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Rank-Deficient Solutions for Optimal Signaling
Over Wiretap MIMO Channels

Sergey Loyka and Charalambos D. Charalambous

Abstract— Capacity-achieving signaling strategies for the
Gaussian wiretap multiple-input multple-output (MIMO) chan-
nel are investigated without the degradedness assumption. In
addition to known solutions, a number of new rank-deficient
solutions for the optimal transmit covariance matrix are obtained.
The case of a weak eavesdropper is considered in detail, and
the optimal covariance is established in an explicit, closed form
with no extra assumptions. This provides lower and upper
bounds to the secrecy capacity in the general case with a
bounded gap, which are tight for a weak eavesdropper or/and low
SNR. Closed-form solutions are also obtained for isotropic and
omnidirectional eavesdroppers, based on which lower and upper
bounds to the secrecy capacity are established in the general
case. Sufficient and necessary conditions for the optimality of
three popular transmission techniques, namely, the zero-forcing
(ZF), the standard water-filling over the channel eigenmodes,
and the isotropic signaling (IS), are established for the MIMO
wiretap channel. These solutions are appealing due to their lower
complexity. In particular, no wiretap codes are needed for the
ZF transmission, and no precoding or feedback is needed for the
isotropic signaling.

Index Terms— MIMO, wiretap channel, secrecy capacity,
optimal signalling.

I. INTRODUCTION

W IDESPREAD use of wireless systems on one hand
and their broadcast nature on the other have initiated

significant interest in their security. Information-theoretic stud-
ies of the secrecy aspects of wireless systems have recently
attracted significant interest [1]. Due to the high spectral
efficiency of wireless MIMO systems and their wide adoption
by the academia and industry, the Gaussian MIMO wire-tap
channel (WTC) has emerged as a popular model and a number
of results have been obtained for this model, including the
proof of optimality of the Gaussian signaling [1]–[4].

An optimal transmit covariance matrix under the total power
constraint has been obtained for some special cases (low/high
SNR, MISO channels, full-rank or rank-1 solutions) [2]–[7],
but the general case remains elusive. The main difficulty
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lies in the fact that, unlike the regular MIMO channel, the
underlying optimization problem for the MIMO-WTC is
generally not convex. It was conjectured in [4] and proved
in [3] using an indirect approach (via a degraded channel)
that the optimal signaling is on the positive directions of the
difference channel. A direct proof (based on the necessary
Karush-Kuhn-Tucker (KKT) optimality conditions) has
been obtained in [6], while the optimality of signaling on
non-negative directions has been established in [7] via an
indirect approach. Closed form solutions for MISO and rank-1
MIMO channels have been obtained in [2] and [6]–[8]. The
2-2-1 channel (2 transmit, 2 receive, 1 eavesdropper antenna)
has been studied earlier in [5]. The low-SNR regime has
been studied in detail in [9]. An exact full-rank solution
for the optimal covariance and several of its properties have
been obtained in [6]. In particular, unlike the regular channel
(no eavesdropper), the optimal power allocation does not
converge to the uniform one at high SNR and the latter
remains sub-optimal at any finite SNR. In the case of a weak
eavesdropper, the optimal signaling mimics the conventional
one (water-filling over the channel eigenmodes) with an
adjustment for the eavesdropper channel.

Finally, while no analytical solution for the optimal covari-
ance is known in the general case, numerical algorithms have
been developed to attack the problem in [10]–[13], which
however suffer from the lack of provable global convergence
due to the non-convex nature of the optimization problem in
the general case. A globally-convergent numerical algorithm
for the general case, which is based on an equivalent min-max
reformulation of the original problem, was proposed in [14]
and its convergence was proved, which takes only a moderate
or small number of steps in practice.

The present paper extends the known analytical results for
the optimal covariance in several directions. First, motivated
by a scenario where the legitimate receiver (Rx) is closer to
the transmitter (Tx) than the eavesdropper, the case of a weak
eavesdropper is studied and its optimal covariance is obtained
in an explicit closed form without any extra assumptions in
Section III. It provides novel lower and upper bounds to the
secrecy capacity in the general case with a bounded gap, which
are tight when the eavesdropper is weak or/and the SNR is
low and hence serve as an approximation to the true capacity.
It also captures the capacity saturation effect at high SNR
observed in [3] and [6]. The range of validity of this model
is indicated.

The presence of the eavesdropper channel state infor-
mation (CSI) at the transmitter is in question when the
eavesdropper does not cooperate (e.g. to hide its presence).
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To address this issue, we consider in Section IV an isotropic
eavesdropper model, whereby the Tx does not know the
directional properties of the eavesdropper and hence assumes
it is isotropic, i.e. the eavesdropper channel gain is the same
in all directions. The secrecy capacity as well as an optimal
signaling to achieve it and its properties are established in
an explicit closed form. This case is shown to be the worst-
case MIMO wire-tap channel. Based on this, lower and upper
capacity bounds are obtained for the general case, which are
achievable by the isotropic eavesdropper. The properties of the
optimal power allocation are pointed out.

The case of isotropic eavesdropper above requires the
number of its antennas to be not less than the number of
Tx antennas (which is necessary for a full-rank eavesdropper
channel), which may not be the case in practice. To address
this issue, Section V studies an omnidirectional eavesdropper,
which may have a smaller number of antennas (and hence
rank-deficient channel) and which has the same gain in any
direction of a given subspace. The secrecy capacity and the
optimal signaling are established in a closed form.

The case of identical right singular vectors of the Rx
and eavesdropper channels is investigated and the optimal
covariance is established in a closed from in Section VI. This
case is motivated by a scenario where the legitimate receiver
and the eavesdropper are spatially separated so that each has
its own set of local scatterers inducing its own left singular
vectors (SV), while both channel are subject to the same set of
scatterers around the transmitter (e.g. a base station) and hence
the same right SVs. This is similar to the popular Kronecker
MIMO channel correlation model, see e.g. [15], where the
overall channel correlation is a product of the independent
Tx and Rx parts, which are induced by the respective sets
of scatterers.

In Section VII, the conditions for optimality of popu-
lar zero-forcing (ZF) signaling are established, whereby the
Tx antenna array forms a null in the eavesdropper direction.
Under those conditions, the standard eigenmode signaling and
the water-filling (WF) power allocation on what remains of
the required channel (after the ZF) are optimal. Furthermore,
no wiretap codes are required as regular coding on the
required channel suffices, so that the secrecy requirement
imposes no extra complexity penalty (beyond the standard ZF).
In this case, the optimal secure signaling is decomposed into
two parts: part 1 is the ZF (null forming in the terminology
of antenna array literature [16]), which ensures the secrecy
requirement, and part 2 is the standard signaling (eigenmode
transmission, WF power allocation and coding) on the required
channel, which maximizes the rate of required transmission.
This is reminiscent of the classical source-channel coding
separation [17].

In Sections VIII and IX, we consider two other popular
signaling techniques: the standard water-filling over the eigen-
modes of the legitimate channel and the isotropic signaling
(IS, whereby the covariance matrix is a scaled identity) and
establish sufficient and necessary conditions under which
they are optimal for the MIMO WTC. These techniques
are also appealing due to a number of reasons. While the
standard WF does require wiretap codes, standard solutions

can be used for power allocation and eigenmode transmission
(i.e. spatial modulation); the isotropic signaling is appealing
due to its low complexity: no eavesdropper CSI is required
at the transmitter as independent, identically distributed data
streams are launched by each antenna. The set of channels for
which the isotropic signaling is optimal is fully characterized
in Section IX. It turns out to be much richer than that of the
conventional (no eavesdropper) MIMO channel.

Notations: Lower case bold letters denote vectors while bold
capitals denote matrices. λi (W) denotes the eigenvalues of
a matrix W in decreasing order unless indicated otherwise;
(x)+ = max{x, 0} for a scalar x ; N (W) and R(W) are the
null space and the range of a matrix W; (W)+ denotes the
positive eigenmodes of a Hermitian matrix W:

(W)+ =
∑

i:λi (W)>0

λi ui u
†
i (1)

where ui is i -th eigenvector of W; tr W and |W| denote
the trace and the determinant of W; W† is the Hermitian
conjugation of W.

II. WIRE-TAP GAUSSIAN MIMO CHANNEL MODEL

Let us consider the standard wire-tap Gaussian MIMO
channel model,

y1 = H1x + ξ1, y2 = H2x + ξ2 (2)

where x = [x1, x2, . . . xm]T ∈ C
m,1 is the transmitted

complex-valued signal vector of dimension m×1, “T” denotes
transposition, yk ∈ Cnk , k = 1, 2, are the received vectors at
the receiver and eavesdropper, ξ1 and ξ2 are the circularly-
symmetric additive white Gaussian noise at the receiver and
eavesdropper (normalized to unit variance in each dimension),
Hk ∈ Cnk ,m is the nk ×m matrix of the complex channel gains
between each Tx and each receive (eavesdropper) antenna,
n1, n2 and m are the numbers of Rx, eavesdropper and
Tx antennas respectively. The channels Hk are assumed to
be quasistatic (i.e., constant for a sufficiently long period of
time so that the infinite horizon information theory assumption
holds) and frequency-flat, with full channel state informa-
tion (CSI) at the Rx and Tx ends.

For a given transmit covariance matrix R = E
{
xx†

}
, where

E {·} is the statistical expectation, the maximum achievable
secrecy rate between the Tx and Rx (so that the rate between
the Tx and the eavesdropper is zero) is [3], [4]

C(R) = ln
|I + W1R|
|I + W2R| = C1(R) − C2(R) (3)

where Ck(R) = ln |I + WkR|, k = 1, 2, negative C(R) is
interpreted as zero rate, Wk = H†

kHk , and the secrecy capacity
subject to the total Tx power constraint is

Cs = max
R≥0

C(R) s.t. tr R ≤ PT (4)

where PT is the total transmit power (also the SNR since the
noise is normalized). It is well-known that the problem in (4)
is not convex in general and explicit solutions for the optimal
Tx covariance are not known for the general case, but only
for some special cases (e.g. low/high SNR, MISO channels,
full-rank or rank-1 case [2]–[6]).
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III. WEAK EAVESDROPPER AND CAPACITY BOUNDS

In this section, we obtain novel lower and upper bounds
to the secrecy capacity in the general case and show that the
bounds are tight when the eavesdropper is weak or if the SNR
is low. The weak eavesdropper case is motivated by a scenario
where the eavesdropper is located far away from the Tx so that
its propagation path loss is large, see e.g. Fig. 2. This is the
case when the presence of the eavesdropper does not result in a
large capacity loss so that the physical-layer secrecy approach
is feasible (while in the case of a strong eavesdropper, the
capacity loss is large and other approaches may be preferable,
e.g. cryptography). There is no requirement here for the
channel to be degraded or for the optimal covariance to be
of full rank or rank 1, so that these results extend the known
closed form solutions.

To this end, let

Cw(R) = ln |I + W1R| − tr(W2R)

Cw = max
R

Cw(R)

R∗ = arg max
R

C(R), R∗
w = arg max

R
Cw(R) (5)

all subject to R ≥ 0, tr R ≤ PT , i.e. R∗ is the optimal
covariance and R∗

w maximizes Cw(R). Using ln(1 + x) ≈ x
when 0 ≤ x � 1, it can been seen that Cw(R) is a weak
eavesdropper approximation of C(R):

C(R) ≈ Cw(R) if λ1(W2R) � 1 (6)

so that Cw is the weak eavesdropper secrecy capacity. The
following Theorem establishes novel secrecy capacity bounds
based on Cw .

Theorem 1: The secrecy capacity Cs in (4) for the general
Gaussian MIMO-WTC in (2) is bounded as follows:

Cw ≤ C(R∗
w) ≤ Cs ≤ Cw + P2

T

2
λ2

1(W2) (7)

where

R∗
w = Q1/2(I − Ŵ−1

1 )+Q1/2 (8)

Ŵ1 = Q1/2W1Q1/2 (9)

and Q is the (Moore-Penrose) pseudo-inverse of Wλ = λI +
W2; λ ≥ 0 is found from the total power constraint:

tr R∗
w = PT if PT < P∗

T (10)

and λ = 0 otherwise; the threshold power

P∗
T = tr W−1

2 (I − W1/2
2 W−1

1 W1/2
2 )+ (11)

if W2 is non-singular. When W2 is singular, P∗
T = ∞ if

N (W2) � N (W1); otherwise, W1 and W2 are projected
orthogonally to N (W2) and the projected matrices are used
in (11). The weak eavesdropper secrecy capacity can be
expressed as

Cw =
∑

i :̂λ1i >1

ln λ̂1i − tr Ŵ2(I − Ŵ−1
1 )+ (12)

where λ̂1i = λi (Ŵ1), Ŵ2 = Q1/2W2Q1/2.
Proof: See the Appendix. �

Remark 1: It may appear that (8) requires Ŵ1 and thus
W1 to be positive definite, i.e. singular case is not allowed.
This is not so since (·)+ operator eliminates singular eigen-
modes of Ŵ1 so that (I−Ŵ−1

1 )+ is well-defined even if W1 is

singular: one can use Ŵ1δ = Ŵ1 + δI > 0 instead of Ŵ1,
where δ > 0, evaluate (I − Ŵ−1

1δ )+ and take the limit δ → 0
to see that the singular modes of Ŵ1 are eliminated so that

(I − Ŵ−1
1 )+ = U+DU†

+ (13)

where U+ is a semi-unitary matrix whose columns are the
eigenvectors of Ŵ1 corresponding to its positive eigenvalues,
D is a r × r diagonal matrix whose i -th diagonal entry is
(1 − λ−1

i (Ŵ1))+, i = 1 . . . r , where r is the rank of Ŵ1. The
same observation also applies to (11).

Remark 2: The 1st inequality in (7) bounds the sub-
optimality gap of using R∗

w, for which an achievable rate
is C(R∗

w), instead of the true optimal covariance R∗:

|Cs − C(R∗
w)| ≤ λ2

1(W2)P2
T /2 (14)

so that C(R∗
w) → Cs as λ1(W2)PT → 0.

Using Theorem 1, we can now approximate the secrecy
capacity via its weak eavesdropper counterpart.

Corollary 1: The secrecy capacity of the general Gaussian
MIMO-WTC can be expressed as follows:

Cs = Cw + �C (15)

where �C is the inaccuracy of the weak eavesdropper approx-
imation, which is bounded as

0 ≤ �C ≤ λ2
1(W2)P2

T /2 (16)

so that �C → 0 and Cs/Cw → 1 as PT → 0 or/and
λ1(W2) → 0.

Proof: (15) and (16) follow from the bounds in (7), which
also implies �C → 0 as PT λ1(W2) → 0. To show that
Cs/Cw → 1 as PT → 0 observe that

Cs = PT λ1(W1 − W2) + o(PT ) = Cw + o(PT )

from which the desired result follows (here, we implicitly
assume that λ1(W1 − W2) > 0; otherwise, Cs = 0 and there
is nothing to prove). When λ1(W2) → 0, note that both C(R)
and Cw(R) converge to ln |I + W1R| so that taking maxR
results in Cs/Cw → 1 (since the objectives are continuous
and the feasible set is compact). �

Using this Corollary, the secrecy capacity can be approxi-
mated as

Cs ≈ Cw (17)

and the approximation is accurate for a weak eavesdropper
or/and low SNR: λ1(W2)PT � 1, when the bounds in (7) are
also tight, see Fig. 1.

Remark 3: Since λ1(W2R) ≤ λ1(W2)λ1(R) ≤ PT λ1(W2),
one way to ensure that the eavesdropper is weak,
i.e. λ1(W2R) � 1 so that ln |I + W2R| ≈ tr W2R, is
to require λ1(W2) � 1/PT from which it follows that
this holds as long as the power (or SNR) is not too large,
i.e. PT � 1/λ1(W2); see also Fig. 1. It should be noted,
however, that the approximation in (17) extends well beyond
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Fig. 1. Weak eavesdropper approximation in (17) and exact secrecy capacity
(via MC) versus SNR. W1 and W2 are as in (18), α = 0.1, λ1(W2) ≈ 0.25.
The approximation is accurate if SNR < 10 dB. Note the capacity saturation
effect at high SNR in both cases.

the low-SNR regime provided that the eavesdropper propaga-
tion path loss is sufficiently large (i.e. λ1(W2) is small). For
the scenario in Fig. 1, it works well up to about 10 dB and
this can extend to larger SNR for smaller path loss factor α.

To illustrate Theorem 1 and Corrolary 1 and also to see
how accurate the approximation is, Fig. 1 shows the secrecy
capacity obtained from the approximation in (17) for

W1 =
(

2 0
0 1

)
, W2 = α

(
2 1
1 1

)
, (18)

also, its exact values (without the weak eavesdropper approx-
imation) obtained by brute force Monte-Carlo (MC) based
approach (where a large number of covariance matrices are
randomly generated, subject to the total power constraint, and
the best one is selected) are shown for comparison. To validate
the analytical solution for Cw in Theorem 1, the weak eaves-
dropper case has also been solved by the MC-based approach.
It is clear that the approximation Cs ≈ Cw is accurate for the
channel in (18) provided that SNR < 10 dB. Also note the
capacity saturation effect, for both the approximate and exact
values. This saturation effect has been already observed in [3]
and [6] and, in the case of W1 > W2 > 0, the saturation
capacity is

C∗
s = ln |W1| − ln |W2| (19)

which follows directly from (3) by neglecting I. In the weak
eavesdropper approximation, the saturation effect is due to
the fact that the 2nd term in (5) is linear in PT while the
1st one is only logarithmic, so that using the full available
power is not optimal when it is sufficiently high. Roughly,
the approximation is accurate before it reaches the saturation
point, i.e. for PT < P∗

T . The respective saturation capacity
is obtained from (12) by setting λ = 0. In the case of
W1 > W2 > 0, it is given by

Cw = ln |W1| − ln |W2| − tr(I − W2W−1
1 ) (20)

By comparing (19) and (20), one concludes that the thresholds
are close to each other when tr W2W−1

1 ≈ m.

To obtain further insight in the weak eavesdropper regime,
let us consider the case when W1 and W2 have the same
eigenvectors. This is a broader case than it may first appear as
it requires H1 and H2 to have the same right singular vectors
while leaving left ones unconstrained (see Section VI for more
details on this scenario). In this case, the results in Theorem 1
and Corollary 1 simplify as follows.

Corollary 2: Under the weak eavesdropper condition
λ1(W2) � 1/PT and when W1 and W2 have the same
eigenvectors, the optimal covariance is

R∗ ≈ R∗
w = U�∗U† (21)

where U is found from the eigenvalue decompositions
Wi = U�i U† so that the eigenvectors of R∗

w are the same
as those of W1 and W2. The diagonal matrix �∗ collects the
eigenvalues of R∗

w:

λi (R∗
w) =

(
1

λ + λ2i
− 1

λ1i

)

+
(22)

where λki is i -th eigenvalue of Wk .
Proof: Using Wi = U�i U† in (8) results in (21)

and (22). �
Note that the power allocation in (22) resembles that of the

standard water filling, except for the λ2i term. In particular,
only sufficiently strong eigenmodes are active:

λi (R∗
w) > 0 iff λ1i > λ + λ2i (23)

As PT increases, λ decreases so that more eigenmodes become
active; the legitimate channel eigenmodes are active pro-
vided that they are stronger that those of the eavesdropper:
λ1i > λ2i . Only the strongest eigenmode (for which the
difference λ1i − λ2i is largest) is active at low SNR.

IV. ISOTROPIC EAVESDROPPER AND CAPACITY BOUNDS

The model in Section III requires the full eavesdropper
CSI at the transmitter. This becomes questionable if the
eavesdropper does not cooperate (e.g. when it is hidden
in order not to compromise its eavesdropping ability). One
approach to address this issue is via a compound channel
model [23]–[25]. An alternative approach is considered here,
where the eavesdropper is characterized by its channel gain
identical in all directions, which we term “isotropic eaves-
dropper.” This minimizes the amount of CSI available at
the transmitter (one scalar parameter and no directional
properties).

A further physical justification for this model comes from
an assumption that the eavesdropper cannot approach the
transmitter too closely due to e.g. some minimum protec-
tion distance, see Fig. 2. This ensures that the gain of the
eavesdropper channel does not exceed a certain threshold in
any transmit direction due to the minimum propagation path
loss (induced by the minimum distance constraint). Since the
channel power gain in transmit direction u is u†W2u = |H2u|2
(assuming |u| = 1) and since max|u|=1 u†W2u = ε1 (from
the variational characterization of eigenvalues [21]), where
ε1 is the largest eigenvalue of W2, W2 ≤ ε1I ensures that
the eavesdropper channel power gain does not exceed ε1 in
any direction.
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Fig. 2. Physical scenario for a secret communication system: base station BS
(the transmitter) is located on the rooftop of a secure building B , legitimate
user U (the receiver) is inside the building B , and eavesdropper E is beyond
the fence so that R2 ≥ R2 min.

In combination with matrix monotonicity of the log-det
function, the latter inequality ensures that ε1I is the worst
possible W2 that results in the smallest capacity (the lower
bound in (27)), i.e. the isotropic eavesdropper with the maxi-
mum channel gain is the worst possible one among all eaves-
droppers with a bounded spectral norm. Referring to Fig. 2,
the eavesdropper channel matrix H2 can be presented in the
following form:

H2 =
√

αR−ν
2 H̃2 (24)

where αR−ν
2 represents the average propagation path loss,

R2 is the eavesdropper-transmitter distance, ν is the path loss
exponent (which depends on the propagation environment),
α is a constant independent of distance (but dependent on
frequency, antenna height, etc.) [27], and H̃2 is a prop-
erly normalized channel matrix (includes local scattering/
multipath effects but excludes the average path loss) so that
tr H̃†

2H̃2 ≤ n2m [28]. With this in mind, one obtains:

W2 = H†
2H2 = α

Rν
2

H̃†
2H̃2 ≤ αn2m

Rν
2 min

I (25)

so that one can take ε1 = αn2m R−ν
2 min in this scenario,

where R2 min is the minimum transmitter-eavesdropper dis-
tance. Note that the model captures the impact of the number
of transmit and eavesdropper antennas, in addition to the
minimum distance and propagation environment. In our view,
the isotropic eavesdropper model is more practical than the
full Tx CSI model.

The isotropic eavesdropper model is closely related to the
parallel channel setting in [19] and [20]: even though the
original channel is not parallel, it can be transformed into a
parallel channel,1 for which independent signaling is known to
be optimal [19], [20]. This shows that signaling on the eigen-
vectors of W1 is optimal in this case while an optimal power
allocation is different from the standard water filling [20].

1Via an information-preserving transformation: using a unitary transmit pre-
coding with the unitary matrix whose columns are the eigenvectors of W1 and
unitary post-codings at the receiver and eavesdropper with unitary matrices
whose columns are the left singular vectors of H1 and H2 respectively.

These properties in combination with the bounds in (26) are
exploited below.

While it is a challenging analytical task to evaluate the
secrecy capacity in the general case, one can use the isotropic
eavesdropper model above to construct lower and upper capac-
ity bounds for the general case using the standard matrix
inequalities,

εmI ≤ W2 ≤ ε1I (26)

where εi = λi (W2) denotes i -th largest eigenvalue of W2, and
the equalities are achieved when ε1 = εm , i.e. by the isotropic
eavesdropper. This is formalized below.

Proposition 1: The secrecy capacity of the general
MIMO-WTC in (4) is bounded as follows:

C∗(ε1) ≤ Cs ≤ C∗(εm) (27)

where C∗(ε) is the secrecy capacity if the eavesdropper were
isotropic, i.e. under W2 = εI,

C∗(ε) = max
R≥0, trR≤PT

ln
|I + W1R|
|I + εR| =

∑

i

ln
1 + giλ

∗
i

1 + ελ∗
i

(28)

gi = λi (W1), and λ∗
i = λi (R∗) = f (gi , ε) are the eigenvalues

of the optimal transmit covariance R∗ = U1�
∗U†

1 under the
isotropic eavesdropper, where

f (x, y) = x + y

2yx

(√
1 + 4xy

(x + y)2

(
x − y

λ
− 1

)

+
− 1

)

(29)

and λ > 0 is found from the total power constraint∑
i λ∗

i = PT .
The gap in the bounds of (27) is upper bounded as follows:

�C = C∗(εm) − C∗(ε1) ≤ m+ ln
1 + ε1 PT /m+
1 + εm PT /m+

≤ m+ ln
ε1

εm
(30)

where m+ is the number of eigenmodes such that gi > εm.
Both bounds are tight at high SNR if gm+ > ε1.

Proof: See the Appendix.
Thus, the optimal signaling for the isotropic eavesdropper

case is on the eigenvectors of W1 (or right singular vectors
of H1), identically to the regular MIMO channel, with the
optimal power allocation somewhat similar (but not identical)
to the conventional water filling. The latter is further elaborated
below for the high and low SNR regimes. Unlike the general
case (of non-isotropic eavesdropper), the secrecy capacity
of the isotropic eavesdropper case does not depend on the
eigenvectors of W1 (but the optimal signaling does), only on
its eigenvalues, so that the optimal signaling problem here sep-
arates into 2 independent parts: (i) optimal signaling directions
are selected as the eigenvectors of W1, and (ii) optimal power
allocation is done based on the eigenvalues of W1 and the
eavesdropper channel gain ε. It is the lack of this separation
that makes the optimal signaling problem so difficult in the
general case.

The bounds in (27) coincide when ε1 = εm thus
giving the secrecy capacity of the isotropic eavesdropper.
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Fig. 3. Secrecy capacity for the isotropic eavesdropper and the capacity
of the regular MIMO channel (no eavesdropper, ε = 0) vs. the SNR
(= PT since the noise variance is unity); g1 = 2, g2 = 1. Note the saturation
effect at high SNR , where the capacity strongly depends on ε but not the
SNR, and the negligible impact of the eavesdropper at low SNR.

Furthermore, as follows from (30), they are close to each other
when the condition number ε1/εm of W2 is not too large, thus
providing a reasonable estimate of the capacity, see Fig. 3.
Referring to Fig. 2, one can also set ε1 = αn2m R−ν

2 min
and proceed with a conservative system design to achieve
the secrecy rate C∗(ε1). Note that this design requires only
the knowledge of n2 and R2 min at the transmitter, not full
CSI (W2) and hence is more realistic. This signaling strat-
egy does not incur significant penalty (compared to the full
CSI case) provided that the condition number ε1/εm is not
large, as follows from (30). It can be further shown that
C∗(ε1) is the compound channel capacity for the class of
eavesdroppers with bounded spectral norm (maximum channel
gain), W2 ≤ ε1I, and that signaling on the worst-case channel
(W2 = ε1I) achieves the capacity for the whole class of
channels with W2 ≤ εI [25].

We note that the power allocation in (29) has properties
similar to those of the conventional water-filling, which follow
from Proposition 1.

Proposition 2: Properties of the optimum power allocation
in (29) for the isotropic eavesdropper:

1. λ∗
i is an increasing function of gi (strictly increasing

unless λ∗
i = 0 or PT ) , i.e. stronger eigenmodes get more

power (as in the standard WF).
2. λ∗

i is an increasing function of PT (strictly increasing
unless λ∗

i = 0). λ∗
i = 0 for i > 1 and λ∗

1 = PT as PT → 0
if g1 > g2, i.e. only the strongest eigenmode is active at low
SNR, and λ∗

i > 0 if gi > ε as PT → ∞, i.e. all sufficiently
strong eigenmodes are active at high SNR.

3. λ∗
i > 0 only if gi > ε, i.e. only the eigenmodes stronger

than the eavesdropper ones can be active.
4. λ is a strictly decreasing function of PT and

0 < λ < g1 − ε; λ → 0 as PT → ∞ and λ → g1 − ε as
PT → 0.

5. There are m+ active eigenmodes if the following inequal-
ities hold:

Pm+ < PT ≤ Pm++1 (31)

where Pm+ is a threshold power (to have at least m+ active
eigenmodes):

Pm+ =
m+−1∑

i=1

ε + gi

2εgi

(√
1 + 4εgi

(ε + gi )2

gi − gm+
(gm+ − ε)+

− 1

)
,

(32)

where m+ = 2 . . . m and P1 = 0, so that m+ increases
with PT .

It follows from Proposition 2 that there is only one active
eigenmode, i.e. beamforming is optimal, if g2 > ε and

PT ≤ ε + g1

2εg1

(√

1 + 4εg1

(ε + g1)2

g1 − g2

g2 − ε
− 1

)
(33)

e.g. in the low SNR regime (note however that the single-
mode regime extends well beyond low SNR if ε → g2 and
g1 > g2), or at any SNR if g1 > ε and g2 ≤ ε.

While it is difficult to evaluate λ analytically from the power
constraint, Property 4 ensures that any suitable numerical algo-
rithm (e.g. Newton-Raphson method) will do so efficiently.

As a side benefit of Proposition 2, one can use (31) as a
condition for having m+ active eigenmodes under the regular
eigenmode transmission (no eavesdropper) with the standard
water-filling by taking ε → 0 in (32):

Pm+ =
m+−1∑

i=1

(
1

gm+
− 1

gi

)
(34)

and (34) approximates (32) when the eavesdropper is weak,
ε � gm+. To the best of our knowledge, expression (34)
for the threshold powers of the standard water-filling has not
appeared in the literature before.

A. High SNR Regime

Let us now consider the isotropic eavesdropper model when
the SNR grows large, so that giλ

∗
i 
 1, ελ∗

i 
 1. In this case,
(28) simplifies to

C∗∞ =
∑

i:gi >ε

ln
gi

ε
(35)

where the summation is over active eigenmodes only, so that
the capacity is independent of the SNR (saturation effect) and
the impact of the eavesdropper is the multiplicative SNR loss,
which is never negligible. To obtain a threshold value of PT

at which the saturation takes place, observe that λ → 0 as
PT → ∞ so that (29) becomes

λ∗
i = PT

√
ε−1 − g−1

i /β(1 + o(1)) (36)

for i : gi > ε, where β = ∑
i:gi >ε

√
ε−1 − g−1

i and√
λ = β P−1

T (1 + o(1)) from the total power constraint.
Using (36), the capacity becomes

C∗(ε) =
∑

i:gi >ε

ln
gi

ε
− β2

PT
+ o

(
1

PT

)
(37)
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which is a refinement of (35). The saturation takes place when
the second term is much smaller than the first one, so that

PT 
 β2/
∑

i:gi >ε

ln
gi

ε
(38)

and C∗(ε) ≈ C∗∞ under this condition. This effect in illus-
trated in Fig. 3. Note that, from (36), the optimal power
allocation behaves almost like water-filling in this case, due

to the
√

ε−1 − g−1
i term.

Using (35), the gap �C∗∞ between the lower and upper
bounds in (27) becomes

�C∗∞ = C∗∞(εm) − C∗∞(ε1)

= m1 ln
ε1

εm
+

m2∑

i=m1+1

ln
gi

εm
(39)

where m1 and m2 are the numbers of active eigenmodes when
ε = ε1 and ε = εm . Note that this gap is SNR-independent
and if m1 = m2 = m+, which is the case if gm+ > ε1, then

�C∗∞ = m+ ln
ε1

εm
(40)

i.e. also independent of the eigenmode gains of the legitimate
user and is determined solely by the condition number of the
eavesdropper channel and the number of active eigenmodes.
Note that, in this case, the upper bounds in (30) are tight.

B. When Is the Eavesdropper’s Impact Negligible?

It is clear from (28) that under fixed {gi} and PT , the secrecy
capacity converges to the conventional one C∗(0) as ε → 0.
However, no fixed ε (does not matter how small) can ensure
by itself that the eavesdropper’s impact on the capacity is
negligible since one can always select sufficiently high PT to
make the saturation effect important (see Fig. 3). To answer
the question in the section’s title, we use (28) to obtain:

C∗(ε) = max{λi }
∑

i

ln

(
1 + 1 + (gi − ε)λi

1 + ελi

)

(a)≈ max{λi }
∑

i

ln(1 + (gi − ε)λi )

(b)≈ max{λi }
∑

i

ln(1 + giλi ) = C∗(0) (41)

where max{λi } is subject to λi ≥ 0,
∑

i λi = PT , and
(a) holds if

PT � 1/ε (42)

(since λi ≤ PT ), i.e. if the SNR is not too large, and
(b) holds if

ε � gi (43)

for all active eigenmodes, i.e. if the eavesdropper is much
weaker than the legitimate active eigenmodes. It is the com-
bination of (42) and (43) that ensures that the eavesdropper’s
impact is negligible. Neither condition alone is able to do so.
Fig. 3 illustrates this point. Eq. (41) also indicates that the
impact of the eavesdropper is the per-eigenmode gain loss

of ε. Unlike the high-SNR regime in (35) where the loss is
multiplicative (i.e. very significant and never negligible), here
it is additive (mild or negligible in many cases).

C. Low SNR Regime

Let us now consider the low-SNR regime, which is char-
acteristic for CDMA-type systems [26]. Traditionally, this
regime is defined via PT → 0. We, however, use a more
relaxed definition requiring that m+ = 1, which holds
under (33). In this regime, assuming g1 > ε,

C∗(ε) = ln
1 + g1 PT

1 + εPT
= ln

(
1 + (g1 − ε)PT

1 + εPT

)

(a)≈ ln(1 + (g1 − ε)PT ) (44)

where (a) holds when PT � 1/ε. It is clear from the last
expression that the impact of the eavesdropper is an additive
SNR loss of εPT , which is negligible when ε � g1. Note a
significant difference to the high SNR regime in (35), where
this impact is never negligible. Fig. 3 illustrates this difference.

It follows from (44)(a) that the difference between the lower
and upper bounds in (27) at low SNR is the SNR gap of
(ε1 − εm)PT . This difference is negligible if g1 
 ε1 − εm ,
which may be the case even if the condition number ε1/εm

is large (in which case the difference is significant at high
SNR, see (40)). Therefore, we conclude that the impact of the
eavesdropper is more pronounced in the high-SNR regime and
is negligible in the low-SNR one if its channel is weaker than
the strongest eigenmode of the legitimate user, g1 
 ε1.

When g1 − ε � 1/PT , (44)(a) gives C∗(ε) ≈ (g1 − ε)PT ,
i.e. linear in PT . A similar capacity scaling at low SNR has
been obtained in [29] for i.i.d. block-fading single-input single-
output (SISO) WTC, without however explicitly identifying
the capacity but via establishing upper/lower bounds. Also
note that the 1st two equalities in (44) do not require PT → 0
but only to satisfy (33).

V. OMNIDIRECTIONAL EAVESDROPPER

In this section, we consider a scenario where the eaves-
dropper has equal gain in all directions of a certain subspace.
This model accounts for 2 points: (i) when the transmitter
has no particular knowledge about the directional properties
of the eavesdropper, which is most likely from the practical
perspective, it is reasonable to assume that its gain is the same
in all directions; (ii) on the other hand, when the eavesdropper
has a small number of antennas (less than the number of
transmit antennas), its channel rank, which does not exceed
the number of transmit or receive antennas, is limited by this
number so that the isotropic model of the previous section
does not apply.2

For an omnidirectional eavesdropper, its channel gain is the
same in all directions of its active subspace, i.e.

|H2x|2 = x†W2x = const ∀x ∈ N (W2)
⊥ (45)

where N (W2)
⊥ is the subspace orthogonal to the nullspace

N (W2) of W2, i.e. its active subspace, whose dimensionality

2This was pointed out by A. Khisti.
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is r2 = rank(W2). In particular, when the eavesdropper is
isotropic, N (W2) is empty so that N (W2)

⊥ is the entire space
and r2 = m. The condition in (45) implies that

W2 = εU2+U†
2+ (46)

where U2+ is a semi-unitary matrix whose columns are the
active eigenvectors of W2, and N (W2)

⊥ = span{U2+}. Note
that the model in (46) allows W2 to be rank-deficient: r2 < m
is allowed. ε can be evaluated from e.g. (25): ε = αn2m R−ν

2 min.
Theorem 2: Under the omnidirectional eavesdropper

setting in (45), (46) and when R(W1) ⊆ R(W2), the
MIMO-WTC secrecy capacity can be expressed as follows:

Cs = max
tr R≤PT

ln
|I + W1R|
|I + W2R| = max

tr R≤PT
ln

|I + W1R|
|I + εR|

= C∗(ε) (47)

i.e. the capacity and optimal signaling to achieve it are the
same as for the isotropic eavesdropper as in Proposition 1.

Proof: First note that, for the omnidirectional eavesdrop-
per, W2 ≤ εI so that |I + W2R| ≤ |I + εR| and hence

Cs = max
tr R≤PT

ln
|I + W1R|
|I + W2R| ≥ max

tr R≤PT
ln

|I + W1R|
|I + εR|

= C∗(ε) (48)

To prove the reverse inequality, let P2 be a projection
matrix on R(W2), i.e. P2 = U2+U†

2+. Then, P2WkP2 = Wk,
k = 1, 2, so that

C(R) = ln
|I + P2W1P2R|
|I + P2W2P2R| = ln

|I + W̃1R̃|
|I + εR̃| = C̃(R̃)

where R̃ = U†
2+RU2+ and likewise for W̃k , so that W̃2 = εI,

where we used |I + AB| = |I + BA|. Further note that

tr R̃ = tr U†
2+RU2+ =

∑

i

λi (R)|u†
2i uRi |2 (49)

≤
∑

i

λi (R) = tr R ≤ PT (50)

where u2i and uRi are i -th eigenvectors of W2 and R,
and we have used R = ∑

i λi (R)uRi u
†
Ri and |u†

2i uRi |2 ≤
|u2i |2|uRi |2 = 1. Hence, R̃ satisfies power constraint if R
does and thus

Cs = max
tr R≤PT

C(R) ≤ max
tr R̃≤PT

C̃(R̃)

= max
λi≥0,

∑
i λi≤PT

∑

i

ln
1 + g̃iλi

1 + ελi
= C̃∗(ε) (51)

where g̃i = λi (W̃1), and C̃∗(ε) is the secrecy capacity
under W̃1 and isotropic eavesdropper W̃2 = εI. Note that

λi (W̃1) = λi (U
†
2+W1U2+) = λi ([U†

2W1U2]r2×r2)

≤ λi (U
†
2W1U2) = λi (W1) (52)

where [A]k×k denotes k × k principal sub-matrix of A,
r2 = rank(W2), and U2 is a unitary matrix whose columns
are the eigenvectors of W2. The inequality is due to Cauchy
eigenvalue interlacing theorem [21] and the last equality is due

to the fact that U2W1U†
2 and W1 have the same eigenvalues.

Based on this, one obtains:

Cs ≤ C̃∗(ε) ≤ max
λi≥0,

∑
i λi≤PT

∑

i

ln
1 + giλi

1 + ελi

= C∗(ε) (53)

thus establishing Cs = C∗(ε) under an omnidirectional eaves-
dropper with R(W1) ⊆ R(W2). �

Note that the secrecy capacity as well as the optimal
signaling for the omnidirectional eavesdropper in Theorem 2
is the same as those for the isotropic one (which is not the
case in general, as can be shown via examples), i.e. the fact
that the rank of the eavesdropper channel is low has no impact
provided that R(W1) ⊆ R(W2) holds.

Since R(W) collects directions where the channel gain is
not zero:

|Hx|2 = x†Wx �= 0 ∀x ∈ R(W) (54)

the condition R(W1) ⊆ R(W2) means that |H2x| = 0 implies
|H1x| = 0 (but the converse is not true in general) and hence
|H1x| �= 0 implies |H2x| �= 0, i.e. the eavesdropper can “see”
in any direction where the receiver can “see” (but there is no
requirement here for the eavesdropper to be degraded with
respect to the receiver so that the channel is not necessarily
degraded).

Further note that the condition in (45) does not require
U2 = U1, i.e. the eigenvectors of the legitimate channel and
of the eavesdropper can be different.

VI. IDENTICAL RIGHT SINGULAR VECTORS

In this section, we consider the case when H1,2 have the
same right singular vectors (SV), so that their singular value
decomposition takes the following form:

Hk = Uk�kV† (55)

where the unitary matrices Uk, V collect left and right singular
vectors respectively and diagonal matrix �k collects singular
values of Hk . In this model, the left singular vectors can be
arbitrary. This is motivated by the fact that right singular
vectors are determined by scattering around the Tx while
left ones - by scattering around the Rx and eavesdropper
respectively. Therefore, when the Rx and eavesdropper are
spatially separated, their scattering environments may differ
significantly (and hence different left SVs) while the same
scattering environment around the Tx induces the same
right SVs. We make no weak eavesdropper or other assump-
tions here. After unitary (and thus information-preserving)
transformations, this scenario can be put into the parallel
channel setting of [19] and [20]. The secrecy capacity and the
optimal covariance in this case can be explicitly characterized
as follows.

Proposition 3: Consider the wiretap MIMO channel as
in (2), (55). The optimal Tx covariance for this channel takes
the following form:

R∗ = V�∗V† (56)
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where the diagonal matrix �∗ collects its eigenvalues λ∗
i :

λ∗
i = f (λ1i , λ2i ) (57)

where f (x, y) is as in (29), λki = σ 2
ki and σki denotes singular

values of Hk; λ > 0 is found from the total power constraint:∑
i λ∗

i = PT .
Proof: Under (55), Wk = V�kV†, where diagonal matrix

�k = �
†
k�k collects eigenvalues of Wk , so that the problem

in (4) can be re-formulated as

Cs = max
tr R̃≥0

ln
|I + �1R̃|
|I + �2R̃| s.t. tr R̃ ≤ PT (58)

where R̃ = V†RV. However, this is the secrecy capacity of a
set of parallel Gaussian wire-tap channels as in [19] and [20],
for which independent signaling is known to be optimal,3

so that maximizing R̃∗ is diagonal, from which (56) follows.
The optimal power allocation in (57) is essentially the same
as for the equivalent parallel channels in [20]. �

In fact, Eq. (56) says that optimal signaling is on the right
SVs of H1,2 and (57) implies that only those eigenmodes are
active for which

σ 2
1i > σ 2

2i + λ (59)

If λ2i = 0, then (57) reduces to

λ∗
i =

(
λ−1 − λ−1

1i

)

+ (60)

i.e. as in the standard WF. This implies that when λ2i = 0 for
all active eigenmodes, then the standard WF power allocation
is optimal.

It should be stressed that the original channels in (55) are
not parallel (diagonal). They become equivalent to a set of
parallel independent channels after performing information-
preserving transformations. Also, there is no assumption of
degradedness here and no requirement for the optimal covari-
ance to be of full rank or rank-1.

VII. WHEN IS ZF SIGNALING OPTIMAL?

In this section, we consider the case when ZF signaling
is optimal, i.e. when active eigenmodes of the optimal covari-
ance R∗ are orthogonal to those of W2: W2R∗ = 0.4 It is clear
that this does not hold in general. However, the importance
of this scenario is coming from the fact that such signaling
does not require wiretap codes: since the eavesdropper gets
no signal, regular coding on the required channel suffices.
Hence, the system design follows the well-established standard
framework and secrecy requirement imposes no extra com-
plexity penalty but is rather ensured by the well-established
ZF signaling.

Proposition 4: A sufficient condition for Gaussian ZF sig-
naling being optimal for the Gaussian MIMO-WTC in (2) is
that W1 and W2 have the same eigenvectors or, equivalently,

3The authors would like to thank A. Khisti for pointing out this line
of argument.

4This simply means that the Tx antenna array puts null in the direction of
eavesdropper, which is known as null forming in antenna array literature [16].
This can also be considered as a special case of interference alignment, so that
Proposition 4 establishes its optimality.

H1 and H2 have the same right singular vectors as in (55),
and

λ1i ≤ λ2i + λ if λ2i > 0, (61)

where λ is found from the total power constraint
∑

i λ∗
i = PT ,

and

λ∗
i = λi (R∗) =

(
λ−1 − λ−1

1i

)

+ if λ2i = 0, (62)

and 0 otherwise. The optimal covariance is as in (56) so that
its eigenvectors are those of W1 and W2.

A necessary condition of ZF optimality is that the active
eigenvectors of R∗ are also the active eigenvectors of W1 and
the inactive eigenvectors of W2, and that the power allocation
is given by (62).

Proof: See the Appendix. �
Remark 4: The optimal power allocation in (62) is the same

as standard water filling. However, a subtle difference here is
the condition for an eigenmode to be active, λ∗

i > 0: while
the standard WF requires λ1i > λ, the solution above requires
in addition λ2i = 0, so that the set of active eigenmodes is
generally smaller: the larger the set of eavesdropper positive
eigenmodes, the smaller the set of active eigenmodes.

It is gratifying to see that the standard WF over the
eigenmodes of the required channel is optimal if ZF is optimal.
In a sense, the optimal transmission strategy in this case is
separated into two independent parts: part 1 ensures that the
eavesdropper gets no signal (via the ZF) and part 2 is the
standard eigenmode signaling and WF on what remains of
the required channel as if the eavesdropper were not there.
No new wiretap codes need to be designed.

VIII. WHEN IS THE STANDARD WATER

FILLING OPTIMAL?

Motivated by the fact that the transmitter may be unaware
about the presence of an eavesdropper and hence uses the
standard transmission on the eigenmodes of W1 with power
allocated via the water-filling (WF) algorithm, we ask the
question: is it possible for this strategy to be optimal for the
MIMO-WTC? The affirmative answer and conditions for this
to happen are given below. To this end, let RW F be the optimal
Tx covariance matrix for transmission on W1 only, which is
given by the standard water-filling over the eigenmodes of W1:

RW F = U1�
∗U†

1, λ∗
i =

{
λ−1 − λ−1

1i

}

+ (63)

where �∗ = diag{λ∗
i } is a diagonal matrix of the eigenvalues

of RW F , and λ is found from the total power constrain∑
i λ∗

i = PT .
Theorem 3: The standard WF Tx covariance matrix in (63)

is also optimal for the Gaussian MIMO-WTC if:
1) the eigenvectors of W1 and W2 are the same: U1 = U2;
2) for active eigenmodes λ∗

i > 0, their eigenvalues λ1i and
λ2i are related as follows:

λ2i = λ1i

1 + αλ1i
< λ1i , for some α > 0, (64)

or, equivalently, λ−1
2i = λ−1

1i + α;
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3) for inactive eigenmodes λ∗
i = 0, the eigenvalues

λ1i and λ2i are related either as in (64) or λ1i ≤ λ2i .
Proof: We assume that W1 and W2 are non-singular;

the singular case will be considered below (using a standard
continuity argument). The KKT conditions for the optimal
covariance R = RW F , which are necessary for optimality
in (4), can be expressed as:

(W−1
1 + R)−1 − (W−1

2 + R)−1 = λ′I − M (65)

λ′(tr R − PT ) = 0, MR = 0 (66)

λ′ ≥ 0, M, R ≥ 0, trR ≤ PT (67)

where M ≥ 0 is the Lagrange multiplier matrix responsible
for the constraint R ≥ 0 while λ′ ≥ 0 is the Lagrange
multiplier responsible for the total power constraint trR ≤ PT .
Multiplying both sides of (65) by U†

1 on the left and by U1
on the right, one obtains:

(�−1
1 + �∗)−1 − (�−1

2 + �∗)−1 = λ′I − U†
1MU1

= λ′I − �M (68)

where �1,�2,�M are diagonal matrices of eigenvalues of
W1, W2, M. The last equality follows from the fact that all
terms but U†

1MU1 are diagonal so that the last term has to be
diagonal too: U†

1MU1 = �M , i.e. M has the same eigenvectors
as W1, W2, R. The complementary slackness in (66) implies
that λ∗

i λMi = 0, where λMi is i -th eigenvalue of M, i.e. if
λ∗

i > 0 (active eigenmode) then λMi = 0 so that, after some
manipulations, (68) can be expressed as

λ∗
i = 1

(λ−1
2i + λ∗

i )
−1 + λ′ − 1

λ1i
= λ−1 − λ−1

1i

for each λ∗
i > 0, where the 2nd equality follows from (63).

Therefore, λ = (λ−1
2i + λ∗

i )
−1 + λ′ and hence

λ∗
i = (λ − λ′)−1 − λ−1

2i = λ−1 − λ−1
1i (69)

so that λ−1
2i = λ−1

1i +α with α = (λ−λ′)−1 −λ−1 > 0 satisfies
both equalities in (69).

For inactive eigenmodes λ∗
i = 0, it follows from (68) that

λ1i − λ2i = λ′ − λMi ≤ λ′ (70)

Observe that this inequality is satisfied when λ1i ≤ λ2i

(since λ′ > 0). To see that it also holds under (64), observe that

λ1i − λ2i = αλ2
1i

1 + αλ1i
≤ αλ2

1 + αλ
= λ′ (71)

where the inequality is due to λ1i ≤ λ (which holds for

inactive eigenmodes) and the fact that
αλ2

1i
1+αλ1i

is increasing
in λ1i . Thus, one can always select λMi ≥ 0 to satisfy (70) and
hence the KKT conditions in (65)-(67) have a unique solution
which also satisfies (63). This proves the optimality of RW F .

In the case of singular W1 or/and W2, one can use a
standard continuity argument, see [30] for details. �

Note that the conditions of Theorem 3 do not require
W1 = aW2 for some scalar a > 1; they also allow for
the WTC to be non-degraded. However, the condition in (64)
implies that larger λ1i corresponds to larger λ2i , so that, over
the active signaling subspace, the channel is degraded.

The 1st condition in Theorem 3 implies that H1 and H2
have the same right singular vectors but imposes no constraints
on their left singular vectors. This may represent a scenario
where the transmitter is a basestation where the legitimate
channel and the eavesdropper experience the same scattering
while having their own individual scatterers around their
own receivers (which determine the left singular vectors), as
in Section VI.

IX. WHEN IS ISOTROPIC SIGNALING OPTIMAL?

In the regular MIMO channel (W2 = 0), the isotropic
signaling (IS) is optimal (R∗ = aI) iff W1 = bI, i.e. W1
has identical eigenvalues. Since this transmission strategy
is appealing due to its low complexity (all antennas send
independent data streams, no precoding, no Tx CSI and thus
no feedback is required), we consider the isotropic signaling
over the wire-tap MIMO channel and characterize the set of
channels on which it is optimal. It turns out to be much richer
than that of the regular MIMO channel.

Proposition 5: Consider the MIMO wire-tap channel in (2).
The isotropic signaling is optimal, i.e. R∗ = aI in (4), for the
set of channels {W1, W2} that satisfy all of the following:

1. W1 and W2 have the same (otherwise arbitrary) eigen-
vectors, U1 = U2.

2. W1 > W2 so that λi (W1) = a−1
i > λi (W2) = b−1

i ,
where λi (W) are ordered eigenvalues of W.

3. Take any b1 > 0 and a1 < b1 and set λ = (a1 + a)−1 −
(b1 + a)−1 > 0,

4. For i = 2 . . . m, take any bi such that bi > λa2

(1 − λa)−1 > 0, and set

ai = −a + (λ + (bi + a)−1)−1 > 0 (72)

This gives the complete characterization of the set of
channels for which isotropic signaling is optimal.

Proof: It is straightforward to see that any channel in the
given set satisfies the conditions of [6, Th. 2] and the cor-
responding optimal covariance is isotropic, which proves the
sufficiency. The converse (necessity) follows from [6, Th. 1],
which requires W1 > W2, so that the optimization problem is
strictly convex and thus has a unique solution. For isotropic
signaling to be optimal, the corresponding KKT conditions
(see the proofs of Theorems 1 and 2 in [6]) imply the
conditions stated above. �

Note that the special case of this Proposition is when
W1 and W2 have identical eigenvalues, as in the case of
the regular MIMO channel, but, unlike the regular channel,
there is also a large set of channels with distinct eigenvalues
which dictates the isotropic signaling as well. It is the interplay
between the legitimate user and the eavesdropper that is
responsible for this phenomenon, i.e. a non-isotropic nature
of the 1st channel is compensated for by a carefully-adjusted
non-isotropy of the 2nd one.

Table I summarizes the conditions for the optimality of
the ZF, the WF and the IS in the Gaussian MIMO-WTC.
Clearly, the requirement for W1 and W2 to have the same
eigenvectors is the key condition. It is satisfied when the
legitimate receiver and the eavesdropper are subject to the
same scattering around the base station (the transmitter) while
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TABLE I

THE CONDITIONS OF OPTIMALITY OF THE ZF, THE WF AND
THE IS IN THE GAUSSIAN MIMO-WTC

they may have their own sets of scatterers around their own
units.

APPENDIX

A. Proof of Theorem 1
Applying the inequalities

x − x2/2 ≤ ln(1 + x) ≤ x (73)

which hold for any x ≥ 0, to

ln |I + W2R| =
∑

i

ln(1 + λi (W2R)) (74)

one obtains:

Cw(R) ≤ C(R) ≤ Cw(R) + 1

2

∑

i

λ2
i (W2R) (75)

from which the 1st inequality in (7) follows by using
R = R∗

w; the 2nd inequality follows from the fact that C(R)
is maximized by R∗: Cs = C(R∗) ≥ C(R∗

w). To obtain the
last inequality, we need the following lemma.

Lemma 1: Let λi ≥ 0 and
∑

i λi ≤ PT . Then,
∑

i λ2
i ≤ P2

T .
Using this Lemma and observing that λi (W2R) ≤

λ1(W2)λi (R) (see e.g. [21]), one obtains:
∑

i

λ2
i (W2R) ≤ λ2

1(W2)
∑

i

λ2
i (R) ≤ λ2

1(W2)P2
T (76)

since
∑

i λi (R) ≤ PT , so that

Cs = C(R∗) ≤ Cw(R∗) + λ2
1(W2)P2

T /2

≤ Cw + λ2
1(W2)P2

T /2 (77)

since Cw = Cw(R∗
w) ≥ Cw(R∗), which establishes the last

inequality in (7).
To establish the closed form solution for Cw in (12),

consider the optimization problem in (5), for which the KKT
conditions are:

(I + W1R)−1W1 − W2 − λI + M = 0 (78)

λ(tr R − PT ) = 0, MR = 0 (79)

λ ≥ 0, M, R ≥ 0 (80)

where λ ≥ 0 is a Lagrange multiplier responsible for the
total power constraint and M ≥ 0 is a matrix Lagrange
multiplier responsible for the constraint R ≥ 0. Since the
objective is concave, the corresponding optimization prob-
lem is convex, and since Slater condition holds (e.g. take
R = PT I/2 > 0, trR < PT ), the KKT conditions are
sufficient for optimality [18]. After some manipulations, (78)
can be transformed to

R̂ − (I − M̂)−1 = −Ŵ−1
1 (81)

R̂ = W1/2
λ RW1/2

λ , M̂ = W−1/2
λ MW−1/2

λ ,

Ŵ1 = W−1/2
λ W1W−1/2

λ (82)

where we implicity assume that W1 and Wλ are non-singular,
so that Q = W−1

λ ; the singular case will be considered
below. Since M̂R̂ = 0 (which follows from MR = 0), these
matrices commute and thus have the same eigenvectors, which,
from (81), implies that these eigenvectors are the same as
those of Ŵ1. Hence, all three matrices can be simultaneously
diagonalized and thus (81) can be transformed to diagonal
form from which (8) follows after some manipulations [30].

The existence of the threshold power P∗
T follows from the

fact that tr R∗ is monotonically decreasing in λ so that its
largest value corresponds to λ → 0 and equals P∗

T . When
PT > P∗

T , λ = 0 and tr R∗ = P∗
T < PT , i.e. only partial

power is used (see Fig. 1 for illustration and discussion). The
case of singular W2 and Wλ is considered in [30].

B. Proof of Proposition 1

The 1st equality in (28) follows from (4). The 2nd equality
follows from the Hadamard inequality applied to |I + W1R|
in the same way as for the regular MIMO channel, and the
equality is achieved when R has the same eigenvectors as W1,
R∗ = U1�

∗U†
1, which maximizes the numerator and leaves

the denominator unchanged. The remaining part is the optimal
power allocation in (29), which can be formulated as

C∗(ε) = max{λi }
∑

i

ln
1 + giλi

1 + ελi
, s.t. λi ≥ 0,

∑

i

λi = PT

(83)

This, however, represents an optimal power allocation for
parallel channels which can be found in [20].

The lower/upper bounds follow from the fact that |I+WR|
is a matrix-monotone function of W [21], so that |I+WbR| ≥
|I + WaR| ∀Wb ≥ Wa ≥ 0. The gap bound in (30) is proved
in [30].

C. Proof of Proposition 4

The original problem in (4) is not convex in general.
However, since the objective is continuous, the feasible set
is compact and Slater condition holds, KKT conditions are
necessary for optimality [22]. They take on the following form
(see e.g. [6]):

λW1R = W1 − W2 + M − λI (84)

λ(tr R − PT ) = 0, MR = 0 (85)

λ ≥ 0, M, R ≥ 0, tr R ≤ PT (86)

where M ≥ 0 is the Lagrange multiplier matrix responsible for
the constraint R ≥ 0 while λ ≥ 0 is the Lagrange multiplier
responsible for the total power constraint trR ≤ PT , and we
used the orthogonality condition W2R = 0.

To prove sufficiency, note from Proposition 3 that if W1, W2
have the same eigenvectors so is R and hence M and also the
KKT conditions are sufficient for optimality (since they have a
unique solution). Hence, (84) can be transformed to a diagonal
form:

λλ1iλi = λ1i − λ2i + λMi − λ (87)
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where λi , λMi are the eigenvalues of R, M. Complementary
slackness in (85) gives λiλMi = 0 so that λi > 0 (active
eigenmodes) implies λMi = 0 and hence

λi = λ1i − λ2i − λ

λλ1i
= 1

λ
− 1

λ1i
(88)

where the 2nd equality follows from the orthogonality condi-
tion λ2iλi = 0. For inactive eigenmodes λi = 0, one obtains
λMi = λ − λ1i + λ2i ≥ 0 so that λ1i ≤ λ + λ2i . A proof of
the necessary part can be found in [30].
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