non-
ergodic (as an example, many modulation-induced channels
are non-stationary and quasi-static fading channels are non-
ergodic). A general approach to information-unstable channels
and sources (e.g. non-ergodic, non-stationary etc.), the
information-spectrum approach, was pioneered in [8] and [9]
and developed in detail in [10]. In this paper, we apply
the information-spectrum approach to extend the compound
channel model [2]–[7] to information-unstable scenarios,
where mutual information have no operational meaning
anymore. This results in a general formula for the capacity of
compound channels with arbitrary channel state sets, which
are not necessarily ergodic, stationary or information-stable.

While the standard compound channel model assumes
no CSI-R, such information can be obtained via a training
sequence with negligible loss in rate for a quasi-static channel
(which stays fixed for the entire transmission) [1] provided
that the uncertainty set is not too rich (without this condition,
the estimation may not be possible at all, even for a quasi-
static channel, as an example in Section IX demonstrates).
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This justifies the compound channel model with CSI-R.
On the other hand, limitations of a feedback channel (if any)
result in significant uncertainty in CSI-T thus justifying the
present compound channel model where no CSI is available to
the Tx.

The capacity of a class of compound information-unstable
channels has been studied earlier in [10] using the information
spectrum approach. However, (i) its proof is rather involved
and indirect (first, a result is established for mixed channels;
then, a certain equivalence is established between mixed and
compound channels, which establishes the compound channel
capacity in a rather elaborate and indirect way); and (ii) its
reliability criterion does not require uniform convergence of
error probability to zero (as the blocklength increases) over
the whole class of channels,1 but only for each channel
individually, see [10, Definition 3.3.1]. As a consequence,
arbitrary-low error probability cannot be ensured over the
whole class of (infinite-state) channels simultaneously via
a sufficiently-large blocklength2 (in the case of finite-state
channels, the convergence is automatically uniform and this
problem disappears). Our approach avoids this problem by
using the standard formulation of the reliability criterion for
compound channels, whereby uniform convergence of error
probability to zero is required over the whole class of channels
simultaneously, not just for each channel individually, see
Section IV for a detailed discussion. We obtain a general
formula for the capacity of compound (possibly information-
unstable) channels with arbitrary state sets (not only countable
or finite) and give a direct proof by extending Feinstein
and Verdu-Han Lemmas to the compound channel setting
in Theorem 1 (using an algorithmic code construction).

A formulation of channel uncertainty problem based on
the information density approach was presented in [11] using
the composite channel model. This, however, requires a
probability measure associated with channel states, so that
the channel input-output description is entirely probabilistic
and the general formula in [9] applies to such setting.
We consider the compound channel setting here, where there
is no probability measure associated with channel states and a
certain achievable performance has to be demonstrated for any
member of the uncertainty set using a single code, for which
the general formula in [9] is not applicable.

While the channel capacity theorem ensures the achievabil-
ity of any rate below the capacity with arbitrary low error
probability, there exists a hope to achieve higher rates by
allowing slightly higher error probability, since the transition
from arbitrary low to high error probability may be slow.
Strong converse ensures that this transition is very sharp (for
any rate above the capacity, the error probability converges
to 1) and hence dispels the hope. In this paper, we establish
the sufficient and necessary conditions for the strong converse

1Uniform convergence of error probability to zero is the standard
requirement for compound channels, see [3]–[7], [22], since channel state
is unknown and arbitrary-low error probability is desired over the whole class
of channels.

2In particular, when the supremum over channel states is taken, the upper
bound to error probability at the bottom of [10, p. 199] becomes infinite for
infinite-state channels. Thus, [10, Th. 3.3.5] ensures reliable communications
for finite-state channels only (see Section IX for corresponding examples).

to hold for the general compound channel. In a nutshell,
the conditions require the existence of an information-stable
sub-sequence of (bad) channel states (indexed by the block-
length) such that the respective sub-sequence of information
densities converges in probability to the compound channel
capacity. No assumptions of stationarity, ergodicity or infor-
mation stability are made for the members of the uncertainty
set.

The rest of the paper is organized as follows. Section II
introduces a (general) channel model and assumptions. The
information density approach [9], [10] is briefly reviewed
in section III. In section IV, a general compound channel
capacity formula is obtained in Theorem 5 using the infor-
mation density approach, which holds for a wide class of
channels including non-stationary, non-ergodic or information-
unstable channels and arbitrary channel state sets (not only
countable or finite-state). A compound inf-information rate
plays a prominent role in this formula. The notion of a uniform
compound channel is introduced and, for this channel, the
general formula is reduced to a more familiar sup − inf form
in Theorem 12. The latter coincides with [10, Th. 3.3.5] for
finite-state channels, which shows that the full CSI-R does
not increase the capacity in this case. The conditions for
the worst-case and compound capacities to be the same (and
hence the full CSI-T to bring in no advantage) are established
in Section IV-B. Section V presents a number of properties
of the compound inf(sup)-information rate, which are instru-
mental to its analysis and capacity evaluation in particular
scenarios. In addition to a number of inequalities, we establish
the optimality of independent signalling when the compound
channel is memoryless and show that the information spectrum
induced by any code achieving arbitrary low error probability
over the compound channel is a single atom at the code rate
also equal to the mutual information rate for any channel
state (so that these rates are state-independent). This links
information-unstable and information-stable regimes of the
compound channel.

As a by-product of the analysis, we establish the arbitrary-
varying channel capacity under maximum error probability
and deterministic coding with the full CSI-R, which is equal
to the respective compound channel capacity (recall that the
AVC capacity can be different under random and deterministic
coding as well as under maximum and average error proba-
bilities; the deterministic code AVC capacity under maximum
error probability is not known in general while some special
cases have been settled [7], [22]). This result shows that using
average (as opposed to maximum) error probability or random
(rather than deterministic) coding does not increase the AVC
capacity under the full CSI-R.

In Section VI, sufficient and necessary conditions for
the strong converse to hold are established. Compound
ε-capacity is obtained in Section VII. The compound channel
capacity is compared to that of mixed and composite
channels in Section VIII and illustrative examples are given
in Section IX. In particular, an example in Section IX-D
demonstrates that our results do not hold without the full
Rx CSI assumption in general, thus demonstrating its
important role.
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Fig. 1. A general discrete-time basedband system model. No assumptions on
channel state set are made. The channel is allowed to be information-unstable
(e.g. non-stationary non-ergodic).

II. CHANNEL MODEL

Let us consider a generic discrete-time channel model
shown in Fig. 1, where Xn = {X (n)

1 . . . X (n)
n } is a (random)

sequence of n input symbols, X = {Xn}∞n=1 denotes all such
sequences, and Y n is the corresponding output sequence; s ∈ S
denotes the channel state (which may also be a sequence) and
S is the (arbitrary) uncertainty set; ps(yn|xn) is the channel
transition probability; p(xn) and ps(yn) are the input and
output distributions under channel state s.

Let us assume that the full CSI is available at the receiver
but not the transmitter (see [1] for a detailed motivation of
this assumption; when the channel is quasi-static, i.e. stays
fixed for the entire block transmission but may change for the
next block, this assumption may be not necessary) and that
the channel input X and state s are independent of each other.
Following the standard approach (see [1]), we augment the
channel output with the state: Y n → (Y n, s). The information
density [12]–[14] between the input and output for a given
channel state s and a given input distribution p(xn) is

i(xn; yn, s) = log
p(xn, yn, s)

p(xn)p(yn, s)

= log
ps(xn, yn)

p(xn)ps(yn)

= i(xn; yn|s) (1)

where we have used the fact that the input Xn and channel
state s are independent of each other. Note that we make no
assumptions of stationarity, ergodicity or information stability
in this paper, so that the normalized information density
n−1i(Xn; Y n|s) does not have to converge to the respective
mutual information rate as n → ∞. There is no need for the
consistency assumption on ps(yn|xn) either (e.g. the channel
may behave differently for even and odd n).

For future use, we give the formal definitions of information
stability following [12]–[15] (with a slight extension to the
compound setting).

Definition 1: Two random sequences X and Y are
information-stable if

i(Xn; Y n|s)
I (Xn; Y n|s)

Pr→ 1 as n → ∞ (2)

i.e. the information density rate 1
n i(Xn; Y n|s) converges

in probability to the respective mutual information rate
1
n I (Xn; Y n|s).

Definition 2: Channel state s is information stable if there
exists an input X such that

i(Xn; Y n|s)
I (Xn; Y n|s)

Pr→ 1,
I (Xn; Y n|s)

Cns
→ 1 as n → ∞, (3)

where Cns = supp(xn) I (Xn; Y n|s) is the information capacity.

As an example, a stationary discrete memoryless channel
is information-stable while a non-ergodic fading channel
is information-unstable in general. Information stability is
both sufficient and necessary for the information capacity
(and also the mutual information) to have an operational
meaning [12], [15] for a regular (single-state) channel.

Note that the 2nd definition requires effectively the channel
to behave ergodically under the optimal input only, and tells us
nothing about its behaviour under other inputs (e.g. a practical
code) and, in this sense, is rather limiting. To characterize the
channel behaviour under different inputs (not only the optimal
one), we will consider the information stability of its input X
and the induced output Y following Definition 1 and saying
that “channel is information-stable under input X”. Further
note that, for the compound channel, some channel states may
be information stable while others are not.

We will not assume any particular noise or channel distri-
bution so that our results are general and apply to any such
distribution.

III. CAPACITY OF A GIVEN CHANNEL STATE

In this section, we will assume that a channel state s is
given and known to both the Tx and Rx (alternatively, one may
assume that the channel state set is a singleton) and review the
corresponding results in [9] and [10] for this setting.

When the channel is information-stable under input X ,
the normalized information density converges to the mutual
information rate in probability as n → ∞ (due to the law of
large numbers) [12]–[14],

1

n
i(Xn; Y n|s) → I (X; Y |s)

= lim
n→∞

1

n

∑

xn,yn

ps(xn, yn)i(xn, yn |s) (4)

whose operational meaning is the maximum achievable rate for
a given input distribution p(x), a channel state s and arbitrary
small error probability.3 Maximizing it over p(x) results in the
channel capacity. In other cases (information-unstable chan-
nels), the normalized information density remains a random
variable, even when n → ∞, whose support set is in general
an interval [9], [10]. Following the analysis in [9], its infimum
I (X; Y |s), the inf-information rate, is the largest achievable
rate for a given channel state s, input distribution p(x) and
arbitrary-small error probability:

I (X; Y |s) � sup
R

{
R : lim

n→∞ Pr {Zns ≤ R} = 0
}

(5)

where Zns = n−1i(Xn; Y n|s) is the information density rate.
Following [9, Ths. 2 and 5], the channel capacity, for a given

state s, is obtained by maximizing I (X; Y |s) over p(x),

C(s) = sup
p(x)

I (X; Y |s) (6)

Note that this is a very general result, as the channel is
not required to be information-stable (ergodic, stationary, etc.).

3While the summation applies to discrete alphabets, it is clear that the same
argument holds for continuous alphabets using integration/probability mea-
sures instead. This applies throughout the paper unless indicated otherwise.
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The converse is proved via Verdu-Han Lemma (a lower
bound to error probability, which is a dual of Feinstein
bound) [9], [10]. We definite (n, rn , εns )-code in the standard
way, where n is the block length, εns is the error probability for
channel state s (either maximum or average error probability
can be used; this has no effect on the capacity), rn = ln Mn/n
is the code rate and Mn is the number of codewords.

Lemma 3 (Verdu-Han Lemma [9], [10]): Every (n, rn , εns)-
code satisfies the following inequality,

εns ≥ Pr

{
1

n
i(Xn; Y n|s) ≤ rn − γ

}
− e−γ n (7)

for any γ > 0, where Xn is uniformly distributed over all
codewords and Y n is the corresponding channel output under
channel state s.

This is a slight re-wording of [10, Lemma 3.2.2], where we
explicitly indicate channel state s for future use.

On the other hand, the achievability of (6) for a given and
known s (i.e. a single, known channel) was proved in [9] via
Feinstein Lemma.

Lemma 4 (see [9], [10]): For arbitrary input Xn, any rn

and a given channel state s, there exists a code satisfying the
following inequality,

εns ≤ Pr

{
1

n
i(Xn; Y n|s) ≤ rn + γ

}
+ e−γ n (8)

for any γ > 0.
While this is sufficient to prove achievability for a given and

known s (codewords and decoding regions depend on channel
state), it does not work for the compound channel setting, since
we need a code that works for the entire class of channels, not
just a single channel as in (8).

IV. COMPOUND CHANNEL CAPACITY

In this section, we obtain a general formula for compound
channel capacity of information-unstable channels by gener-
alizing Lemmas 3 and 4 above to the compound channel set-
ting. This will generalize the corresponding result established
[10, Th. 3.3.5] for finite-state channels to arbitrary compound
channels. An (n, rn , εn)-code for a compound channel is
defined in the same way as above, with the compound error
probability

εn = sup
s∈S

εns (9)

where S is the set of all possible channel states (uncertainty
set), and εn → 0 as n → ∞ is required as the reliability
criterion, so that

lim
n→∞ sup

s∈S
εns = 0 (10)

which ensures arbitrary low error probability uniformly over
the whole class of channels for sufficiently large n [1]–[7],

εns ≤ ε ∀s ∈ S, ∀n ≥ n0(ε) (11)

for any ε > 0, where n0(ε) is a sufficiently-large blocklength.
It should be emphasized that, in the compound setting, it is
essential that (i) εns ≤ ε holds for all states s ∈ S (so that

the reliability is ensured uniformly over the whole class of
channels) and that (ii) n0(ε) does not depend on s (since the Tx
does not know channel state and thus cannot choose codebooks
which depend on it). On the other hand, [10, Definition 3.3.1]
does not require uniform convergence of error probability to
zero over the whole class of channels so that its formulation
of the reliability criterion is equivalent to

sup
s∈S

lim
n→∞ εns = 0 (12)

which implies limn→∞ εns = 0 for all s ∈ S and hence

εns ≤ ε ∀s ∈ S, ∀n ≥ n0(ε, s) (13)

i.e. n0(ε, s) depends on channel state s, which is in contra-
diction to the compound setting whereby the Tx does not
know state s and hence cannot use codebooks that depend
on it. Hence, an arbitrary low error probability cannot be
ensured simultaneously over the whole class of channels, for
any blocklength, does not matter how large, under the criterion
in (12). This problem disappears for finite-state channels since
the convergence is automatically uniform: one can simply use
n0(ε) = maxs n0(ε, s). Note also that (12) does not imply (10)
in general; rather,

lim
n→∞ sup

s∈S
εns ≥ sup

s∈S
lim

n→∞ εns (14)

Examples of Section IX illustrate the cases when the inequality
is strict. However, (12) is equivalent to (10) for finite-state
channels, so that [10, Th. 3.3.5] ensures reliable communica-
tions in that setting.

In the compound setting of this paper, (10) is
used as the reliability criterion, which is the standard
approach [1]–[7], [22], codebooks are required to be
independent of the actual channel state s while the decision
regions are allowed to depend on s (due to the full CSI-R
assumption). It is immediate that the worst-case channel
capacity is infs∈S C(s) but achieving this requires s to be
known to the Tx. If this is not the case, it is far less trivial
that the compound channel capacity can be obtained by
swapping sup and inf; see [7] for an extensive discussion of
this issue. While the swapping works in many cases, there
are examples when it does not [16]. This is the case for the
general (possibly information-unstable) compound channel
considered here, whose capacity is established below.

Theorem 5: Consider the general compound channel where
the channel state s ∈ S is known to the receiver but not the
transmitter and is independent of the channel input; the trans-
mitter knows the (arbitrary) uncertainty set S. Its compound
channel capacity is given by

Cc = sup
p(x)

I (X; Y) (15)

where I (X; Y) is the compound inf-information rate:

I (X; Y) � sup
R

{
R : lim

n→∞ sup
s∈S

Pr {Zns ≤ R} = 0

}
(16)

where Zns = n−1i(Xn; Y n|s) is the information density rate.
Proof: To prove achievability and converse, we generalize

Lemmas 1 and 2 above to the compound channel setting.
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Lemma 6 (Feinstein Lemma for Compound Channels): For
arbitrary input Xn and uncertainty set S and any code
rate rn, there exists a (n, rn , εn)-code (where the codewords
are independent of channel state s), satisfying the following
inequality,

εn ≤ sup
s∈S

Pr

{
1

n
i(Xn; Y n|s) ≤ rn + γ

}
+ e−γ n (17)

for any γ > 0.
Proof: See Appendix. �

It is clear from the proof that the same inequality
holds for both maximum and average error probability, and
hence the capacity is also the same. Next, we generalize
Verdu-Han Lemma to the compound channel setting.

Lemma 7 (Verdu-Han Lemma for Compound Channels):
For any uncertainty set S, every (n, rn , εn)-code satisfies the
following inequality,

εn ≥ sup
s∈S

Pr

{
1

n
i(Xn; Y n|s) ≤ rn − γ

}
− e−γ n (18)

for any γ > 0, where Xn is uniformly distributed over all
codewords and Y n is the corresponding channel output under
channel state s.

Proof: To prove this inequality, invoke (7) for a given
channel state s and then maximize both sides over all possible
channel states to obtain:

εn = sup
s

εns ≥ sup
s

Pr {Zns ≤ rn − γ } − e−γ n (19)

A subtle point here is that the original Verdu-Han Lemma
allows codewords to depend on channel state while the com-
pound codewords are independent of channel state. Since such
a dependence can only decrease error probability, the desired
inequality still holds. �

Now, to prove achievability in Theorem 5, fix p(x) and set
rn ≤ I (X; Y) − 2γ for any γ > 0. From Lemma 6,

lim
n→∞ εn ≤ lim

n→∞ sup
s∈S

Pr
{

Zns ≤ I (X; Y) − γ
}

= 0 (20)

which shows that I (X; Y) − 2γ is achievable ∀γ > 0, so that
Cc ≥ supp(x) I (X; Y).

To prove the converse, let I ∗ = supp(x) I (X; Y) and select
a codebook with rn ≥ I ∗+2γ for some γ > 0 and sufficiently
large n, and use Lemma 7 to obtain for this codebook

lim
n→∞ εn ≥ lim

n→∞ sup
s∈S

Pr
{

Zns ≤ I ∗ + γ
}

≥ lim
n→∞ sup

s∈S
Pr

{
Zns ≤ I (X; Y) + γ

}

≥ ε0 > 0 (21)

for some fixed ε0 > 0, where the last two inequalities follow
from the definition of I and 2nd inequality follows from I ∗ ≥
I (X; Y), so that no rate above I ∗ is achievable: Cc ≤ I ∗.

It is clear from the proof that the same capacity holds under
the maximum as well as average error probability. �

Remark 8: It is I (X, Y ) that extends I (X, Y |s) to the
compound channel setting, not I (X, Y ) � infs I (X, Y |s), in
the general case.

The relationship between I (X, Y ) and I (X, Y ) is estab-
lished below.

Proposition 9: The following inequality holds for a general
compound channel

I (X, Y ) ≤ I (X, Y ) � inf
s

I (X, Y |s) (22)

Proof: The proof is by contradiction. Let I = I (X, Y ),
I = I (X, Y) and assume that I > I , set R = (I + I )/2 > I
and observe that R < I and therefore

lim
n→∞ sup

s
Pr {Zns ≤ R} ≥ sup

s
lim

n→∞ Pr {Zns ≤ R}
≥ ε0 > 0 (23)

for some ε0 > 0 - a contradiction, where the last
two inequalities are from the definition of I . Therefore,
I ≤ I . �

A. Uniform Compound Channels

It can be demonstrated, via examples (see Examples 1 and 2
in Section IX), that the inequality in (22) can be strict.
To see when the equality is achieved, we need the following
definition.

Definition 10: A compound channel is uniform if there
exists δ ≥ 0 such that for any input Xδ satisfying I (Xδ; Y δ) ≥
Cc−δ (i.e. Xδ is δ-suboptimal), where Y δ is the corresponding
output, the convergence in

Pr
{

n−1i(Xn
δ ; Y n

δ |s) ≤ I (Xδ, Y δ) − γ
}

→ 0 (24)

as n → ∞ is uniform in s ∈ S for all sufficiently small γ > 0.
Note that while the point-wise convergence is ensured for

each s from the definition of I (Xδ, Y δ), it does not have to
be uniform and, indeed, examples can be constructed where it
is not (see Section IX). In a sense, the uniform convergence
here ensures that the channel does not behave “too badly” as
n increases. It is straightforward to see that if the uniform
convergence in (24) holds for some γ = γ0 > 0, then it also
holds for any γ > γ0, so that the condition needs to be checked
for arbitrary small γ > 0 only. If the supremum in Cc =
supp(x) I (X, Y) is achieved, then one may take δ = 0 and use
the optimal input only. All finite-state compound channels are
uniform under any input (i.e. one may take δ = Cc).

For a uniform compound channel, one obtains the following
result.

Proposition 11: The following equality holds for any Xδ if
and only if the compound channel is uniform,

I (Xδ, Y δ) = I (Xδ, Y δ) (25)

If δ = Cc, then this holds for any input.
Proof: See Appendix. �

We are now in a position to establish the capacity of uniform
compound channels.

Theorem 12: Consider the general compound channel
where the channel state s ∈ S is known to the receiver
but not the transmitter and is independent of the channel
input; the transmitter knows the (arbitrary) uncertainty set S.
Its compound channel capacity is bounded by

Cc ≤ sup
p(x)

inf
s∈S

I (X; Y |s) (26)
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with equality for a uniform compound channel. In particular,
this holds when S is of finite cardinality.

Proof: The inequality follows from (22). The equality
part is established by using Proposition 11 in Theorem 5
(note that taking the supremum over all Xδ is sufficient). It is
straightforward to verify that a finite cardinality of S implies
the uniform convergence condition in (24) for any input (not
only δ-suboptimal). �

As far as the compound channel capacity is concerned,
the uniform convergence condition in (24) needs to hold
for optimal or suboptimal inputs only for (26) to hold with
equality. Note also that Theorems 5 and 12 hold for any
alphabet and any uncertainty set. In many cases of practical
interest (e.g. when the set of feasible input distributions p(x)
and/or the uncertainty set S are compact and I (X; Y |s) is
well-behaving), sup and/or inf can be substituted by max
and/or min. Unlike [10, Th. 3.3.5], the present result applies
to arbitrary channel uncertainty sets and its proof is direct
(i.e. not relying on mixed channels but directly constructing
capacity-approaching codes for compound channels in
Lemma 6). The examples in Section IX demonstrate that the
inequality can be strict.

We remark that many well-known results (e.g. [5]) are
special cases of Theorem 5 and 12. The latter is pleas-
antly similar to known results for information-stable channels,
which also include sup − inf expression. When S is of finite
cardinality, (26) holds with equality and coincides with the
compound capacity in [10, Th. 3.3.5], i.e. the compound
and mixed channels have the same capacity in this case.
Furthermore, since Theorem 3.3.5 was established under the
assumption of no CSI-R, this shows that the full CSI-R brings
in no increase in the capacity in this case. Examples 1 and 2
in Section IX show that the compound capacity can be strictly
less than the corresponding mixed channel capacity in the
general case.

One may ask whether the sup − inf capacity formula in
Theorems 12 apply to a broader class of channels than those in
Definitions 10, i.e. without imposing the uniform convergence
condition. We consider this below.

Definition 13: A sequence of functions fn(s) is weakly
decreasing if there exists δm ≥ 0 such that δm → 0 as m → ∞
and

fn(s) ≤ fm(s) + δm ∀n ≥ m, ∀s (27)
Proposition 14: If the uncertainty set S is compact

(e.g. closed and bounded) and there exists such δ ≥ 0 that

fn(s) = Pr
{

n−1i(Xn
δ ; Y n

δ |s) ≤ I (Xδ; Y δ) − γ
}
, (28)

is upper semi-continuous in s and weakly decreasing for all
sufficiently small γ > 0 and all sufficiently large n, and for
any δ-suboptimal input Xδ , then (25) holds for any Xδ and
hence the equality in (26) follows.

Proof: Using [19, Th. A.1.5(b)] under the stated condi-
tions ensures the 1st equality in (153) while the 2nd equality
follows from the definition of I (Xδ; Y δ), from which the
first statement follows. The 2nd statement can be obtained
by observing that the supremum can be taken over Xδ only
without any loss. �

It is straightforward to see that the uniform convergence in
Definition 10 implies the weakly-decreasing property but the
converse is not necessarily true. On the other hand, there is no
requirement for S to be compact in Definition 10, so that these
formulations are complementary to each other. It can be shown
that any finite-state compound channel is uniform and thus a
special case for Theorems 12 and 48. The weakly-decreasing
property represents the natural case where the performance
improves with blocklength while the continuity property holds
for many channel models. Note that S is not required here to
be countably-finite or even countable (but it has to be bounded
and closed).

B. Worst-Case Channel Capacity
One may also consider the worst-case channel capacity Cw

(i.e. the capacity of the worst-case channel in the uncer-
tainty set),

Cw = inf
s∈S

sup
p(x)

I (X; Y |s) (29)

which has the operational meaning under the full Tx CSI.
It is well-known that Cw ≥ Cc (since any code for the
compound channel must also work on the worst-case channel)
and there are many cases where the inequality is strict. Below,
we establish conditions under which they are equal for the
general compound channel.

Definition 15: A saddle-point property is said to hold if

inf
s∈S

sup
p(x)

I (X; Y |s) = sup
p(x)

inf
s∈S

I (X; Y |s) (30)

Note that this definition does not impose any operational
meaning on the quantities involved. The following proposition
establishes the conditions under which Cw = Cc for the
general compound channel.

Proposition 16: Consider the general compound channel
under the full Rx CSI such that: (i) the saddle-point property
holds, and (ii) the compound channel is uniform. Then, the
worst-case and compound capacities are the same,

Cw = inf
s∈S

sup
p(x)

I (X; Y |s) = sup
p(x)

I (X; Y) = Cc (31)

The 1st condition is also necessary.
Proof: Consider the following chain inequality:

Cw = inf
s∈S

sup
p(x)

I (X; Y |s)
≥ sup

p(x)
inf
s∈S

I (X; Y |s)
≥ sup

p(x)
I (X; Y) = Cc (32)

where the 2nd inequality is due to (22), and observe that
the inequalities become the equalities under the conditions
in (i) and (ii). �

The significance of this result is due to the fact that while
achieving the worst-case capacity allows the codebooks to
depend on the channel state, achieving the compound channel
capacity does not allow this, so that the presence of the full
Tx CSI does not bring in any advantage in this case. It can
be further extended as follows.

Definition 17: A compound channel is (stochastically)
degraded if there exists such channel state sw that is degraded
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with respect to any other channel state s in the uncertainty
set, i.e. if there exists such fictitious channel qs(yn

sw
|yn

s ) that

psw(yn
sw

|xn) =
∑

yn
s

ps(yn
s |xn)qs(yn

sw
|yn

s ) (33)

e.g. if Xn → Y n
s → Y n

sw
is a Markov chain for any s and

any n.
Proposition 18: If the general compound channel is

degraded, then its worst-case and compound capacities are
same, as in (31).

Proof: In general, Cw ≥ Cc. For a degraded compound
channel, any code that is good for the worst-case channel, is
also good for any other channel in the uncertainty set (since
the receiver can emulate the artificial channel qs(yn

sw
|yn

s ) while
making the decisions) and hence Cw ≤ Cc, from which the
equality follows. �

V. PROPERTIES OF COMPOUND INF-INFORMATION RATE

Below we study the properties of the compound inf-
information rate I (X, Y ), which are instrumental in evaluating
this quantity and the compound channel capacity for specific
channels.

First, let us establish inequalities for compound random
sequences (i.e. sequences of random variables indexed by a
common state) which are instrumental for further develop-
ment. We will need the following definitions.

Definition 19: Let X = {Xsn}∞n=1 be a compound random
sequence where s is a state. The compound infimum {·} and

supremum {·} operators are defined as follows:

X = {Xsn} � sup

{
x : lim

n→∞ sup
s

Pr {Xsn ≤ x} = 0

}
(34)

X = {Xsn} � inf

{
x : lim

n→∞ sup
s

Pr {Xsn ≥ x} = 0

}
(35)

These operators generalize the respective sup X and inf X
operators for regular (single-state) sequences. They have the
following important properties, which facilitate their evalua-
tion and analysis.

Proposition 20: Let {Xns}∞n=1 and {Yns}∞n=1 be two
(arbitrary) compound random sequences and s is a (common)
state. Then, the following holds:

X ≤ X, (36)

X = −(−X), (37)

X + Y ≤ (X + Y )

≤ min{X + Y , X + Y }
≤ X + Y

≤ X + Y , (38)

X + Y ≥ (X + Y )

≥ max{X + Y , X + Y }
≥ X + Y

≥ X + Y (39)
Proof: See Appendix. �

Remark 21: Note that the inequalities in Proposition 20 do
not follow directly from the respective inequalities for (X + Y)
in [10] for single-state sequences since (i) sups may result
in different maximizing states for Xns , Yns and Xns + Yns

sequences, and (ii) lim and sup may not be swapped in general
(unless the uniform convergence holds, in which case the
compound inequalities can be obtained from non-compound
ones in [10] by using an equality similar to that in (25)).

The following result will be needed below.
Proposition 22: Consider a compound random sequence

{Zns}∞n=1 where σ 2
ns is the variance of Zns such that

lim
n→∞ sup

s
σ 2

ns = 0 (40)

Then,

Z � {Zns} = lim inf
n→∞ inf

s
E{Zns} � Z̃ (41)

Proof: See Appendix. �
Note that Proposition 22 equates two very different quanti-

ties: one includes no averaging (Z) and the other is based on

averaging (Z̃ ).
To proceed further, we extend the definitions in [9] and [10]

to the compound setting here.
Definition 23: Let Xn and Y n be two compound random

sequences with distributions psxn and psyn where s is a state.
The compound inf-divergence rate is defined as

D(X; Y) �
{

1

n
ln

psxn(Xn)

psyn(Xn)

}
(42)

and likewise for the compound inf-entropy rate H (X) and

sup-entropy rate H (X):

H(X) � {hsn(Xn)}, H (X) � {hsn(Xn)}, (43)

where hsn(xn) = −n−1 ln psxn(xn). The compound condi-
tional inf-entropy rate H(Y |X) and sup-entropy rate H(Y |X)
are defined analogously (with respect to joint distribution
psxn yn ), and I (X; Y) is similarly defined.

The proposition below gives the properties useful in evalua-
tion of compound inf-information rate I (X; Y) (which extend
the respective properties in [9] to the compound setting).

Proposition 24: Let X , Y and Z be (arbitrary) compound
random sequences. The following holds:

D(X ||Y) ≥ 0 (44)

I (X; Y) ≥ I (X; Y) ≥ 0 (45)

I (X; Y) = I (Y ; X) (46)

I (X; Y) ≤ H(Y ) − H (Y |X) (47)

I (X; Y) ≤ H(Y ) − H (Y |X) (48)

I (X; Y) ≥ H(Y ) − H (Y |X) (49)

H(Y ) ≥ H(Y |X) (50)

H(Y ) ≥ H(Y ) ≥ H (Y |X) (51)

I (X, Y ; Z) ≥ I (X; Z) + I (Y ; Z|X) ≥ I (X; Z) (52)

with equality if I (Y ; Z|X) = 0.
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If the alphabets are discrete, then

0 ≤ H(X|Y ) ≤ H (X) ≤ H(X) ≤ ln Nx (53)

0 ≤ I (X; Y) ≤ min{H(X), H (Y)}
≤ min{ln Nx , ln Ny} (54)

I (X; Y) = min{H(X), H(Y )}
if min{H(Y |X), H(X |Y)} = 0 (55)

0 ≤ I (X; Y) ≤ min{H(X), H (Y)}
≤ min{ln Nx , ln Ny} (56)

where the last inequalities in (53)-(56) hold if the alphabets
are of finite cardinality Nx , Ny.

Proof: See Appendix. �
Note that many of these properties mimic the respec-

tive properties of mutual information and entropy, e.g.
“conditioning cannot increase the entropy” and “mutual infor-
mation is non-negative, symmetric and bounded by the entropy
of the alphabet”. Similar properties can also be established
for compound sup-information rate I (X; Y). The next Propo-
sition establishes the data processing inequality in terms of
compound inf-information rates.

Proposition 25 (Data Processing Inequality): Let
X → Y → Z be a compound Markov chain. Then,

I (X; Y) ≥ I (X; Z) (57)

with equality if I (X; Y |Z) = 0.
Proof: Observe that

i(xn; yn, zn |s) = ln
ps(xn|ynzn)

ps(xn)

= ln
ps(xn|yn)

ps(xn)

= i(xn; yn|s) (58)

where 2nd equality is due to conditional independence of
Xn and Zn given Y n , and that

i(xn; yn, zn |s) = ln
ps(xn|zn)

ps(xn)
+ ln

ps(xn|ynzn)

ps(xn|zn)

= i(xn; zn|s) + i(xn; yn|zns) (59)

so that

i(xn; yn|s) = i(xn; zn|s) + i(xn; yn|zns) (60)

Taking (·) of both sides and using the inequality in (38), one
obtains

I (X, Y ) ≥ I (X; Z) + I (X; Y |Z) ≥ I (X; Z) (61)

where the last inequality is due to I (X; Y |Z) ≥ 0. To prove
the equality part, observe that

I (X, Y ) ≤ I (X; Z) + I (X; Y |Z) = I (X; Z) (62)

and use (61). �
Next Proposition links the compound inf-information rate

to the mutual information rates.

Proposition 26: Consider the general compound channel.
Its compound inf-information rate is bounded as follows:

I (X, Y )
(a)≤ lim inf

n→∞ inf
s

1

n
I (Xn; Y n|s)

(b)≤ lim inf
n→∞ inf

s

1

n

n∑

k=1

I (Xk ; Yk |s)
(c)≤ lim inf

n→∞ inf
s

I (X̃n; Ỹn |s) (63)

where (b) holds if the channel is memoryless (not necessarily
stationary or information-stable) and (c) holds if the channel
is also stationary and X̃n is distributed according to pn(x) =
1
n

∑n
k=1 pxk (x), where Ỹn is induced by X̃n.

Proof: See Appendix. �
Note that Proposition 26 links the compound inf-

information rate, whose definition does not include expecta-
tion, to the mutual information rate, i.e. an expected quantity,
and (a) holds in full generality. A sufficient condition to
achieve the equality in (b) in (63) is well-known. Below, we
obtain a sufficient condition for (a) to become equality.

Proposition 27: Consider a compound channel such that

lim inf
n→∞ inf

s
Pr{|Zns − I (X, Y )| > δ} = 0 ∀δ > 0 (64)

where Zns = 1
n i(Xn; Y n|s), and at least one alphabet (input

or/and output) is of finite cardinality. Then, its compound inf-
information rate satisfies the following:

I (X, Y ) = lim inf
n→∞ inf

s

1

n
I (Xn; Y n|s) (65)

Proof: See Appendix. �
Remark 28: Note that Proposition 27 holds even if the

compound channel is information-unstable. Condition (64)
means that there exists such sub-sequence nk, k = 1 . . .∞,
and such channel states sk = s(nk) that the sub-sequence of
normalized information densities Znk sk converges in probabil-
ity to I (X, Y ), i.e. that sub-sequence is information-stable.

Remark 29: An equivalent to Proposition 27 is that

∃δ > 0 : lim inf
n→∞ inf

s
Pr{|Zns − I (X, Y )| > δ} > 0 (66)

is a necessary condition for the strict inequality in (a) in (63),
i.e. there exists no information-stable sub-sequence in the
compound channel that would converge to I (X, Y ).

Next, let us establish a lower bound for the compound sup-
information rate. Let

In(a) = sup
s

E{Zns1[Zns ≤ a]} (67)

and In = lima→∞ In(a). Under the uniform (in n) conver-
gence requirement for In(a) → In , the following bound on
the sup-information rate holds.

Proposition 30: The following inequalities hold for the gen-
eral compound channel:

I (X, Y) ≤ lim inf
n→∞ inf

s

1

n
I (Xn; Y n|s)

≤ lim sup
n→∞

sup
s

1

n
I (Xn; Y n|s)

≤ I (X, Y) (68)
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where the first two inequalities hold in full generality and the
last inequality holds when the convergence In(a) → In as
a → ∞ is uniform in n. In particular, this holds when at
least one alphabet is of finite cardinality.

Proof: See Appendix. �
We are now in a position to establish the optimality of inde-

pendent inputs for a compound memoryless (not necessarily
stationary or information-stable) channel.

Theorem 31 (Optimality of Independent Inputs): Consider
a compound memoryless channel. Let X and Y be its input
and output sequences, and X̃ , Ỹ be sequences of independent
symbols with the same per-symbol statistics as those of
X and Y . Assume that

lim
n→∞ sup

s
σ 2

ns = 0 (69)

where σ 2
ns is the variance of information density rate under

independent inputs:

σ 2
ns = var

{
1

n

n∑

i=1

ln
ps(Ỹi |X̃i )

ps(Ỹi )

}
(70)

Then,

I (X; Y) ≤ I (X̃; Ỹ) (71)

i.e. independent signaling is optimal, and the compound
channel capacity is

Cc = sup
p(x̃)

I (X̃; Ỹ)

= lim inf
n→∞ sup

p(x̃ n)

inf
s

1

n

n∑

k=1

I (X̃k ; Ỹk |s) (72)

where I (Xk ; Yk |s) = E{i(Xk; Yk |s)} is k-th symbol mutual
information and p(x̃ n) = ∏n

k=1 pk(x̃k) is memoryless input.
Proof: In view of Proposition 26, the inequality in (71)

is established by establishing

I (X̃, Ỹ ) = lim inf
n→∞ inf

s

1

n

n∑

k=1

I (Xk; Yk |s) (73)

To see this, let Zns = n−1 ∑n
k=1 i(X̃k; Ỹk |s) and apply

Proposition 22. (72) follows from (71). �
If, in addition, the channel is also stationary, then i.i.d. input

is optimal and the familiar single-letter capacity expression
results:

Cc = sup
p(x)

inf
s

I (X; Y |s). (74)

Furthermore, since the uncertainty set S is arbitrary, one can
also treat the state s as a sequence sn = {s1, . . . , sn} so that
the memoryless channel model becomes

psn(yn|xn) =
n∏

k=1

psk (yk|xk)

which is exactly the arbitrary varying channel (AVC)4 [6], [7].
It follows from (72) that its capacity CAV C is the same
as the compound capacity in (74), Cc = CAV C , under the

4This connection was pointed to us by Y. Steinberg.

full CSI-R. Note that this result holds for deterministic coding
and maximum as well as average error probability (recall
that the AVC capacity can be different under average and
maximum error probabilities, and also under deterministic
and random coding; the AVC capacity under deterministic
coding and maximum error probability is not known in general
while some special cases have been settled [7], [22]). This
extends the earlier result in [21] (established under average
error probability) to the maximum error probability as well
as to arbitrary input/output alphabets and channel state sets.
It follows that allowing random (as opposed to deterministic)
coding and/or average instead of maximum error probability
does not increase the AVC capacity under the full CSI-R.

Remark 32: The condition in (69) holds if any of the
following holds:

1) the variances of per-symbol information densities are
uniformly bounded:

σ 2
ks = var{i(X̃k; Ỹk |s)} ≤ A < ∞ (75)

which is the case if at least one alphabet is of finite
cardinality (see [10, Remark 3.1.1], which is straight-
forward to extend to the compound setting);

2) the per-symbol variances are bounded: σ 2
ks ≤ Ak < ∞

and

lim
n→∞

1

n2

n∑

k=1

Ak = 0 (76)

Let us now consider a (n, εn, rn)-code for an arbitrary
compound channel such that

lim
n→∞ εn = 0, lim

n→∞ rn = R (77)

i.e. it achieves rate R and arbitrary low error probability
over that channel. What is the information density distribution
(spectrum) induced by this code?

Theorem 33: Consider the code above operating on an
arbitrary compound channel such that (77) holds. If the input
Xn is uniformly distributed over the codewords, then the
induced information density rate n−1i(Xn; Y n|s) converges in
probability to the code rate R uniformly over the whole class
of channels:

lim
n→∞ sup

s
Pr{|n−1i(Xn; Y n|s) − R| > δ} = 0 ∀δ > 0 (78)

so that

I (X, Y) = I (X, Y ) = lim
n→∞

1

n
I (Xn; Y n|s) = R ∀s (79)

Proof: Since R − δ ≤ rn ≤ R + δ for any δ > 0 and
sufficiently large n,

1

n
i(Xn; Y n|s) = 1

n
ln

ps(Xn |Y n)

p(Xn)

≤ 1

n
ln

1

p(Xn)
= rn ≤ R + δ (80)



3980 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 7, JULY 2016

where the last equality is due to p(Xn) = 1/Mn . On the other
hand, using Lemma 7,

εn ≥ sup
s

Pr
{

n−1i(Xn; Y n|s) ≤ rn − δ
}

− e−δn

≥ sup
s

Pr
{

n−1i(Xn; Y n|s) ≤ R − 2δ
}

− e−δn

for any δ > 0, so that taking limn→∞ on both sides, one
obtains

lim
n→∞ sup

s
Pr

{
n−1i(Xn; Y n|s) ≤ R − 2δ

}
= 0 ∀δ > 0 (81)

Combining this with (80), (78) follows. To prove (79), note
that 1st equality follows from (78) and 2nd equality (and the
existence of corresponding limit) follows from (68). �

Theorem 33 generalizes [10, Th. 3.2.3]5 to the compound
channel setting and the convergence in probability holds for
the whole class of channels uniformly in s, not just for each
channel individually. Even though the compound channel is
allowed to be information-unstable, the code-induced infor-
mation density is information-stable and the corresponding
information spectrum is a single atom equal to the code rate
and also the mutual information rate under any channel state in
the uncertainty set (so that the mutual information rate is state-
independent), as long as (i) the error probability converges to
zero, and (ii) the sequence of code rates converges. In a sense,
this constitutes a link between information-unstable (non-
ergodic, non-stationary) and information-stable regimes of a
compound channel. Combining Theorem 33 with Lemma 6,
one concludes that information stability over a compound
channel is both necessary and sufficient for a code in (77)
to exist.

VI. STRONG CONVERSE FOR THE

GENERAL COMPOUND CHANNEL

Strong converse ensures that a slightly larger error prob-
ability cannot be traded off for a higher data rate (since
the transition from arbitrary low to high error probability is
sharp). Another motivation is to consider a scenario where
a capacity-achieving code is designed for a given SNR and
the actual system SNR drops below this value so that the
system operates at a rate above the channel capacity. If the
strong converse holds, this results in large error rate while
only gradual degradation occurs otherwise. A formal definition
follows.

Definition 34: A compound channel is said to satisfy strong
converse if

lim
n→∞ εn = 1 (82)

for any code satisfying

lim inf
n→∞ rn > Cc (83)

To obtain conditions for strong converse, let Ǐ (X; Y) be the
“worst-case” sup-information rate,

Ǐ (X; Y) � inf
R

{
R : lim

n→∞ inf
s∈S

Pr {Zns > R} = 0

}
(84)

5This theorem has appeared before, albeit in a different form, in [15].

Fig. 2. An illustration of the information rates I , Ǐ and I for a two-state
channel. Solid and dashed lines indicate the asymptotic distributions of the
information density rate n−1i(Xn ; Y n |s) under the two states s1 and s2.

where Zns = n−1i(Xn; Y n|s) is the information density rate,
and Ins(a) be the truncated mutual information,

Ins(a) � E{Zns1[Zns ≤ a]}, Ins = lim
a→∞ Ins (a) (85)

where 1[·] is the indicator function and Ins = I (Xn; Y n|s)
is the mutual information under channel state s. The sup-
information rate Ī (X; Y |s) under channel state s is defined as

Ī (X; Y |s) � inf
R

{
R : lim

n→∞ Pr {Zns ≥ R} = 0
}

(86)

Fig. 2 illustrates various information rates for a two-state
channel. The following Proposition establishes an ordering of
various information rates.

Proposition 35: The following inequalities hold for any
input

I (X; Y) ≤ Ǐ (X; Y)

≤ inf
s

Ī (X; Y |s)
≤ sup

s
Ī (X; Y |s)

≤ I (X; Y) (87)

In addition,

I (X, Y ) ≤ lim inf
n→∞ inf

s

1

n
I (Xn; Y n|s) ≤ Ǐ (X; Y) (88)

where the 2nd inequality holds if the convergence in
Ins(a) → Ins is uniform.

Proof: see the Appendix. �
It can be shown, via examples, that all inequalities can

be strict. Using this Proposition, sufficient and necessary
conditions for the strong converse to hold can be established.

Theorem 36: A sufficient and necessary condition for the
general compound channel to satisfy strong converse is

sup
p(x)

I (X; Y) = sup
p(x)

Ǐ (X; Y) (89)

If this holds and the convergence Ins(a) → Ins is uniform in
n, s for any input X∗ satisfying I (X∗; Y∗) > Cc − δ for some
δ > 0 (i.e. the input X∗ is δ-suboptimal), then

Cc = sup
p(x)

Ǐ (X; Y) = lim inf
n→∞ sup

p(xn)
inf

s

1

n
I (Xn; Y n|s) (90)

The condition (89) is equivalent to any of the following:
1) for any δ > 0 and any input X∗ satisfying I (X∗; Y∗) >

Cc − δ,

lim
n→∞ inf

s
Pr{|Z∗

ns − Cc| > δ} = 0 (91)
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where Z∗
ns = 1

n i(Xn∗; Y n∗|s) is the information density rate
under input X∗.

2) for any input X and any δ > 0,

lim
n→∞ inf

s
Pr{Zns > Cc + δ} = 0 (92)

Proof: See the Appendix. �
Remark 37: In the case of a single-state channel,

I (X; Y) = I (X; Y), Ǐ (X; Y) = I (X; Y) (93)

where I (X; Y), I (X; Y) are inf and sup-information rates for
the regular (single-state) channel, and Theorem 36 reduces to
the corresponding Theorem in [9] and [10].

Remark 38: Note that, under the conditions of Theorem 36
that lead to (90), the compound channel behaves ergodically
(the mutual information has operational meaning) even though
no assumption of ergodicity or information stability was made
upfront.

Below, we consider a special case when the supremum
in (89) is achieved.

Corollary 39: If the channel satisfies strong converse and
the supremum in supp(x) I (X; Y) is achieved, i.e.

∃X∗ : I (X∗; Y∗) = Cc (94)

then Ǐ (X∗; Y∗) = Cc and there exists such sequence of chan-
nel states s(n) that the corresponding sequence of normalized
information densities Z∗

ns(n) (under input X∗) converges in
probability to the compound channel capacity Cc,

lim
n→∞ Pr{|Z∗

ns(n) − Cc| > δ} = 0 ∀δ > 0 (95)

i.e. this sequence (which represents worst-case channels in the
uncertainty set) is information-stable.

Proof: Observe that I (X∗; Y∗) = Cc implies

Cc = I (X∗; Y∗) ≤ Ǐ (X∗; Y∗) ≤ sup
p(x)

Ǐ (X; Y) = Cc (96)

so that Ǐ (X∗; Y∗) = Cc follows, which also implies
that

lim
n→∞ inf

s
Pr

{
Z∗

ns > Cc + δ
} = 0 ∀δ > 0 (97)

On the other hand, I (X∗; Y∗) = Cc implies

lim
n→∞ sup

s
Pr

{
Z∗

ns < Cc − δ
} = 0 ∀δ > 0 (98)

and hence

lim
n→∞ inf

s
Pr{|Z∗

ns − Cc| > δ} = 0 ∀δ > 0 (99)

follows. Next, we need the following technical Lemma.
Lemma 40: Let {xns} be a non-negative compound

sequence such that

lim
n→∞ inf

s
xns = 0 (100)

Then, there exists such sequence of states s(n) that

lim
n→∞ xns(n) = 0 (101)

Proof: When infs is achieved, the statement is trivial.
To prove it in the general case, observe that, from the definition
of infs and for any n, there always exists such s(n) that

xns(n) < inf
s

xns + 1/n (102)

so that taking limn→∞ of both sides, one obtains (101).6 �
Using this Lemma, (99) implies the existence of a sequence

of channel states s(n) such that (95) holds. �
Remark 41: Note that, under the conditions of

Corollary 39, the sequence s(n) of worst-case channel
states is information-stable even though no assumption of
information stability was made upfront.

Remark 42: In light of Lemma 40, condition (92) means
that there exists such sequence of (bad) channel states s(n)
that the information spectrum of the corresponding sequence
of normalized information densities Zns(n) does not exceed Cc

under any input, i.e.

∃s(n) : lim
n→∞ Pr{Zns(n) > Cc + δ} = 0 ∀δ > 0 (103)

VII. ε-CAPACITY OF COMPOUND CHANNELS

Let us now consider the so-called ε-channel capacity, where
the error probability is not required to be arbitrary small but
rather to be not larger than a given value ε asymptotically.
(n, rn, εn)-code over a compound channel is defined in the
same way as before. ε-achievable rate and capacity are defined
as in [9] and [10] (for the non-compound setting), where the
extension to the compound setting follows from (9) and the
requirement of codewords to be independent of channel state.

Definition 43: Rate R is ε-achievable over a compound
channel if there exists (n, rn, εn)-code (where codewords are
independent of channel state) such that

lim sup
n→∞

εn ≤ ε, lim inf
n→∞ rn ≥ R (104)

Definition 44: ε-capacity Cε of a compound channel is the
largest ε-achievable rate over that channel:

Cε = sup{R : R is ε-achievable} (105)
To characterise Cε of the general compound channel, let us

introduce the following quantities:

FX(R) � lim sup
n→∞

sup
s

Pr

{
1

n
i(Xn; Y n|s) ≤ R

}
(106)

I
ε
(X; Y) � sup{R : FX(R) ≤ ε} (107)

Roughly speaking, FX (R) is the asymptotic CDF of infor-
mation density rate of the compound channel and, as will be
shown below, I

ε
(X; Y) is ε-achievable rate over that channel.

Its ε-capacity is as follows.
Theorem 45: Consider the general compound channel

where channel state s ∈ S is independent of the input and
is known to the receiver; the transmitter knows only the
(arbitrary) uncertainty set S. Its ε-capacity is

Cε = sup
p(x)

I
ε
(X; Y) (108)

Proof: The proof follows the steps of that of Theorem 5.
First, fix p(x) and set rn ≤ I

ε
(X; Y) − 2γ . From Lemma 6,

one obtains a code such that

lim sup
n→∞

εn ≤ lim sup
n→∞

sup
s∈S

Pr
{

Zns ≤ I
ε
(X; Y) − γ

}

= FX (I
ε
(X; Y) − γ ) ≤ ε (109)

6This way of proof was suggested by a reviewer.
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so that I
ε
(X; Y)−2γ is achievable for any γ > 0, from which

one obtains Cε ≥ supp(x) I
ε
(X; Y).

Next, let R = supp(x) I
ε
(X; Y) and set rn ≥ R + 2γ and

use Lemma 7 to obtain

lim sup
n→∞

εn ≥ lim sup
n→∞

sup
s∈S

Pr {Zns ≤ R + γ }

≥ lim sup
n→∞

sup
s∈S

Pr
{

Zns ≤ I
ε
(X; Y) + γ

}

= FX (I
ε
(X; Y) + γ ) > ε (110)

where the last inequality follows from the definition of
I
ε
(X; Y), so that no rate above R is ε-achievable and hence

Cε ≤ supp(x) I
ε
(X; Y). �

Similarly to the previous section, one can exploit the
uniform convergence property and extend Theorem 12 to
ε-capacity. To this end, let

FX(R, s) � lim sup
n→∞

Pr

{
1

n
i(Xn; Y n|s) ≤ R

}
(111)

and define the ε-inf-information rate for channel state s:

I ε(X; Y |s) � sup{R : FX (R, s) ≤ ε} (112)

Definition 46: Let Xδ be a δ-suboptimal input so that
I
ε
(Xδ; Y δ) ≥ Cε − δ. A compound channel is ε-uniform if

there exists δ ≥ 0 such that, for any Xδ and any rate R
such that Cε − 2δ ≤ R ≤ Cε + 2δ, the convergence to the
limit in (111) is uniform in s ∈ S for any δ-suboptimal input,
X = Xδ .

It is straightforward to see that any finite-state channel is
ε-uniform under any input. Following the steps of the previous
section, one obtains the following bound which results in the
familiar sup − inf capacity formula.

Proposition 47: The following inequality holds for a gen-
eral compound channel:

I
ε
(X, Y ) ≤ I ε(X, Y) � inf

s
I ε(X, Y |s) (113)

with equality in the inequality for an ε-uniform compound
channel under any δ-suboptimal input, X = Xδ .

Proof: See Appendix. �
Using Proposition 47, the ε-capacity of an ε-uniform com-

pound channel can be expressed using the familiar sup − inf
expression.

Theorem 48: Consider the general compound channel
where the channel state s ∈ S is known to the receiver but
not the transmitter and is independent of the channel input;
the transmitter knows the (arbitrary) uncertainty set S. Its
compound ε-capacity is bounded by

Cε ≤ sup
p(x)

inf
s∈S

I ε(X; Y |s) (114)

with equality for an ε-uniform compound channel. In partic-
ular, this holds when S is of finite cardinality.

VIII. MIXED AND COMPOSITE CHANNELS

Let us consider a mixed channel of the form:

p(yn|xn) =
∞∑

s=1

αs ps(yn|xn) (115)

where αs ≥ 0, s = 1, 2, . . .,
∑

s αs = 1, which is a mixture of
individual channel states. The capacity of this channel in the
general case (e.g. information-unstable) was found in [10]:

Cmix = sup
p(x)

inf
s:αs>0

I (X; Y |s) (116)

where I (X; Y |s) in the inf-information rate induced by
ps(yn|xn). Following Proposition 9, the compound channel
capacity is upper bounded by the mixed channel capacity:

Cc = sup
p(x)

I (X; Y) ≤ Cmix (117)

where the compound channel state set S = {s : αs > 0}.
As the examples in the next Section demonstrate, the inequal-
ity can be strict. Comparing (116) to Theorem 12, one
concludes that (117) holds with equality provided that the
compound channel is uniform (which holds if S is of finite
cardinality).

Composite channels have been introduced and studied
in [11]. This type of channels is similar to compound chan-
nels except that there is a probability measure associated
with each channel state: {αs, ps(yn|xn)}. A channel state
ps(yn|xn) is selected with probability αs and kept constant
during the whole transmission. Since the channel description
is entirely probabilistic, the general formula in [9] applies and
its capacity is the same as the mixed channel capacity in (116):
Ccom = Cmix , and the inequality in (117) applies.

IX. EXAMPLES

A. Example 1

To demonstrate the difference between Theorems 5 and 12
and the fact that inequality in (22) can be strict, consider the
following binary non-stationary channel with memory:

ps(yn|xn) = ps(yn) if n ≤ s (118)

i.e. the output is independent of the input. If n > s, then
the channel is n-th extension of BSC with zero cross-over
probability, and S = {1, 2, . . .}. This can model a channel
with memory where the noise coherence time τ = s so that
blocklength n > τ is required to achieve low error probability.
Since i(Xn; Y n|s) = 0 if s ≥ n , it follows that I (X; Y) = 0
while I (X; Y |s) = ln 2∀s under i.i.d. equiprobable input, so
that

I (X; Y) = 0 < I (X; Y) = inf
s

I (X; Y |s) = ln 2 (119)

and hence

Cc = sup
p(x)

I (X; Y) = 0 < ln 2 = sup
p(x)

inf
s∈S

I (X; Y |s) (120)

The compound capacity Cc is zero because for any block-
length, does not matter how large, there are always channel
states with error probability close to 1 so that arbitrary low
error probability is not attainable. The standard sup − inf
expression falls short of the channel capacity in this case
because this compound channel is not uniform. It also demon-
strates that [10, Th. 3.3.5] cannot ensure reliable communica-
tions for infinite-state compound channels. Note that if the
coherence time becomes bounded, i.e. τ = s ≤ S < ∞,
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then Cc = supp(x) infs≤S I (X; Y |s) = ln 2 as one can use
sufficiently-long codewords constructed for memoryless BSC
(notice also that the channel becomes uniform in this case).

This example can be extended to a scenario where the
channel is BSC(q1) if n ≤ s and BSC(q2) otherwise, where
BSC(q) is the n-th extension of a binary symmetric channel
with crossover probability q , 0 ≤ q2 < q1 ≤ 1/2, so that

Cc = ln 2 − H (q1)

< ln 2 − H (q2)

= sup
p(x)

inf
s∈S

I (X; Y |s) (121)

where H (q) is the binary entropy function.

B. Example 2: An Additive Noise Channel

Let us consider the following additive noise compound
channel model:

Yk = Xk + Zks (122)

where k is (discrete) time index, s is a state, the com-
pound noise process {Zks}∞k=1 is arbitrary but independent of
{Xk}∞k=1, and all alphabets are binary. Using Theorem 5, its
compound channel capacity can be evaluated via the properties
in Proposition 24:

Cc = sup
p(x)

I (X; Y) = ln 2 − H(Z) (123)

To see this, observe that

H(Y ) − H(Z) ≤ I (X; Y)

≤ H(Y) − H(Z)

≤ ln 2 − H(Z) (124)

since H(Y |X) = H (Z). On the other hand,

ln 2 ≥ H(Y) ≥ H(Y |Z) = H (X) (125)

and likewise for the sup-entropy rates. Using i.i.d. equiprob-
able sequence for X results in H(Y ) = H(Y ) = H (X) =
ln 2 and thus the lower and upper bounds in (124) coincide
resulting in (123) (this also shows that i.i.d. equiprobable
signaling is optimal regardless of the statistics of the noise).

When there is only one channel state (i.e. non-compound
channel), the capacity was obtained before in [9] using the
general formula there:

C = sup
p(x)

I (X; Y) = ln 2 − H(Z) (126)

While the two expressions look remarkably similar, they may
produce significantly different results. To see this, consider the
following compound noise process:

Zn
s = {w1, w2, . . . ws , 0, 0 . . . 0} (127)

i.e. for a given state s, first s symbols are i.i.d. equiprobable
binary random variables w1 . . . ws and the last n − s symbols
are zeros. The associated probability distribution ps(zn) =
1/2n if s ≥ n so that H(Z) = ln 2 and Cc = 0. This
result can be explained by observing that for any n, does not

matter how large, there are always channel states s ≥ n for
which the channel is BSC(1/2), i.e. useless. On the other hand,
using (126) for any channel state s results in

Cs = sup
p(x)

I (X; Y |s) = ln 2 − H(Z|s) = ln 2 (128)

since, as it can be easily demonstrated, H(Z|s) = 0 for
any s (loosely speaking, this is because the random part of
the sequence in (127) is negligible when n → ∞). If one
attempts to use Theorem 12 (or, equivalently, [10, Th. 3.3.5]),

sup
p(x)

inf
s

I (X; Y |s) = ln 2 = Cs > Cc = 0 (129)

since, as can be easily seen, I (X; Y |s) = ln 2 when the
input is i.i.d. equiprobable. The discrepancy is explained by
the fact that this compound channel is not uniform and thus
[10, Ths. 12 and 3.3.5] do not apply.

C. Example 3: A Wireless Channel

To demonstrate the practical utility of Theorems 5, 12, let us
consider the following discrete-time wireless channel model:

yi = hxi + ξi (130)

where h is the channel gain, ξ is the noise of variance σ 2
ξ , and

i is discrete time. The channel is memoryless. The channel
gain h models the wireless propagation path loss from the Tx
to the Rx. Noise ξ models thermal noise as well as external
(e.g. multi-user) interference.

First, assume that h is a given (fixed) constant known to the
Tx and Rx. Further assume that σξ is randomly selected at the
beginning and held constant during the transmission, so that
σξ = σ1 with probability p1 > 0 and σξ = σ2 with probability
p2 = 1 − p1, σ1 > σ2. This can model a scenario where
interference (from another user) is present with probability
p1 and absent with probability p2, so that σ 2

2 = σ 2
0 , σ 2

1 =
σ 2

0 +σ 2
I , where σ 2

0(I ) is the noise (interference) power. Clearly,
the channel is non-ergodic (information-unstable) so that

1

n
i(Xn; Y n|h) → Ix(h, σξ ) (131)

where Ix(h, σξ ) is the mutual information rate for given h,
σξ and p(x). Since σξ is random, so is Ix(h, σξ ) and thus
1
n i(Xn; Y n|h) converges to Ix(h, σk) with probability pk ,
k = 1, 2. The largest achievable rate under given p(x) and
arbitrary-small error probability is

R = I (X; Y |h) = Ix(h, σ1) < Ix(h) (132)

where Ix(h) = p1 Ix(h, σ1)+ p2 Ix(h, σ2) is the regular mutual
information rate, i.e. falls short of the mutual information rate
(since the channel is information-unstable), where we assumed
that Ix(h, σ ) is decreasing in σ and increasing in |h|. The
difference can be significant if the noise power is large enough.

Now assume that h is not known to the Tx but is known
to belong to the uncertainty set S = [h1, h2], 0 ≤ h1 < h2
(e.g. due to uncertainty in the user location, which affects
the propagation path loss), so that a single code has to be
designed to operate on all such channels. It can be seen that
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this compound channel is uniform.7 The compound capacity
of this information-unstable channel is

Cc = sup
p(x)

inf
h

I (X; Y |h)

= sup
p(x)

Ix(h1, σ1)

< sup
p(x)

Ix(h1) (133)

i.e. falls short of the regular compound channel capacity
(which would be the capacity if the channel were information-
stable). It is straightforward to see that the saddle-point
property holds so that the worst-case and compound capacities
are the same, Cw = Cc.

It is clear that this example also extends to the case of any
number of possible levels of σξ or when σξ is a continuous
random variable characterized by the density f (σ ), in which
case σ1 = sup{σ : f (σ ) > 0} is the supremum of the
support set of σξ . A compound channel with memory can be
considered in a similar way.

D. Example 4: The Impact of the Rx CSI

All the results in this paper are based on the assumption
of the full Rx CSI. A question arises as to whether some
of these results hold if this assumption is removed. The fol-
lowing example from [16] demonstrates that the key result in
Theorem 5 does not hold in general without such assumption.

Consider the following compound channel, which is binary,
deterministic and fixed in time:

yk = xk + θk (134)

where k is discrete time and the state s is defined from

s =
∞∑

i=1

2−iθi , 0 ≤ s ≤ 1, (135)

i.e. θi is i -th binary digit of s. It is straightforward to verify
that, for each channel state, this channel is information-stable
for each s and, for the uniform input p(xn) = 1/2n ,

n−1i(Xn; Y n|s) Pr= ln 2, I (X; Y |s) = ln 2, I (X; Y) = ln 2,

i.e. this is a uniform compound channel, and

sup
p(x)

I (X; Y) = ln 2 (136)

Yet, with no Rx CSI, the capacity of this compound channel
is Cc = 0 [16]. This can be easily established by observing
that this is a binary discrete memoryless channel in disguise,
which is required to work for every possible (and unknown)
noise sequence and hence the same strategy can be used for the
binary symmetric channel with cross-over probability of 1/2,
for which the capacity is zero. Hence, Theorem 5 does not hold
for this channel under no Rx CSI. This example also shows
that [10, Th. 3.3.5] does not hold in general for infinite-state
channels.

7However, [10, Th. 3.3.5] cannot be used since the number of states is not
countable.

X. CONCLUSION

The general formula for the compound channel capacity
with full CSI-R has been established using the information
density approach, which does not require the channel to be
stationary, ergodic, or information-stable, and which applies to
any channel uncertainty set (not only countable or finite-state).
The conditions for the worst-case and compound capacities to
be equal are given. The compound inf-information rate plays
a key role for the general formula. Its properties are studied,
including the data processing inequality and optimality of
independent inputs for the general compound memoryless
channel. As a by-product, the AVC capacity is established
under deterministic code and maximum error probability. The
ε-capacity of the general compound channel is established and
the sufficient and necessary conditions for the strong converse
to hold are given.

Examples are provided, which show that finite and
infinite-state compound channels can behave differently and
which demonstrate the utility of the results in wireless
communications.

APPENDIX

A. Proof of Lemma 6

Let us define

Bs(xn) = {yn : i(xn; yn|s) ≥ ln α}, α = Mnenγ, (137)

λn = sup
s∈S

Pr
{
i(Xn; Y n|s) ≤ ln α

} + Mn/α (138)

and observe, for future use, that

1 ≥ Pr
{
Y n ∈ Bs(xn)|xn}

=
∑

yn∈Bs(xn)

ps(yn|xn)

(a)≥ α
∑

yn∈Bs(xn)

ps(yn)

= αPs(Bs(xn)) (139)

from which it follows that

Ps(Bs(xn)) ≤ 1/α ∀s, xn, (140)

where (a) follows from ps(yn|xn) ≥ αps(yn) ∀yn ∈ Bs(xn).
We use an iterative codebook construction similar to that

in [18, Sec. 3.5] but properly extended to the compound
channel setting here. Fix the input distribution p(x). Find xn

such that

xn : inf
s

Ps(Bs(xn)|xn) ≥ 1 − λn (141)

and use it as codeword 1, u1 = xn (note that this codeword
is independent of channel state s); set the decision region
D1s = Bs(u1) for this codeword, so that probability of correct
decision for this codeword is at least 1 − λn .

Next, find xn 
= u1 such that

xn : inf
s

Ps(Bs(xn) − D1s |xn) ≥ 1 − λn (142)

and use it as codeword 2, u2 = xn; set the decision region
D2s = Bs(u2) − D1s .
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For codeword K , find xn 
= uk, k = 1 . . . K − 1, such that

xn : inf
s

Ps

(
Bs(xn) −

K−1⋃

k=1

Dks |xn

)
≥ 1 − λn (143)

and set uK = xn , DK s = Bs(uK ) − ⋃K−1
k=1 Dks .

Assume that the process stops at k = K , i.e. no further xn

can be found satisfying the required inequality, so that:

inf
s

Ps
(
Bs(xn) − Ds |xn) < 1 − λn ∀xn 
= uk, k = 1 . . . K .

(144)

where Ds = ⋃K
k=1 Dks . The same inequality also holds for

xn = uk , since

Bs(uk) − Ds = Bs(uk) −
K⋃

l=1

Bs(ul) = ∅ (145)

The following Lemma shows that a sufficiently large number
of codewords can be constructed in this way.

Lemma 49: The algorithm above generates K > Mn

codewords.
Proof: To see this, observe that it follows from

(144) and (145) that there exists such channel state s0 that

Ps
(
Bs(xn) − Ds |xn) < 1 − λn ∀xn, s = s0 (146)

For this channel state, one obtains:

λn < 1 −
∑

xn

p(xn)Ps0

(
B0 ∩ Dc

s0
|xn)

= 1 −
∑

xn

p(xn)(Ps0

(
B0|xn) − Ps0

(
B0 ∩ Ds0 |xn))

= Ps0

(
Bc

s0
(Xn)

) +
∑

xn

p(xn)Ps0

(
B0 ∩ Ds0 |xn) (147)

where B0 = Bs0(xn), Dc
s denotes the complement of Ds . Note

that the 1st term in (147) is

t1 = Ps0

(
Bc

s0
(Xn)

) = Pr
{
i(Xn; Y n|s0) < ln α

}
(148)

and 2nd term t2 can be upper bounded as follows:

t2 =
∑

xn

p(xn)Ps0

(
B0 ∩ Ds0 |xn)

≤
∑

xn

p(xn)Ps0

(
Ds0 |xn)

=
∑

xn

p(xn)

K∑

k=1

Ps0

(
Dks0 |xn)

=
K∑

k=1

Pr
(
Y n ∈ Dks0

)

≤
K∑

k=1

Pr
(
Y n ∈ Bs0(uk)

)

≤ K/α (149)

where we have used the facts that (i) the sets {Dks }K
k=1 are non-

overlapping and (ii) Dks ∈ Bs(uk). The last inequality follows
from Pr (Y n ∈ Bs(uk)) ≤ 1/α, which follows from (140).

Combining (148) with (149) and using (138), one finally
obtains:

λn < Pr
{
i(Xn; Y n|s0) ≤ ln α

} + K/α (150)

λn = sup
s∈S

Pr
{
i(Xn; Y n|s) ≤ ln α

} + Mn/α

≥ Pr
{
i(Xn; Y n|s0) ≤ ln α

} + Mn/α (151)

from which it follows that Mn < K . �
Thus, one can always select Mn codewords using this itera-

tive method. For this codebook, the maximum error probability
εn,max satisfies

εn,max = sup
s

max
k

Ps(Dc
ks |uk)

= max
k

sup
s

Ps(Dc
ks |uk)

= max
k

(1 − inf
s

Ps(Dks |uk))

≤ λn (152)

where Ps(Dc
ks |uk) represents error probability when uk is

transmitted under channel state s and where infs Ps(Dks |uk) ≥
1 − λn by code construction. Since εn,max ≤ λn , so is the
average error probability εn ≤ λn , from which (17) follows.

B. Proof of Proposition 11

We begin with the following Lemma.
Lemma 50: Let the sequence fn(s) ≥ 0 be such that

fn(s) → 0 as n → ∞ for any s. Then, the following holds if
and only if the convergence is uniform,

lim
n→∞ sup

s
fn(s) = sup

s
lim

n→∞ fn(s) = 0 (153)

Proof: First, note that fn(s) → 0 as n → ∞ for any
s implies 2nd equality in (153). To prove the sufficiency for
the 1st one, note that, from uniform convergence, there exists
n0(ε) such that

0 ≤ fn(s) < ε (154)

for any ε > 0 and any n ≥ n0(ε). Taking limn→∞ sups of
both sides, one obtains 1st equality. To prove the “only if”
part, observe that the 1st equality in (153) implies that for any
ε > 0 there exists n0(ε) such that

0 ≤ sup
s

fn(s) < ε ∀n > n0(ε) (155)

which implies 0 ≤ fn(s) < ε and hence the uniform
convergence. �

We now show that (25) holds for uniform compound chan-
nels. Indeed, set R = I (Xδ, Y δ) − γ , γ > 0,

fn(s) = Pr

{
1

n
i(Xn

δ ; Y n
δ |s) ≤ R

}
, (156)

and observe that

lim
n→∞ sup

s
fn(s) = sup

s
lim

n→∞ fn(s) = 0 ∀γ > 0, (157)

where the 1st equality is from Lemma 50 and the 2nd
one - from the definition of I (X, Y ). From this, it follows
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that I (Xδ, Y δ) ≥ I (Xδ, Y δ). Combining this with (22), one
obtains (25). To show the “only if” part, observe that

0 = sup
s

lim
n→∞ fn(s)

= sup
s

lim
n→∞ Pr

{
n−1i(Xn

δ ; Y n
δ |s) ≤ I − γ

}

= lim
n→∞ sup

s
Pr

{
n−1i(Xn

δ ; Y n
δ |s) ≤ I − γ

}

= lim
n→∞ sup

s
fn(s) (158)

where 2nd and last equalities are due to I (Xδ, Y δ) =
I (Xδ, Y δ); 1st and 3rd equalities are due to the definitions
of I (Xδ, Y δ) and I (Xδ, Y δ). Evoking now Lemma 50, one
obtains the “only if” part.

C. Proof of Proposition 20

While (36) and (37) are intuitive, we give below rigorous
proofs. (36) is proved by contradiction: assume that X > X ,

let r = (X + X)/2, δ = (X − X)/2 > 0, so that

r = X − δ = X + δ (159)

and hence

0 = lim
n→∞ sup

s
Pr

{
Xns ≤ X − δ

}

= lim
n→∞ sup

s
Pr

{
Xns ≤ X + δ

}

= 1 − lim
n→∞ inf

s
Pr

{
Xns > X + δ

}

≥ 1 − lim
n→∞ sup

s
Pr

{
Xns ≥ X + δ

}
= 1 (160)

i.e. a contradiction, where 1st and last equalities are from the
definitions of X and X .

To prove (37), notice that

(−X) = sup

{
x : lim

n→∞ sup
s

Pr {−Xns ≤ x} = 0

}

= sup

{
x : lim

n→∞ sup
s

Pr {Xns ≥ −x} = 0

}

= − inf

{
z : lim

n→∞ sup
s

Pr {Xns ≥ z} = 0

}

= −(X) (161)

where z = −x .
To prove 2nd inequality in (38), we show 1st that

(X + Y) ≤ X + Y (162)

To this end, notice that proving this inequality is equivalent to
proving that

lim
n→∞ sup

s
Pr {Xns + Yns ≤ α} = 0 (163)

implies α ≤ X +Y , from which the desired inequality follows
by taking sup of both sides. To prove this implication, observe

that

0 = lim
n→∞ sup

s
Pr {Xns + Yns ≤ α}

= lim
n→∞ sup

s
(P1,ns + P2,ns)

≥ lim
n→∞ sup

s
P1,ns

≥ lim
n→∞ sup

s
P ′

1,ns (164)

= lim
n→∞ sup

s
(P ′

1,ns + P ′
2,ns) (165)

= lim
n→∞ sup

s
Pr

{
Xns ≤ α − Y − δ

}
= 0 (166)

for any δ > 0, where

P1,ns = Pr{Xns + Yns ≤ α|Bns} Pr{Bns}
P2,ns = Pr{Xns + Yns ≤ α|Bc

ns} Pr{Bc
ns}

P ′
1,ns = Pr{Xns ≤ α − Y − δ|Bns} Pr{Bns}

P ′
2,ns = Pr{Xns ≤ α − Y − δ|Bc

ns} Pr{Bc
ns},

Bns denotes the event {Yns ≤ Y+δ} and Bc
ns is its complement;

(164) follows from the definition of Bns ; (165) follows from

lim
n→∞ sup

s
P ′

2,ns ≤ lim
n→∞ sup

s
Pr{Bc

ns} = 0 (167)

where the equality follows from the definitions of Y and Bc
ns =

{Yns > Y +δ}. Finally, (166) implies that α−Y −δ ≤ X so that

α ≤ X +Y +δ for any δ > 0 from which α ≤ X +Y follows.
2nd inequality in (38) follows from the symmetry of (X + Y)

while the 1st inequality follows from the 2nd by observing
that

(X + Y) + (−Y) = (X + Y) − Y ≤ X (168)

and re-labeling the sequences.
(39) follows from (38) via (37).

D. Proof of Proposition 22

The proof consists of two parts.
Part 1: Z ≤ Z̃ . This is proved by contradiction. Assume

that Z > Z̃ which is equivalent to Z ≥ Z̃ + 3δ for some

δ > 0. From the definition of Z̃ , there are infinitely many n
such that infs E{Zns} ≤ Z̃ + δ/2 and from the definition of
infs , there are such channel states s = s(n) that

E{Zns(n)} ≤ inf
s

E{Zns} + δ/2 ≤ Z̃ + δ (169)

for all such n, which are denoted as nk , k = 1 . . .∞. Let
Zk = Znks(nk) and Z̃k = E{Zk}, and observe that

0 = lim
k→∞ sup

s
Pr{Znks > E{Znks} + δ} (170)

≥ lim
k→∞ Pr{Zk > Z̃k + δ}

≥ lim
k→∞ Pr{Zk > Z̃ + 2δ} = 0 (171)

where the last equality follows from the 1st one, so that

lim
k→∞ Pr{Zk ≤ Z̃ + 2δ} = 1 (172)
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where (170) follows from Lemma 51 below, (171) follows
from Z̃k ≤ Z̃ + δ. On the other hand,

lim
k→∞ Pr{Zk ≤ Z̃ + 2δ} ≤ lim

k→∞ Pr{Zk ≤ Z − δ}
≤ lim

k→∞ sup
s

Pr{Znks ≤ Z − δ} = 0

(173)

where 1st inequality is due to Z ≥ Z̃ + 3δ, which is a
contradiction to (172).

Lemma 51 (Convergence in Probability for a Compound
Sequence): Let {Zns}∞n=1 be a compound sequence of random

variables of variance σ 2
ns each such that (40) holds. Then,

lim
n→∞ sup

s
Pr{|Zns − E{Zns}| > ε} = 0 ∀ε > 0 (174)

Proof: From Chebyshev inequality,

Pr{|Zns − E{Zns}| > ε} ≤ σ 2
ns/ε

2 (175)

Using limn→∞ sups on both sides results in desired
equality. �

Part 2: Z ≥ Z̃ . This follows from the following chain of
inequalities:

0 = lim
n→∞ sup

s
Pr{Zns ≤ E{Zns} − δ}

≥ lim
n→∞ sup

s
Pr{Zns ≤ inf

s
E{Zns} − δ}

≥ lim
n→∞ sup

s
Pr{Zns ≤ Z̃ − 2δ} = 0 (176)

for any δ > 0, i.e. Z ≥ Z̃ − 2δ, which implies Z ≥ Z̃ , where
1st equality follows from Lemma 51 and the last inequality is
due to infs E{Zns} ≥ Z̃ − δ for sufficiently large n (from the
definition of Z̃ ).

E. Proof of Proposition 24

To prove (44), observe that

lim
n→∞ sup

s
Pr

{
1

n
ln

psxn(Xn)

psyn(Xn)
≤ −δ

}

= lim
n→∞ sup

s

∑

xn :psxn (xn)≤psyn (xn)e−δn

psxn(xn)

≤ lim
n→∞ sup

s

∑

xn

psyn(xn)e−δn

= lim
n→∞ e−δn = 0 ∀δ > 0 (177)

from which (44) follows.
Eq. (45) follows by observing that I (X; Y) is the com-

pound inf-divergence rate between (X, Y ) and (X ′, Y ′), where
X ′ and Y ′ are independent of each other and have the same
distributions as X and Y .

Eq. (46) follows from the symmetry of information density:
i(xn; yn|s) = i(yn; xn|s).

Eq. (47)-(49) follow from using (·) on

i(xn; yn|s) = ln
1

ps(yn)
− ln

1

ps(yn|xn)
(178)

and applying the inequalities in (38). (50)-(51) follow
from (47)-(48).

To prove 1st inequality in (52), notice that

i(xn, yn; zn|s) = i(xn; zn|s) + i(yn; zn|xn, s), (179)

use (·) and the inequality in (38). 2nd inequality follows from
I (Y ; Z|X) ≥ 0 and the equality part follows from

I (X, Y ; Z) ≤ I (X; Z) + I (Y ; Z|X) = I (X; Z) (180)

1st inequality in (53) follows from ps(xn|yn) ≤ 1 when
the alphabet is discrete. To prove the last inequality, let
Zns = −n−1 ln ps(Xn) and observe the following:

Pr{Zns ≥ ln Nx + δ} =
∑

xn:ps (xn)≤e−n(ln Nx +δ)

ps(xn)

≤
∑

xn

e−n(ln Nx +δ)

= e−n(ln Nx +δ) Nn
x = e−nδ (181)

so that

lim
n→∞ sup

s
Pr{Zns ≥ ln Nx + δ} = 0

and therefore H(X) ≤ H(X) ≤ ln Nx +δ for any δ > 0, from
which the desired inequality follows. This also implies the last
inequalities in (54)-(56).

2nd inequality in (54) follows from H (Y |X) ≥ 0
and (47), (46).

2nd inequality in (56) can be obtained via similar reasoning
using

I (X; Y) ≤ H(X) − H(X |Y) (182)

Eq. (55) follow from (49).

F. Proof of Proposition 26

Let Zns = 1
n i(Xn; Y n|s) and observe that

1

n
I (Xn; Y n|s) = E {Zns}

≥ E{Zns1[Zns ≤ 0]} + E{Zns1[Zns ≥ I − δ]}
(183)

for any 0 < δ < I , where 1[·] is the indicator function and
I = I (X, Y ). 1st term t1 can be lower bounded as follows:

t1 = E{Zns1[Zns ≤ 0]}
=

∑

xn,yn :zns≤0

ps(yn)p(xn)wns ln wns

≥ − 1

ne

∑

xn,yn :zns≤0

ps(yn)ps(xn)

≥ − 1

ne
(184)

where wns = ps(yn|xn)/ps(yn) and 1st inequality follows
from w ln w ≥ −1/e. 2nd term t2 can be lower bounded as
follows:

t2 = E{Zns1[Zns ≥ I − δ]}
=

∑

xn,yn :zns≥I−δ

zns ps(yn|xn)p(xn)

≥ (I − δ) Pr{Zns ≥ I − δ}
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Combining these two bounds, one obtains:

lim inf
n→∞ inf

s

1

n
I (Xn; Y n|s) ≥ (I − δ) lim

n→∞ inf
s

Pr{Zns ≥ I − δ}
= I − δ (185)

where the equality follows from

0 = lim
n→∞ sup

s
Pr{Zns < I − δ}

= 1 − lim
n→∞ inf

s
Pr{Zns ≥ I − δ} (186)

Since the inequality in (185) holds for each δ > 0, one obtains
1st inequality in (63) by taking δ → 0; 2nd one follows in the
standard way.

G. Proof of Proposition 27

Observe that

E{Zns} =
t1︷ ︸︸ ︷

E{Zns1[Zns ≤ 0]}+
t2︷ ︸︸ ︷

E{Zns1[0 < Zns < I − δ]}

+
t3︷ ︸︸ ︷

E{Zns1[|I − Zns | ≤ δ]}
+ E{Zns1[I + δ < Zns < ln N + δ]}

︸ ︷︷ ︸
t4

+ E{Zns1[Zns ≥ ln N + δ]}︸ ︷︷ ︸
t5

(187)

where 0 < δ < I , N is the cardinality of either input or output
alphabet (whichever is less) and I = I (X, Y ). Let t1 . . . t5

denote the terms on the righthand side of (187), so that

lim E{Zns} ≤ lim t1 + lim t2 + lim t3 + lim t4 + lim t5
(188)

where lim = lim infn→∞ infs and lim = lim supn→∞ sups .
It follows from the proof of Proposition 26 that t1 ≥ −1/(ne)
so that limt1 = 0.

Without loss of generality, assume that the input alphabet
is of finite cardinality and observe that the following holds:

Zns = 1

n
ln

ps(Xn |Y n)

p(Xn)
≤ 1

n
ln

1

p(Xn)
(189)

since ps(xn|yn) ≤ 1, so that

E{Zns1[Zns ≥ ln N + δ]} ≤ 1

n

∑

xn:p(xn)≤e−nα

p(xn) ln
1

p(xn)

≤
∑

xn:p(xn)≤e−nα

αe−nα

≤ αe−nα Nn

= (ln N + δ)e−nδ (190)

where α = ln N + δ; p(xn) ≤ e−nα follows from Zns ≥
ln N + δ; 2nd inequality is due to the fact that −w ln w is an
increasing function if w < 1/e . Taking limn→∞ sups of both
sides, it follows that

lim
n→∞ sup

s
E{Zns1[Zns ≥ ln N + δ]} = 0 ∀δ > 0 (191)

so that limt5 = 0.

Next, observe that

t2 =
∑

xn,yn:0<zns <I−δ

zns ps(yn, xn)

≤ (I − δ)
∑

xn,yn:0<zns <I−δ

ps(yn, xn)

≤ (I − δ) Pr{Zns < I − δ} (192)

where zns = n−1i(xn; yn|s) so that

lim t2 ≤ (I − δ)lim Pr{Zns < I − δ} = 0 (193)

Using the same argument as for t2, one obtains:

lim t4 ≤ (ln N + δ)lim Pr{Zns > I + δ} = 0 (194)

where the equality follows from (64). Finally, one obtains:

lim E{Zns} ≤ lim t3
≤ (I + δ)lim Pr{|I − Zns | ≤ δ}
= I + δ (195)

where the equality follow from lim Pr{|I − Zns | ≤ δ} = 1,
which in turn is implied by (64). Since (195) holds for any
δ > 0, it follows that lim E{Zns} ≤ I , which in combination
with (63) results in lim E{Zns} = I .

H. Proof of Proposition 30

The 1st inequality was established in (63). The 2nd inequal-
ity is well-known. The last inequality can be established as fol-
lows. Let isn = n−1i(Xn; Y n|s), Isn = E{isn}, I = I (X; Y),
lim = lim supn→∞ sups , and observe that the following chain
inequality holds for any δ > 0:

lim Isn = lim lim
a→∞ E{isn1[isn ≤ a]}

≤ lim sup
n→∞

lim
a→∞ sup

s
E{isn1[isn ≤ a]}

= lim
a→∞ lim E{isn1[isn ≤ a]} (196)

≤ lim
a→∞(lim E{isn1[isn ≤ I + δ]}
+lim E{isn1[I + δ < isn ≤ a]})

≤ lim
a→∞((I + δ)lim Pr{isn ≤ I + δ}
+a lim Pr{isn > I + δ})

= I + δ (197)

where the last equality follows from lim Pr{isn ≤ I +
δ} = 1, lim Pr{isn > I + δ} = 0; (196) follows from
the uniform convergence so that lim supn→∞ lima→∞ =
lima→∞ lim supn→∞; (197) follows in the same way as
in (192). Since this chain inequality holds for any δ > 0,
(68) follows.

To see that the uniform convergence holds under a finite
alphabet, assume, without loss of generality, that the input
alphabet is finite. Then, for any a > 0,

In(a) ≤ In ≤ In(a) + �In(a) (198)

where �In(a) = sups E{isn1[isn > a]}, so that

|In − In(a)| ≤ �In(a) (199)
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Noting that, under finite input alphabet,

ins ≤ Zn = 1

n
ln

1

p(Xn)
(200)

one obtains for a > max[1, ln Nx ]:
�In(a) ≤ E{Zn1[Zn > a]}

= 1

n

∑

xn :p(xn)<e−na

p(xn) ln
1

p(xn)

≤
∑

xn :p(xn)<e−na

ae−na

≤ ae−na Nn
x = ae−n(a−ln Nx )

≤ ae−a+ln Nx → 0 (201)

as a → ∞ and the convergence is uniform in n (in fact, larger
n imply faster convergence). 2nd inequality follows from the
fact that −w ln w is an increasing function for w < 1/e.

I. Proof of Proposition 35

The 1st inequality is proved by contradiction. Let I =
I (X; Y), Ǐ = Ǐ (X; Y), assume I − Ǐ = 2δ > 0 and set

R = (I + Ǐ )/2 = I − δ = Ǐ + δ (202)

so that

0 = lim
n→∞ sup

s
Pr{Zns < I − δ}

= lim
n→∞ sup

s
Pr{Zns < R}

= 1 − lim
n→∞ inf

s
Pr{Zns ≥ R}

= 1 − lim
n→∞ inf

s
Pr{Zns ≥ Ǐ + δ} = 1 (203)

i.e. a contradiction.
The 2nd inequality is also proved by contradiction. Let Ī =

infs Ī (X; Y |s), assume Ǐ − Ī = 2δ > 0 and set

R = ( Ī + Ǐ )/2 = Ī + δ = Ǐ − δ (204)

so that, from the definition of Ǐ ,

0 < ε = lim sup
n→∞

inf
s

Pr{Zns > Ǐ − δ}
≤ inf

s
lim sup

n→∞
Pr{Zns > Ǐ − δ}

= inf
s

lim sup
n→∞

Pr{Zns > Ī + δ}
≤ lim sup

n→∞
Pr{Zns∗ > Ī + δ}

≤ lim sup
n→∞

Pr{Zns∗ > Ī (X; Y |s∗) + δ/2} = 0 (205)

i.e. a contradiction, where s∗ is such channel state that

Ī (X; Y |s∗) ≤ inf
s

Ī (X; Y |s) + δ/2 (206)

The last inequality can be proved in a similar way.
To prove (88), observe that

1

n
I (Xn; Y n|s) = E {Zns}

≥ E{Zns1[Zns ≤ 0]}+E{Zns1[Zns ≥ I −δ]}
(207)

for any 0 < δ < I , where 1[·] is the indicator function and
I = I (X, Y ). The 1st term t1 can be lower bounded as follows:

t1 = E{Zns1[Zns ≤ 0]}
= 1

n

∑

xn,yn:zns≤0

ps(yn)p(xn)wns ln wns

≥ − 1

ne

∑

xn,yn:zns ≤0

ps(yn)ps(xn)

≥ − 1

ne
(208)

where wns = ps(yn|xn)/ps(yn) and the 1st inequality follows
from w ln w ≥ −1/e. The 2nd term t2 can be lower bounded
as follows:

t2 = E{Zns1[Zns ≥ I − δ]}
=

∑

xn,yn :zns≥I−δ

zns ps(yn|xn)p(xn)

≥ (I − δ) Pr{Zns ≥ I − δ} (209)

Combining these two bounds, one obtains:

lim inf
n→∞ inf

s

1

n
I (Xn; Y n|s)

≥ (I − δ) lim
n→∞ inf

s
Pr{Zns ≥ I − δ}

= I − δ (210)

where the equality follows from

0 = lim
n→∞ sup

s
Pr{Zns < I − δ}

= 1 − lim
n→∞ inf

s
Pr{Zns ≥ I − δ} (211)

Since the inequality in (210) holds for each δ > 0, one obtains
the 1st inequality in (88) by taking δ → 0. To establish the
2nd one, let Ǐ = Ǐ (X; Y) and observe that

Ins(a) = E{Zns1[Zns ≤ Ǐ + δ]}︸ ︷︷ ︸
e1

+ E{Zns1[ Ǐ + δ < Zns ≤ a]}︸ ︷︷ ︸
e2

(212)

for some δ > 0, where 1[·] is the indicator function. The two
expectation terms can be upper bounder as

e1 ≤ ( Ǐ + δ) Pr{Zns ≤ Ǐ + δ}
e2 ≤ a · Pr{Zns > Ǐ + δ} (213)

so that

lim inf
n→∞ inf

s

1

n
I (Xn; Y n|s)

= lim inf
n→∞ inf

s
lim

a→∞ Ins(a)

= lim
a→∞ lim inf

n→∞ inf
s

Ins(a)

≤ lim
a→∞ lim inf

n→∞ inf
s

(( Ǐ + δ) Pr{Zns ≤ Ǐ + δ}
+ a · Pr{Zns > Ǐ + δ})

≤ lim
a→∞(( Ǐ + δ) lim sup

n→∞
sup

s
Pr{Zns ≤ Ǐ + δ}

+ a · lim inf
n→∞ inf

s
Pr{Zns > Ǐ + δ})

= Ǐ + δ (214)



3990 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 7, JULY 2016

where the 2nd equality is due to uniform convergence and the
last equality is due to

lim inf
n→∞ inf

s
Pr{Zns > Ǐ + δ}) = 0 (215)

lim sup
n→∞

sup
s

Pr{Zns ≤ Ǐ + δ}
= 1 − lim inf

n→∞ inf
s

Pr{Zns > Ǐ + δ}) = 1 (216)

Since (214) holds for arbitrary small δ > 0, it follows that

lim inf
n→∞ inf

s

1

n
I (Xn; Y n|s) ≤ Ǐ (217)

for any input.

J. Proof of Theorem 36

To prove sufficiency, let the equality in (89) to hold and
select a code satisfying

lim inf
n→∞ rn = R = Cc + 3δ (218)

for some δ > 0, so that

rn ≥ R − δ = Cc + 2δ = sup
p(x)

Ǐ (X; Y) + 2δ (219)

for sufficiently large n. Using Lemma 7 for this code, one
obtains:

lim
n→∞ εn ≥ lim

n→∞ sup
s

Pr {Zns ≤ rn − δ}

≥ lim
n→∞ sup

s
Pr

{
Zns ≤ sup

p(x)
Ǐ (X; Y) + δ

}

≥ lim
n→∞ sup

s
Pr

{
Zns ≤ Ǐ (X; Y) + δ

}

= 1 − lim
n→∞ inf

s
Pr

{
Zns > Ǐ (X; Y) + δ

}

= 1 (220)

so that (82) holds, where the last equality is due to

lim
n→∞ inf

s
Pr

{
Zns > Ǐ (X; Y) + δ

}
= 0 (221)

which follows from (84).
To prove the necessary part, assume that (82) holds and,

using Lemma 6, select a code satisfying

lim
n→∞ rn = R = Cc + δ (222)

for some δ > 0. This implies that

rn ≤ Cc + 2δ (223)

for any sufficiently large n. Applying Lemma 6, one obtains

1 = lim
n→∞ εn ≤ lim

n→∞ sup
s

Pr {Zns ≤ rn + δ}
≤ lim

n→∞ sup
s

Pr {Zns ≤ Cc + 3δ}
= 1 (224)

from which it follows that

lim
n→∞ inf

s
Pr {Zns > Cc + 3δ} = 0 (225)

which implies (92) and Ǐ (X; Y) ≤ Cc (under any input) so
that, from Proposition 35,

Cc = sup
p(x)

I (X; Y) ≤ sup
p(x)

Ǐ (X; Y) ≤ Cc (226)

from which (89) follows.
To establish the sufficiency of (92), observe that it implies

the 2nd inequality in (226) from which (89) follows, which is
sufficient.

To establish (91), observe that Cc = supp(x) I (X; Y)

implies that there exists such input X∗ that I (X∗; Y∗) >
Cc − 2δ so that, for any such X∗,

0 = lim
n→∞ sup

s
Pr

{
Z∗

ns < I (X∗; Y∗) − δ
}

≥ lim
n→∞ sup

s
Pr

{
Z∗

ns < Cc − 3δ
} = 0 (227)

Combining this with (225) applied to input X∗, one obtains

lim
n→∞ inf

s
Pr{|Z∗

ns − Cc| > 3δ}
≤ lim

n→∞ inf
s

Pr{Z∗
ns > Cc + 3δ}

+ lim
n→∞ sup

s
Pr{Z∗

ns < Cc − 3δ} = 0 (228)

from which (91) follows.
To establish (90), apply supp(x) to (88) to obtain

Cc = sup
p(x)

I (X; Y)

≤ lim inf
n→∞ sup

p(xn)
inf

s

1

n
I (Xn; Y n|s)

≤ sup
p(x)

Ǐ (X; Y) = Cc (229)

from which the desired result follows.

K. Proof of Proposition 47

First, observe that

sup
s

FX (R, s) = sup
s

lim sup
n→∞

Pr {Zns ≤ R}
≤ lim sup

n→∞
sup

s
Pr {Zns ≤ R}

= FX (R) (230)

so that

I
ε
(X; Y) = sup{R : FX (R) ≤ ε}

≤ Ĩε(X; Y)

= sup{R : sup
s

FX(R, s) ≤ ε} (231)

Next, we need the following Lemma.
Lemma 52: For the general compound channel, it holds

that

Ĩε(X; Y) = I ε(X, Y) = inf
s

I ε(X, Y |s) (232)

Proof: Using FX(R, s) ≤ sups FX (R, s), observe that


 = {R : sup
s

FX (R, s) ≤ ε}
∈ 
s = {R : FX (R, s) ≤ ε} ∀s (233)
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so that

Ĩε(X, Y ) = sup{R : R ∈ 
}
≤ sup{R : R ∈ 
s}
= I ε(X, Y |s) (234)

and hence Ĩε(X; Y) ≤ I ε(X; Y). The equality is proved by
contradiction. Assume that Ĩε(X; Y) < I ε(X; Y) and set R′ =
( Ĩε(X; Y) + I ε(X; Y))/2 so that R′ > Ĩε(X; Y) and hence
sups FX(R′, s) > ε. On the other hand,

R′ < I ε(X, Y ) ≤ I ε(X, Y |s) ∀s (235)

implies FX(R′, s) ≤ ε∀s so that sups FX (R′, s) ≤ ε - a
contradiction. �

Now, combing (232) with (231), (113) follows. To prove
the equality for an ε-uniform compound channel under Xδ,
let Znsδ = n−1i(Xn

δ ; Y n
δ |s) and establish I

ε
(Xδ; Y δ) =

Ĩε(Xδ; Y δ):

I
ε
(Xδ; Y δ) = sup

{
R : lim sup

n→∞
sup

s
Pr {Znsδ ≤ R} ≤ ε

}

= sup

{
R : sup

s
lim sup

n→∞
Pr {Znsδ ≤ R} ≤ ε

}

= Ĩε(Xδ; Y δ) (236)

where the supremum is taken over Cε − 2δ ≤ R ≤ Cε + 2δ;
the 2nd equality follows from the fact that lim sup and sup
can be swapped for an ε-uniform compound channel (due to
the uniform convergence property).
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