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Strong Converse for General Compound Chani

Sergey Loyka, Charalambos D. Charalambous

Abstract—A general compound channel is considered, where the general compound channel. In a nutshell, the cond
no stationarity, ergodicity or information stability is re quired.  require the existence of an information-stable sub-secpiel
Following the recent result on the capacity of this channel oder (bad) channel states (indexed by the blocklength) suchthie

the full Rx CSlI, sufficient and necessary conditions are obtaed ti b finf tion d i .
for the strong converse to hold. In a nutshell, even though no respeclive sub-sequence or information densities corgan

information satiability is required upfront, the conditio ns imply ~ Probability to the compound channel capacity. No assump
that there exists a sub-sequence of (bad) channel statesdaxed of stationarity, ergodicity or information stability areaahe fol
by the blocklength) for which the respective information density  the members of the uncertainty set.

rates converge in probability to the compound channel capaty,

i.e. this sub-sequence is information stable.

Il. CHANNEL MODEL
I. INTRODUCTION

It is well-known that channel state information (CSI) af Letus consider a generic discrete-time channel model v
fects significantly system performance and respective rmeiaan = {X1... Xy} is a (random) sequence ofinput Sy'_“bO'S
capacity. It can be rather limited in many scenarios, esigci X = {Xn}.zo:l denotes all such sequences, and is the

' ' corresponding output sequence;e S denotes the chanr

for wireless systems, where low SNR, interference and cxﬁangtate (which may also be a sequence) anis the (arbitrary

dynamics are significant, and where the feedback (if any) '%certainty setp.(y"|z") is the channel transition probabili

also limited [1]. A popular approach to model the impact o'f(Tn) andp, () are the input and output distributions un
limited CSl is to assume that the receiver (Rx) and tramalrnitch‘annel stpaste%/

(Tx) know that the unknown channel is fixed and belongs to aLet Us assume that the full CSI is available at the rec

certain class of channels (uncertainty set), which is kno .
as the compound channel model [2]-[6]. The capacity VZ%X) bu_t not the_ transmltter_ (TX) (see e.g. [1] for a_deta
tivation of this assumption; when the channel is qt

compound channels has been extensively studied since @lat'c thi mption is Not nece and that the el
1950s [2]-[5]; see [6] for an extensive literature review tap S Ith IS (?Siut P' n_lsd d fs?ry) hn ther. Foll
late 1990s, and [9] for more recent results. Inpu and states are independent ot €ach other. Follow

All of these studies assume that each channel in the unctgg standard approach (see e.g. [1]), we augment the ct

tainty set is information-stable (in the sense of Dobru$h@j olu(';pzujg/v Itt? ihe stattiY"_—> (tY n’g)' Tthe lnfformatl_on der;]sn

or Pinsker [11]), e.g. stationary and ergodic. Howeverrethe[ I-[13] etween the input and ou pli or a given chal

are many scenarios (especially in wireless communica)tior%ates and a given input distributiop(z") is

where the channels are not stationary, ergodic or infoonati ps(@™, y™)

stable. This setting was recently studied in [14], where the i(a"y", s) = In 2 — iz y"s) 1)

capacity of general (information-unstable) compound clets p@")ps (y7)

was established under the full Rx CSI using the informatigghere we have used the fact that the inpit and channe

density (spectrum) approach of [7][8]. The assumption df fustates are independent of each other. Note that we mak

Rx CSl is motivated by the fact that channel estimation {gssumptions of stationarity, ergodicity or informatioatstity

done at the Rx so that full Rx CSI may be available if thﬁ] this paper, so that the normalized information der

SNR is h|gh enough but limited (|f any) feedback to the T)ﬁL*LL()(’VL7 Y”L‘S) does not have to converge to the respel

makes full Tx CSI unfeasible. mutual information rate as — oo. There is no need for tt
While the channel capacity theorem ensures the achigynsistency assumption gn(y"|z") either (e.g. the chanr

ability of any rate below the capacity with arbitrary lowmay behave differently for even and oddl

error probability, there exists a hope to achieve higheesrat £or fyture use, we give the formal definitions of informa

by allowing slightly higher error probability, since theat-  giapijity following [10]-[12] (with a slight extension tohe

sition from arbitrary low to high error probability may becompound setting).

slow. Strong converse ensures that this transition is very

sharp (for any rate above the capacity, the error probgbilefinition 1. Two random sequencesX and Y are

converges to 1) and hence dispels the hope. In this pagefprmation-stable if

we extend the study in [14] by establishing the sufficient )
s (X" Y™|s) pr

and necessary conditions for the strong converse to hold for M iasn = oo )

I(X™Y"|s)
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Definition 2. Channel states is information stable if there there exists gn, r,,, £, )-code (where the codewords are in

exists an inputX such that pendent of channel statd, satisfying the following inequalit
i(X™Y™s) pr I(X™Y™"|s) en <supPr{n L(X™Y"s) <rp+4t+e 7 (7)
(Xmyes) 0 e, tesnmee Q) Ssppried = /
. . . fi . O
whereCy,s = sup,,») [(X";Y™"|s) is the information capac- oranysy >0
ity. Lemma 2 (Verdu-Han Lemma for compound channels [1

For any uncertainty sef, every(n,r,,,)-code satisfies tt

Note that the 2nd definition requires effectively the Chann?ollowing inequality

to behave ergodically under the optimal input only, andsted
nothing about its behaviour under other inputs (e.g. a malct €n > sup Pr {n‘lz‘(X”; Y's) <rp— 7} —e ™ (8)
code) and, in this sense, is rather limiting. To charactettie s€S

channel behaviour under different inputs (not only theropti for any v > 0, where X™ is uniformly distributed over a
one), we will consider the information stability of its inpX  codewords and™” is the corresponding channel output un
and the induced outptt following Definition 1. Further note channel states. O
that, for the compound channel, some channel states may be

information stable while others are not. IV. STRONG CONVERSE FOR THEGENERAL COMPOUND
CHANNEL
[1I. CAPACITY OF THE GENERAL COMPOUND CHANNEL Strong converse ensures that slightly larger error prdiba
We define an#, 7., £,)-code for a compound channel inc@nnot be traded off for higher data rate (since the tram
the standard way, whene is the blocklengthr,, = In M, /n from arbitrary low to high error probability is sharp).
is the code rate and/,, is the number of codewords, aad  pefinition 3. A compound channel is said to satisfy str

is the compound error probability, converse if
€n = SUP Ens 4) lim e, =1 9)
seS n—00

wheree,,, is the error probability under channel stateRate for any code satisfying
R is achievable ifliminf,,_,. 7, > R andlim, . &, = 0, liminfr, > C, (10)
which ensures arbitrary low error probability for any chahn n—oo
in the uncertainty set for sufficiently large [1]-[6]. The To obtain conditions for strong converse, X;Y) be
capacity is the supremum of all achievable rates. Codebogks »yorst-case” sup-information rate,
are required to be independent of the actual channel state
while the decision regions are allowed to dependsddue to [(X;Y) =inf {R . lim inf Pr{Z,, > R} = O} (11)
full Rx CSI). R n—o0 s€S

Below, we briefly review the relevant results in [14], whichyhaere 7

_ ns = n L (X™; Y™|s) is the information density rat
are instrumental for further development here. and1,,(a) be the truncated mutual information,

Theorem 1 ([14]). Consider a general compound channel I — E{(7 117 < I — lim I 12
where the channel state € S is known to the receiver but ns(a) {Zns11Zns < al}, Tns asroo nsl@) (12)

not the transmitter and is independent of the channel inpughere1]] is the indicator function and,,, = I(X™;Y™|s) is
the transmitter knows the (arbitrary) uncertainty s8t Its  the mutual information under channel stateThe compoun

compound channel capacity is given by sup-information ratel (X;Y’) and the sup-information rs
C. = sup [(X;Y) 5) I1(X;Y|s) under channel state are defined as
p(x) ™

~ill

(X;Y) = i%f {R : lim supPr{Z,s > R} = O} (13)

where the supremum is over all sequences of finite-dimeasion n—0oo ge S B

input distributions and I(X;Y’) is the compound inf- f(X-Y|s)=inf{R- lim Pr{Z >R}:0} (14)
information rate, ' R " nsoo ne=

The following Proposition establishes an ordering of vas
} (6) information rates.

I(X;Y) =sup {R : lim supPr{Z,s <R} =0
= R

n—oo sES

. . . . Proposition 1. The following inequalities hold for any in
where Z,,, = n~1i(X™; Y"|s) is the normalized information P g ineq y inp

density under channel state O I[(X;Y) < [(X;Y)
This theorem was proved using the Verdu-Han and Feinstein < inf I[(X;Y]s)
Lemmas properly extended to the compound channel setting. <sup I(X;Y]s)

Lemma 1 (Feinstein Lemma for compound channels [14]) =
For arbitrary input X” and uncertainty setS and anyr,, <I(X;Y) (15)
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Proof. see the Appendix. O so that/(X*;Y*) = C. follows, which also implies that

It can be shown, via examples, that all inequalities can lim inf Pr{Z*, >C.+36}=0V&6>0 (24)
be strict. Using this Proposition, sufficient and necessary noroo s
conditions for the strong converse to hold can be estalalish©n the other hand[(X*;Y™) = C. implies

Theorem 2. A sufficient and necessary condition for the lim supPr{Z}, <C.—6}=0Vds>0 (25)
general compound channel to satisfy strong converse is nTee s
. and hence
supI(X;Y) =supI(X;Y) (16)
p(x) p() lim inf Pr{|Z}, —C.| >0} =0V¥0 >0 (26)

n—oo s

If this holds and the convergendg,(a) — I,s is uniform

in n, s for any input X* satisfyingi(X*;Y*) = C. — 5 for follows. Next, we need the following technical Lemma.

somed > 0 (i.e. the inputX™ is ¢-suboptimal), then Lemma 3. Let {x,,} be a non-negative compound seque
. 1 such that
C.=supI(X;Y) =liminf sup inf —1(X™;Y"|s) (17)
p(z) "0 pzn) 0 M lim inf z,s =0 27)
n—oo s

The condition(16) is equivalent to:
1) for anyé > 0 and any inputX " satisfying/(X*; Y™) >
Ce -6, lim 2,,(,) =0 (28)

n— oo
Jim inf Pr{|Z;, = Cc[ > 6} =0 (18)  proof. Wheninf, is achieved, the statement is trivial. To pri
it in the general case, observe that, from the definitiom&f

and for anyn, there always exists suci{n) that

Then, there exists such sequence of state$ that

where Z; . = Li(X"*;Y"™*|s) is the normalized information

ns

density under inpufX *.

2) for any inputX and anys > 0, Tps(n) < infax,s +1/n (29)
Jiminf Pr{Z; > Ce+6} =0 19) 5o that takinglim,_,.. of both sides, one obtains (28) O

Proof. see the Appendix. L Using this Lemma, (26) implies the existence of a sequ
Remark 1. In the case of a single-state channel, of channel states(n) such that (22) holds. O

I(X;Y)=I(X;Y), [(X;Y)=1(X;Y) (20) Remark 3. Note that, under the conditions of Corollary
- the sequence(n) of worst-case channel states is informati

whereI(X;Y), I(X;Y) are inf and sup-information rates stable even though no assumption of information stabildy

for the regular (single-state) channel, and Theorem 2 reducmade upfront.

to the corresponding Theorem in [7][8].

Remark 4. In light of Lemma 3, conditiorf19) means the
Remark 2. Note that, under the conditions of Theorem 2 thahere exists such sequence of (bad) channel st&tep that
lead to(17), the compound channel behaves ergodically eveie information spectrum of the corresponding sequent
though no assumption of ergodicity (or information stap)li normalized information densities,,,(,) does not exceed’,
was made upfront. under any input, i.e.

Below, we consider a special case when the supremum in J4(5) : lim Pr{Z,stn)y > Cc+6}=0¥5>0  (30)
(5) is achieved. nTreo

Corollary 1. If the channel satisfies strong converse and the V. APPENDIX
supremum irsup, ) L(X;Y') is achieved, i.e. A. Proof of Proposition 1
AX*: (X5 YY) =C. (21) The 1st inequality is proved by contradiction. Lét=

thenl(X*;Y™*) = C. and there exists such sequence of chalé(X; Y), I=1(X;Y). assumel — I =26 >0 and set

nel statess(n) that the corresponding sequence of normalized R=(I+0/)2=1-6=1+¢ (31)
information densitiesZ* () (under inputX™) converges in B B

probability to the compound channel capadity, so that

lim Pr{|Z},, —Cc| >0} =0¥6>0  (22) 0= lim sup Pr{Z,, <I—0d}

n—oo S
i.e. this sequence (which represents worst-case charméiei = lim Sup Pr{Z,, < R}
uncertainty set) is information-stable. —1— lim infPr{Z,, > R}

- ns
Proof. Observe thatl (X™*;Y™) = C. implies 1 n;nolo i;f Pr{Zps > [+6} =1 32)
Co=IX%Y") < (X" Y") <supl(X;Y)=C, (23) e
p(z) lthis way of proof was suggested by a reviewer.
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i.e. a contradiction. from which it follows that
The 2nd inequality is also proved by contradiction. et
inf, I(X;Y|s), assumel — I = 25 > 0 and set nlggo HglfPr{Z"S > Ce+30} =0 (43)
R=(I+D/)2=T+6=1-6 (33) which implies (19) and (X;Y) < C. (under any input) s

that, from Proposition 1,

so that, from the definition of, 5
C.=supI(X;Y) <supl(X;Y)<C. (44)

0 < € = limsup mf Pr{Z,s >1—6} p(x) ()
n—oo
from which (16) follows.
<infli Pr{Z,, >1—¢ . - -
- 12 lﬂso‘ip t{Zns > } To establish the sufficiency of (19), observe that it imf
= inflimsup Pr{Z,, > I + 6} the 2nd inequality in (44) from which (16) follows, which
5 moeo _ sufficient.
< limsup Pr{Zy,- > I + 6} To establish (18), observe that, = sup,,,) L(X:Y) im-
. S . B plies that there exists such inpht™ that/(X*; Y™) > C.—20
< hTIln_)bolip Pr{Z,s > I[(X;Y|s*)+6/2} =0 (34) 50 that, for any suctX ™,

i.e. a contradiction, wherg* is such channel state that . 1. N
0= lim supPr{—z(X"*;Y"*\s) <I(X";Y") - 5}
" S

I(X;Y|s*) <infI(X;Y]s) 4+ d/2 (35) nTe s
§ : 1. nk, Vo Nk _
The last inequality can be proved in a similar way. 2 Jim sup PY{EZ(X Y™ s) < Ce = 35} =0 (49)

B. Proof of Theorem 2 Combining this with (43) applied to inpuX*, one obtains

To prove sufficiency, let the equality in (16) to hold andlim inf Pr{|Z;; — Cc| > 35} < lim infPr{Z;, > C. + 30

select a code satisfying + lim supPr{Z’, < C. — 36} =0 (46)
n—00 o
liminfr, = R=C.+ 36 (36) . s
n—ro0 from which (18) follows. 5 }
for somed > 0, so that To establish last equality in (17), ldt = I(X;Y) and
rn>R—6=C.+25 =supl(X;Y)+25 (37) observe that
p(@) Ins(a) = B{Zns1[Zns < T+ 0]}
for sufficiently largen. Using Lemma 2 for this code, one >
obtains: Y E{Zo[[+6 < Zns <d}  (47)
lim g, > hm bllp Pr{Z,s <r,—0} ’
n—00 e:
5 for somed > 0, wherel[] is the indicator function. The tw
> 1i_>m sup Pr ¢ Z,s < S:lp) I(X;Y)+6 expectation terms can be upper bounder as
n—oo g p(x

n—oo g

5 e2 <a-Pr{Z,s > I+ o} (48)
=1— lim infPr{Z,s > I(X;Y)+¢
n—oo s { s ( ) } so that
=1 (38)
o lim inf inf — I(X" Y"[s) = liminfinf lim I,s(a)
so that (9) holds, where the last equality is due to n—eo s noo s 400
= hrn hmmflnflns( )
lim inf Pr{Z,, > [(X;Y)+ §}=0 (39) a—00 n—00
nree s < lim liminf lnf((l + 0 Pr{Z,s <IT+6}
which follows from (11). =00 N0 s
To prove the necessary part, assume that (9) holds and, using +a-Pr{Z,s > 1+6})
Lemma 1, select a code satisfying < lim ((f +0) limsup supPr{Z,, < I + 0}
,,lin;o mn=R=Cc+9 (40) + a - liminf lanI‘{ZnS >1+ 0})
Tn— 00 S
for somed > 0. This implies that =1+ (49)
mn < Ce+20 (41)  where the 2nd equality is due to uniform convergence an
for any sufficiently large:. Applying Lemma 1, one obtains ast equality is due to
1= lim ¢, < hm supPr{Z,,; <r, + 4} hnlglgf iI;fPr{Zns >T1+6})=0 (50)
n—00 s .
< lim supPr{Zns < C, + 36} limsupsup Pr{Z,s < I + ¢}
n—oo g n—00 s
-1 (42) =1- 11££f12fPr{an >I4+6})=1 (51)
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Since (49) holds for arbitrary small > 0, it follows that

lim inf inf — I(X" Y"s) <1

n— oo S

for any input. Takrngsupp(m) on both sides, one obtains:

(52)

C.=sup[(X;Y)

p(x)

< liminf sup inf — ](Xn Y™s)
n—o00 p(zn) s

<sup [(X;Y) = C. (53)
p(x)

from which the desired result follows, where the 1st inefyal
is due to Proposition 2 below.

(1]

(2

(3]
[4
(5]
6]
[

Proposition 2. Consider the general compound channel. It8]

compound inf-information rate is bounded as follows:

I(X,Y) <liminfinf — I(X" Y"s) < I[(X;Y) (54)
- Tn— 00 S
Proof. Let Z,,, = 2i(X™;Y"|s) and observe that
1
—I(X"; Y™s) = E{Zns}
> E{Zns1[Zns < 0]} + E{Zps1[Zns > 1 - 6]}  (55)

forany0 < § < I, wherel[] is the indicator function and =

I(X,Y). The 1st termt; can be lower bounded as follows: (4]

t1 = B{Zns1[Zns < 0]}

>

n T, Y2y s <0
1

e 2

&y 25 <O

Ps(y")p(2" )wns Inwps

ps(y")ps(z™)

ne
wherew,s = ps(y™|z"™)/ps(y™) and the 1st inequality follows
fromwlnw > —1/e. The 2nd term, can be lower bounded
as follows:

> (56)

t2 E{Z’nsl[Z’ns 2 i -

>

PR &)

> (L—0)Pr{Zys > L -6}

o}

ZnsPs(y" 2" )p(a™)

(57)
Combining these two bounds, one obtains:

lim inf inf — I(X" Y™s)
n—o00 S
0) lim infPr{Z,s > I -6}
n—oo S -

(
—1-9 (58)

where the equality follows from
0= lim bupPr{Zns <I-46}

n—00

1— lim inf Pr{Z,, > I -}

n—oo s

Since the inequality in (58) holds for eaéh> 0, one obtains
the 1st inequality in (54) by taking — 0; the 2nd one has
been already established in (52). |

(59)

El
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