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An Algorithm for Global Maximization of Secrecy
Rates in Gaussian MIMO Wiretap Channels

Sergey Loyka and Charalambos D. Charalambous

Abstract—Optimal signaling for secrecy rate maximization in
Gaussian MIMO wiretap channels is considered. While this chan-
nel has attracted a significant attention recently and a number of
results have been obtained, including the proof of the optimality
of Gaussian signalling, an optimal transmit covariance matrix is
known for some special cases only and the general case remains
an open problem. An iterative custom-made algorithm to find a
globally-optimal transmit covariance matrix in the general case is
developed in this paper, with guaranteed convergence to a global
optimum. While the original optimization problem is not convex
and hence difficult to solve, its minimax reformulation can be
solved via the convex optimization tools, which is exploited here.
The proposed algorithm is based on the barrier method extended
to deal with a minimax problem at hand. Its convergence to a
global optimum is proved for the general case (degraded or not)
and a bound for the optimality gap is given for each step of the bar-
rier method. The performance of the algorithm is demonstrated
via numerical examples. In particular, 20 to 40 Newton steps
are already sufficient to solve the sufficient optimality conditions
with very high precision (up to the machine precision level), even
for large systems. Even fewer steps are required if the secrecy
capacity is the only quantity of interest. The algorithm can be
significantly simplified for the degraded channel case and can also
be adopted to include the per-antenna power constraints (instead
or in addition to the total power constraint). It also solves the dual
problem of minimizing the total power subject to the secrecy rate
constraint.

Index Terms—MIMO, secrecy capacity, optimization, wiretap
channel.

I. INTRODUCTION

W IDE-SPREAD use of wireless systems has initi-
ated significant interest in their security and related

information-theoretic studies [1]. Secrecy capacity has emerged
as a key performance metric, which extends the regular channel
capacity to accommodate the secrecy requirement. Wyner’s
wire-tap channel (WTC) [1]–[3] is the most popular model
to accommodate secrecy, which was extended to the Gaussian
channel [4] and subsequently to the Gaussian multiple-input
multiple-output (MIMO) setting [5]–[8]; the reader is referred
to [1] for a detailed discussion of this model and extensive
literature review. The Gaussian MIMO WTC has been recently
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a subject of intense study and a number of results have been ob-
tained, including the proof of optimality of Gaussian signaling
[1], [5]–[8]. While the functional form of the optimal (capacity-
achieving) distribution has been established, significantly less is
known about its optimal covariance matrix (the only remaining
parameter to completely characterize the distribution since the
mean is always zero).

The optimal transmit covariance matrix under the total power
constraint has been obtained for some special cases, e.g.,
low/high SNR, multiple-input single-output (MISO) channels,
full-rank, rank-1 or weak eavesdropper cases, or the parallel
channel [5]–[19], but the general case remains illusive. The
main difficulty lies in the fact that the underlying optimization
problem is in general not a convex problem. It was conjectured
in [7] and proved in [6] using an indirect approach (via the
degraded channel) that the optimal signaling is on the posi-
tive directions of the difference channel (where the legitimate
channel is stronger than the eavesdropper one). A direct proof
based on the necessary Karush-Kuhn-Tucker (KKT) optimality
conditions has been obtained in [14]. A weaker form of this
result (non-negative instead of positive directions) has been
obtained earlier in [9]. In the general case, the rank of an
optimal covariance matrix does not exceed the number of
positive eigenvalues of the difference channel matrix [14]. An
exact full-rank solution for the optimal covariance has been
obtained in [14] and its properties have been characterized. In
particular, unlike the regular channel (no eavesdropper), the
optimal power allocation does not converge to uniform one
at high SNR and the latter remains sub-optimal at any finite
SNR. In the case of weak eavesdropper (its singular values are
much smaller than those of the legitimate channel), the optimal
signaling mimics the conventional one (water-filling over the
channel eigenmodes) with an adjustment for the eavesdropper
channel. The rank-one solution in combination with the full-
rank one provides a complete solution for the case of two
transmit antennas and any number of receive/eavesdropper
antennas. The 2-2-1 case (2 transmit, 2 receive, 1 eavesdropper
antenna) has been studied earlier in [10] and the MISO case
(single-antenna receiver) has been considered in [11], [12] and
settled in [5], [13], for which beamforming is optimal and
which is also the case for a MIMO-WTC in the low SNR
regime. The case of isotropic eavesdropper is studied in detail
in [15], including the optimal signaling in an explicit closed
form and its properties. This case is shown to be the worst-
case MIMO wire-tap channel. Based on this, lower and upper
(tight) capacity bounds have been obtained for the general case,
which are achievable by an isotropic eavesdropper. The set of
channels for which isotropic signaling is optimal has been fully

0090-6778 © 2015 Canadian Crown Copyright



LOYKA AND CHARALAMBOUS: GLOBAL MAXIMIZATION OF SECRECY RATES IN GAUSSIAN WIRETAP CHANNELS 2289

characterized [15]. It turns out to be more richer than that of the
conventional (no eavesdropper) MIMO channel. A closed-form
solution was obtained in [16] for the case of weak eavesdropper
but otherwise arbitrary channel; its optimal power allocation
somewhat resembles the water-filling but is not identical to it.
For the case of parallel channels, independent signaling is opti-
mal [17], [18], which implies that the optimal covariance matrix
is diagonal; the corresponding optimal power allocation can be
found in [18]. This also implies that the eigenvectors of optimal
covariance matrix are the same as the right singular vectors of
the legitimate or eavesdropper channels when the latter two are
the same [16] and the corresponding power allocation is the
same as in [18]. The low-SNR regime has been studied in detail
in [19]. In particular, signaling on the strongest eigenmode(s) of
the difference channel matrix is optimal. Little is known beyond
these special cases and the general case is still an open problem.

While numerical algorithms have been proposed in [20], [21]
to compute a transmit covariance matrix for the MIMO-WTC,
their convergence to a global optimum has not been proved. The
main difficulty lies in the fact that the underlying optimization
problems are not convex and hence KKT conditions are not
sufficient for optimality [24]. In particular, while the alternating
optimization algorithm in [20] is shown to convergence to a
KKT (stationary) point, it is not necessarily a global maximum
(due to the above reason); it may, in fact, be a saddle point or a
local rather than global maximum of the secrecy rate1 and it is
not known how far away it is from the global maximum. This
remark also applies to the algorithms considered in [21], [22].

The purpose of this paper is to develop a numerical algorithm
for computing a globally-optimal covariance matrix in the gen-
eral case, i.e. for the general Gaussian MIMO-WTC (degraded
or not), with guaranteed convergence to a global optimum,
and to prove its convergence. This is a challenging task as the
underlying optimization problem is not convex so that standard
tools of convex optimization cannot be used; in general, non-
convex problems are much harder to solve [23]. We deal with
this challenge by using the minimax representation of the
secrecy capacity found in [6]. While this representation appears
to be more complicated than the standard one (the former
involves two conflicting optimizations while the latter—only
one), it turns out to be much easier to solve, at least numeri-
cally, as we demonstrate using the primal-dual representation
of Newton method in combination with the barrier method.
The main advantage of this approach is that each of the two
problems is convex, the saddle-point property holds and hence
the respective KKT conditions are sufficient for global optimal-
ity (Slater’s condition holds as well). A conceptually-similar
approach has been used before for optimizing the transmitter
with per-antenna power constraints in the regular (no secrecy)
MIMO broadcast channel in [25]. Our custom-made algorithm
essentially solves the KKT optimality conditions (see e.g., [23]
for a background on these conditions), which are sufficient
for the minimax problem at hand, in an iterative way using
the primal-dual representation of Newton method in combi-

1For non-convex problems, KKT point can also be a local minimum rather
than maximum. This is ruled out in [20] by the non-decreasing nature of the
generated sequence of objective values.

nation with the barrier method (to accommodate inequality
constraints) adopted to the MIMO WTC setting, see Section V.
A proof of the algorithm’s convergence to a global optimum is
also provided for the general case. While we formulate the algo-
rithm for the total power constraint, it can be easily modified to
accommodate other forms of power constraint, e.g. maximum
per-antenna constraint (instead or in addition to the total power
constraint), and also to solve a dual problem of minimizing the
total transmit power under the secrecy rate constraint.

A key part of the convergence proof for our algorithm
involves a proof of non-singularity of the KKT matrix2, so
that Newton steps are well-defined for all iterations of the
algorithms and they generate a sequence of norm-decreasing
residuals and hence converge to a globally-optimal point (i.e.,
a solution of the KKT conditions which corresponds to zero
residual). This is a difficult task since the underlining optimiza-
tion problems involve both maximization and minimization and
the corresponding KKT matrix is indefinite so that the regular
tools developed for positive semi-definite matrices [26] do not
apply. A block-partitioned factorization of the KKT matrix is
used to accomplish it. This is explained in Section V, which also
gives a bound on the optimality gap for each step of the barrier
method. Numerical examples in Section VII demonstrate fast
convergence of the algorithm: 20 to 40 Newton steps are already
sufficient to achieve a very high precision (up to the machine
precision level), even for large system. Even less steps are
required if the secrecy capacity is the only quantity of interest.
Section VI demonstrates that significant simplifications in the
algorithm are possible for a degraded channel. Section IV
gives a brief review of the barrier and Newton methods for
inequality-constrained optimization, and presents an algorithm
for minimax problems with guaranteed convergence to a global
optimum. Section III summarizes the minimax representation
of the secrecy capacity on which our algorithm is based.
Section II reviews the Gaussian MIMO-WTC model and its
secrecy capacity.

II. WIRE-TAP GAUSSIAN MIMO CHANNEL MODEL

Let us consider the standard Gaussian MIMO wire-tap chan-
nel model as in Fig. 1,

y1 = H1x+ ξ1, y2 = H2x+ ξ2 (1)

where x = [x1, x2, . . . xm]′ ∈ Rm,1 is the (real) transmitted
signal vector of dimension m× 1, ′ denotes transposition,
y1(2) ∈ Rn1(2),1 are the (real) received vectors at the receiver
(eavesdropper), ξ1(2) is the additive white Gaussian noise at
the receiver (eavesdropper) (normalized to unit variance in each
dimension), H1(2) ∈ Rn1(2),m is the n1(2) ×m matrix of the
channel gains between each Tx and each receive (eavesdropper)
antenna, n1(2) and m are the number of Rx (eavesdropper) and
Tx antennas respectively. The channels H1(2) are assumed to
be quasistatic (i.e., constant for a sufficiently long period of
time so that the infinite horizon information theory assumption
holds) and frequency-flat, with full channel state information

2A singular KKT matrix would imply that the corresponding Newton step
is not defined and thus the algorithm would terminate without converging to a
global optimum.
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Fig. 1. A block diagram of the Gaussian MIMO wiretap channel. Full channel
state information is available at the transmitter. H1(2) is the channel matrix to
the legitimate receiver (eavesdropper); x is the transmitted signal and y1(2)
is the received (eavesdropper) signal; ξ1(2) is the AWGN at the receiver
(eavesdropper). The information leakage to the eavesdropper is required to
approach zero asymptotically.

(CSI) at the Rx and Tx ends. A secrecy rate is achievable for
this channel if (i) the receiver is able to recover the message
with arbitrary low error probability (reliability criterion) and
(ii) the information leaked to the eavesdropper approaches zero
asymptotically (secrecy criterion) [1].

For a given transmit covariance matrix R = E{xx′}, where
E{·} is statistical expectation, the maximum achievable secrecy
rate between the Tx and Rx (so that the rate between the Tx and
eavesdropper is zero) is [6]–[8]

C(R) =
1

2
ln

|I+W1R|
|I+W2R| = C1(R)− C2(R) (2)

where negative C(R) is interpreted as zero rate, Wi=H′
iHi,

and the secrecy capacity subject to the total Tx power constraint is

Cs = max
R≥0

C(R) s.t. trR ≤ PT (3)

where PT is the total transmit power (also the SNR since the
noise is normalized). It is well-known that the problem in (3)
is not convex and hence very difficult to solve in general and
explicit solutions for the optimal Tx covariance is not known for
the general case, but only for some special cases, e.g., low/high
SNR, MISO channels, full-rank or rank-1 case [5]–[9] or for
the parallel channel [17], [18].

Since (3) is not a convex problem in the general case, not only
widely-used Karush-Kuhn-Tucker optimality conditions are not
sufficient, but also the convergence of a numerical algorithm to
a global optimum is very difficult if not impossible to insure
since the standard tools of convex optimization fail to work and,
in general, non-convex problems are much harder to deal with
[23]. Thus, (3) is very difficult to solve either analytically or
numerically in the general case. Even when C(R) is concave
so that the problem becomes convex (when the channel is de-
graded, W1≥W2), its analytical solution is not known, except
for the special cases noted above, and the known convex solvers
[30]–[32] are not able to solve the problem, even in this convex
setting so that a custom-made algorithm has to be developed.

To go around this difficulty, we use the following minimax
representation of the secrecy capacity.

III. MINIMAX REPRESENTATION OF SECRECY CAPACITY

A minimax representation of the secrecy capacity was ob-
tained in [6] via a channel enhancement argument and a clever

bounding technique, which is instrumental for our algorithm
and is summarized below.

Theorem 1 (Theorem 1 in [6]): The secrecy capacity of
Gaussian MIMO-WTC channel in (2) can be presented in the
following minimax form:

Cs = max
R

min
K

f(R,K) = min
K

max
R

f(R,K) (4)

where

f(R,K) =
1

2
ln

|I+K−1HRH′|
|I+W2R| ≥ C(R), (5)

K =

(
I K′

21

K21 I

)
≥ 0, H =

(
H1

H2

)
, (6)

and the optimization is over the set S of all feasible R, K:

S = {(R,K) : trR ≤ P, R,K ≥ 0, K is as in (6)} . (7)

The upper bound in (5) via f(R,K) was obtained from a
genie-aided receiver which knows y2 (in addition to y1) and K
represents noise covariance between ξ1 and ξ2. Minimization
over K is due to the fact that the true capacity does not depend
on K while the upper bound does so it’s natural to seek the
least upper bound. This bound can also be used in a numerical
algorithm to evaluate the optimality gap with respect to minK
for each R. In fact, (4) states that letting the receiver to know y2

in addition to y1 does not increase the secrecy capacity under
the worst-case noise covariance, which is rather surprising.

Remark 1: 2nd equality in (4) expresses the saddle-point
property, which is equivalent to the following inequalities (see
e.g. [23], [35]):

f(R,K∗) ≤ f(R∗,K∗) ≤ f(R∗,K) (8)

which hold for any feasible R,K, where (R∗,K∗) is the
optimal (saddle) point of (4). These inequalities follow from
von Neumann minimax Theorem since f(K,R) is convex in K
for any fixed R and concave in R for any fixed K (and for any
channel, degraded or not), and the feasible set in (7) is convex.

Remark 2: It is the convex-concave nature of f(R,K) along
with the saddle-point property in (8) and the constraints in (7)
that make the respective KKT conditions sufficient for global
optimality (see e.g. [23] and [33] for more details; note that
Slater’s condition holds for these problems). This cannot be said
about the original problem in (3). The sufficiency of the KKT
conditions is the key for our algorithm and a proof of its conver-
gence to a global maximum (rather than just a stationary point).

While the equivalence of (3) and (4) was established in [6],
an analytical solution of any one is not known in the general
case. In fact, no analytical solution is known for the latter.
Despite its more complicated appearance due to two conflicting
optimizations, (4) is in fact easier to solve than (3), at least
numerically, since both optimizations are convex and the re-
spective KKT conditions are sufficient for global optimality; a
proof of convergence of the corresponding numerical algorithm
to a global optimum is also within reach for any channel. While
the standard tools developed for single convex optimization
[23] do not apply directly here due to two conflicting optimiza-
tions involved, their primal-dual reformulation does work, as
explained below.
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We proceed to solve the minimax problem in (4) via KKT
conditions.3 Subsequently, a numerical algorithm is developed
with guaranteed convergence to a global optimum for any
channel, degraded or not, which is not possible for (3) due to
its non-convex nature in the general case. The Lagrangian for
the problem in (4) is

L = f(R,K)− trM1K+ trM2R
− λ(trR− P ) + trΛ(K− I) (9)

where M1, M2 ≥ 0 are (matrix) Lagrange multiplies responsi-
ble for the positive semi-definite constraints K,R ≥ 0, λ ≥ 0
is (scalar) Lagrange multiplier responsible for the total power
constraint trR ≤ P , and

Λ =

(
Λ1 0
0 Λ2

)
(10)

is a (matrix) Lagrange multiplier responsible for the constraint
on K as in (6). There are two sets of KKT conditions—one
per optimization in (4). For the maximization over R, the KKT
conditions are (to simplify notations, we have omitted the 1

2
factor):

∇RL =(I+WR)−1W − (I+W2R)−1W2 +M2 − λI
=0, (11)

M2R =0, (12)
trR ≤P, R,M2 ≥ 0, λ ≥ 0, (13)

where ∇R is the gradient (derivative) with respect to R and
W = H′K−1H. The KKT conditions for the minimization
over K are

∇KL = (K+Q)−1 −K−1 −M1 +Λ = 0, (14)
M1K = 0, (15)
K,M1 ≥ 0, (16)

and K,Λ are as in (6), (10); Q = HRH′. Here, we implicitly
assume that K > 0. While the singular case was treated in
a separate way in [6], we do not need a separate treatment
here since our numerical algorithm is iterative and, at each
step, it produces a non-singular K which, however, may be
arbitrary close to a singular matrix (i.e., may have arbitrary
small but positive eigenvalues). This models numerically a
case of singular K and is a standard feature of the barrier
method in general, where the boundary of the constraint set
can be approached arbitrary closely but never achieved (see e.g.
Chapter 11 in [23] for more detail). We remark that negligibly-
small eigenvalues can be rounded off to 0 and they also imply
that the numerical rank is low.

An optimal point in (4) must satisfy both sets of KKT condi-
tions simultaneously and these conditions are also sufficient for
global optimality, as noted above. An analytical solution to these
conditions is not known. Our numerical algorithm in Section V
solves these two sets of KKT conditions in an iterative way,
with guaranteed convergence to a globally-optimal point.

3See e.g., [23] for a background on KKT conditions.

IV. BARRIER METHOD FOR MINIMAX OPTIMIZATION

In this section, we first give a brief introduction into Newton
and barrier methods for inequality-constrained optimization;
the reader is referred to Chapters 9–11 of [23] for more details
and background information. These two methods are used as
key components to construct an algorithm for minimax opti-
mization. Subsequently, this algorithm is adapted to the secrecy
problem in (4) and its guaranteed convergence to a global opti-
mum is proved for any channel (degraded or not) in Section V.

A. Minimax Problem Via Primal-Dual Newton Method

Newton method for an equality-constrained problem essen-
tially transforms the problem into a sequence of quadratic
problems for which the sufficient KKT conditions are a system
of linear equations [23].

Let us consider the minimax problem of the form4

max
x

min
y

f(x,y), s.t. Axx = bx, Ayy = by (17)

where vectors x,y represent optimization variables, the objec-
tive f(x,y) is concave in x and convex in y; given matrices
Ax,Ay and vectors bx,by represent the equality constraints
for each variable. The KKT onditions for this problem are

∇xf +A′
xλx = 0, Axx− bx = 0,

∇yf +A′
yλy = 0, Ayy − by = 0, (18)

where λx,λy are dual variables, and they are sufficient for
global optimality.

While the standard Newton method can be used for both
optimizations, a proof of its convergence is challenging since
the objective is not monotonous (it decreases in one step and in-
creases at the other). The residual form of the Newton method is
preferable since, as it was observed in [23], it reduces the norm
of the residual at each step and thus generates a monotonous
sequence whose convergence to zero can be guaranteed. To
introduce this method, let us aggregate variables, derivatives
and parameters as follows:

z =

[
x
y

]
, λ =

[
λx

λy

]
, b =

[
bx

by

]
,

A =

[
Ax 0
0 Ay

]
, (19)

∇f =

[
∇xf
∇yf

]
, ∇2f =

[
∇2

xxf ∇2
xyf

∇2
yxf ∇2

yyf

]
, (20)

The KKT conditions in (18) can be cast in a residual form:

r =
[
(∇f +A′λ)

′
, (Az− b)′

]′
= 0. (21)

The Newton method iteratively solves r = 0 using 1st-order
approximation (Newton step):

r(w0 +Δw) = r(w0) +DrΔw + o(Δw)
≈ r(w0) +DrΔw (22)

4A similar problem, without equality constraints, have been briefly consid-
ered in [23]. More details can be found in [33]. Our development here is tailored
to be used for the secrecy problem in (4).
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where w = [z′,λ′] is the vector of aggregated (primal/dual)
variables, w0 and Δw are its initial value and update, Dr is
the derivative of r(w):

Dr =

[
∂r

∂z′
,

∂r

∂λ′

]
=

[
∇2f(z0) A′

A 0

]
= T (23)

and T is the KKT matrix. Now, setting r(w0 +Δw) = 0 and
solving for Δw from (22) gives the update

Δw : TΔw = −r(w0) (24)

We further show in Section V that T is non-singular for our
problem so that this system of linear equations is guaranteed to
have a unique solution for any set of parameters5.

Having the steps Δw = (Δz′,Δλ′)
′ computed, the pri-

mal/dual variable updates are

z = z0 + sΔz,λ = λ0 + sΔλ (25)

where the step size s is found via the backtracking line search
[23] as in Algorithm 1 below.

Algorithm 1 Backtracking line search

Require: w0, 0 < α < 1/2, 0 < β < 1, s = 1.
while |r(w0 + sΔw)| > (1− αs)|r(w0)| do s := βs
end while

In this Algorithm, α is a % of the linear decrease in the
residual one is prepared to accept at each step, and β is a
parameter controlling the reduction in step size at each iteration
of the algorithm. The Newton method in combination with the
backtracking line search is guaranteed to reduce the residual
norm |r(w)| at each step according to the following residual
norm-reduction property [23]:

d

ds
|r(w0 + sΔw)| = − |r(w0)| < 0, (26)

so that, for sufficiently small s, the residual indeed shrinks at
each iteration (unless |r(w0)| = 0, which implies that w0 is
optimal). This insures convergence of the algorithm to a global
optimum since KKT conditions are sufficient for optimality and
any locally-optimal point is automatically globally-optimal as
the problem is convex.

Based on this, the Newton method for minimax optimization
is as in Algorithm 2. The convergence of this algorithm to a
global optimum is insured by the convex/concave nature of
the objective, sufficiency of the KKT conditions in (18), non-
singularity of the KKT matrix T at each step (as proved in
Section V) and the norm-decreasing residual property in (26),
which ensures that the method generates a sequence of sub-
optimal solutions with monotonically decreasing residuals, for
which the stationary point has zero residual and thus solves
the sufficient KKT conditions. While the global optimum point
corresponds to zero residual, |r| = 0 (this is equivalent to the
KKT conditions in (18)), the practical version |r| ≤ ε of this

5While Δw = −T−1r(w0) is its analytical solution, it is not computed in
practice since computing T−1 is computationally-expensive and may result in
loss of accuracy for ill-conditioned T, see e.g., [26].

condition is used in Algorithm 2 as a stopping criterion. This
form of the stopping criteria is justified by not only the residual
form |r| = 0 of the KKT conditions, but also by the norm-
decreasing residual property in (26).

Algorithm 2 Newton method for minimax optimization

Require: z0, λ0, α, β, ε
repeat

1. Find Δz, Δλ using Newton step in (24).
2. Find s using the backtracking line search (Algorithm

1).
3. Update variables: zk+1 = zk + sΔz, λk+1 = λk +

sΔλ.

until |r(zk+1,λk+1)| ≤ ε.

As a side remark, we note that this algorithm can also be used
to solve the problem in (17) with max and min interchanged,
due to the saddle point property.

B. Barrier Method for Inequality-Constrained Problems

Let us now combine the barrier method and the minimax
method above to construct an algorithm for minimax opti-
mization with equality and inequality constraints. Consider the
following problem with inequality constraints:

max
x

min
y

f(x,y), s.t. Axx = bx, Ayy = by,

f1(x) ≤ 0, f2(y) ≤ 0 (27)

where f1 and f2 are the constraint functions. The key idea of
the barrier method is to use a soft instead of hard constraints by
augmenting the objective with the barrier functions responsible
for the inequality constraints so that the new objective for the
problem in (27) becomes:

ft(x,y) = f(x,y) + ψt (f1(x))− ψt (f2(y)) (28)

where we use the logarithmic barrier function:

ψt(x) =
1

t
ln(−x) (29)

and where t is the barrier parameter. The barrier method
transforms the inequality-constrained problem in (27) into the
following problem without inequality constraints:

max
x

min
y

ft(x,y), s.t. Axx = bx, Ayy = by (30)

The optimality gap due to this transformation can be upper
bounded as follows.

Proposition 1: The optimality gap of the barrier method in
(30) applied to the minimax problem in (27) is as follows:

|f (x∗(t),y∗(t))− p∗| ≤ 1/t (31)

where p∗ is an optimal value of the original problem in (27)
and (x∗(t),y∗(t)) is an optimal point for the modified problem
in (30).
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Proof: This is a special case of Proposition 3 below with
m = n1 = n2 = 1. �

Thus, by selecting sufficiently high t, one can obtain arbi-
trary small gap. Newton method is used to solve the modified
problem with any desired accuracy.

In practice, the modified problem is solved in an iterative
way by selecting first a moderately-large value of t, solving
the problem, increasing t and using the previous solution as a
starting point for a new one. In this way, the total number of
Newton steps required to achieve certain accuracy is minimized
[23]. The algorithm is as follows.

V. BARRIER METHOD FOR SECRECY RATE MAXIMIZATION

In this section, we use the minimax barrier method above
to solve the optimal covariance problem in (4) iteratively with
guaranteed convergence to a global optimum, which is also
optimal for (3).

A. Choice of Variables

Since the original variables are positive semi-definite matri-
ces R,K and the barrier method above requires vectors, we
have two options:

1. Use all entries of R,K as independent variables via
x = vec(R), y = vec(K), where operator vec stacks
all columns into a single vector. Enforce the symmetry
constraints R′ = R, K′ = K and the equality constraint
on K in (6) via extra equality constraints.

2. Use only lower-triangular entries of R as independent
variables via x = vech(R), where vech stacks column-
wise all lower-triangular entries into a single column
vector, and use only K21 : y = vec(K21).

It can be shown that these two options are mathematically
equivalent, i.e. produce exactly the same solutions at each
step of Newton method. Option 2 is a preferable choice for
implementation since the number of variables and constraints is
reduced so that it is more efficient. Therefore, we use Option 2
for further exposition. Gradient and Hessian can be evaluated
either numerically (in a standard way) or analytically as given
below. We find the analytical evaluation to be preferable as
numerical one entails a loss of precision while approaching an
optimal point (this is especially pronounced at high SNR, large
t and for large systems).

Since the algorithm requires initial point to begin with, we
use the following point:

R0 =
P

m
I → x0 = vech(R0), (32)

K0 = I → y0 = 0, (33)
λ0= 0 (34)

As can be easily verified, the initial point above is feasible (i.e.
satisfies the constraints). The choice of R0 is motivated by the
fact that isotropic signalling does not prefer any direction and
thus is equally good a priori for any channel. K0 corresponds to
isotropic noise and is motivated by the same reason. It should
be emphasized that the algorithm converges for any (feasible)

initial point, due to the convex nature of the problem, to a global
optimum; the difference is in how fast.

To account for the positive semi-definite constraints R,K ≥
0, the following barrier function is used

ψt(R) =
1

t
ln |R| (35)

so that the modified objective ft is

ft(R,K) = f(R,K) + ψt(R)− ψt(K) (36)

Note that this requires K,R > 0, i.e. they are strictly inside of
the feasible set but can approach the boundary arbitrary closely
as t increases, so that some eigenvalues may become arbitrary
close to zero (and the numerical rank may be deficient); this
models numerically the case of singular R and/or K and is
a standard feature of the barrier method in general [23]. The
inequality in (53) makes sure that the optimality gap due to this
can be made as small as desired. In a practical implementation,
one can round off negligibly-small eigenvalues of R to zero to
simplify implementation.

After some manipulations (see Appendix for details), the
gradients and Hessians can be expressed as:

∇xft = D′
mvec(∇Rft), ∇yft = D̃′

nvec(∇Kft), (37)

∇2
xxft = −D′

m(Z1 ⊗ Z1 − Z2 ⊗ Z2

+ t−1R−1 ⊗R−1)Dm, (38)

∇2
yyft = D̃′

n

(
−(K+Q)−1 ⊗ (K+Q)−1

+(1 + t−1)K−1 ⊗K−1
)
D̃n, (39)

∇2
xyft = −D′

m

(
H′(K+Q)−1 ⊗H′(K+Q)−1

)
D̃n, (40)

where

∇Rft = Z1 − Z2 + t−1R−1, (41)

∇Kft = (K+Q)−1 − (1 + t−1)K−1, (42)

Z1 = (I+WR)−1W, (43)

Z2 = (I+W2R)−1W2, (44)

and ⊗ is a Kronecker product, Dm is a m2 ×m(m+ 1)/2
duplication matrix defined from vec(R) = Dmvech(R) [27],
[28], D̃n is a n2 × n1n2 reduced duplication matrix defined
from dk = D̃ndk̃, where

dk = vec(dK), dk̃ = vec(dK21),

dK =

(
0 dK′

21

dK21 0

)
(45)

and n = n1 + n2. It can be obtained from Dn by removing its
columns corresponding to all entries of K but those in K21.

It can be shown (see e.g. [14]) that using the full available
power is optimal. Therefore, one can use the equality constraint
trR = P instead of the inequality trR ≤ P . The equality
constraint matrix A and vector b take the following form:

A = [a′,0′], b = P (46)
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where Im is m×m identity matrix, a = vech(Im), and 0 is
n1n2 × 1 zero vector, i.e. A is a row vector and b is a scalar in
our setting.

With this choice of variables and initial points, Algorithm 3,
in combinations with Algorithms 1 and 2, can now be used to
solve numerically the minimax problem in (4).

Algorithm 3 Barrier Method

Require: z, λ, ε > 0, t > 0, μ > 1
repeat

1. Solve the problem in (30) using Newton method
(Algorithm 2) starting at z, λ.

2. Update variables: z := z∗(t), λ := λ∗(t), t := μt.

until 1/t < ε.

B. Convergence of the Algorithm

Here, we provide a proof of convergence of the proposed
algorithm to a global optimum. First, one has to insure that
Newton step is well defined for all t,R,K > 0. This, in
turn, insures that the Newton method produces a sequence of
decreasing-norm residuals (according to (26)), which converge
to zero for each t. Consequently, the minimax barrier method
applied to our problem generates a sequence of sub-optimal
points z∗(t) that converges to a global optimum (a solution of
the sufficient KKT conditions in (11)–(16)) as t increases, since
ft(R,K) is convex in K and concave in R and also twice
continuously differentiable for each R > 0, K > 0 (more
details can be found in [23]).

To make sure that Newton step is well defined for each
t,R,K > 0, we demonstrate that the KKT matrix for the mod-
ified objective ft is non-singular, so that the Newton equations
have a well-defined solution as in (24).

Proposition 2: Consider the minimax problem in (17) for the
objective in (36) under the equality constraint parameters as in
(46). Its KKT matrix

T =

[
∇2ft A′

A 0

]
(47)

is non-singular for each t > 0, R,K > 0.
Proof: The proof is based on the following three

Lemmas.
Lemma 1: The Hessian

∇2ft = H̆ =

[
−H11 H12

H21 H22

]
(48)

is non-singular if partial Hessians H11, H22 are non-
singular, i.e. if H11, H22 > 0, where H11 = −∇2

xxft, H12 =
∇2

xyft, H21 = H′
12 = ∇2

yxft, H22 = ∇2
yyft. Furthermore,

block (1,1) [H̆−1]11 of the inverse H̆−1 is also non-singular.
Proof: The proof is complicated by the fact that ∇2ft is

indefinite matrix, since ft is concave in x and convex in y (i.e.
∇2

xxft ≤ 0, ∇2
yyft ≥ 0), so that the standard proofs tailored

for positive definite matrices [26] do not apply here. However,
since H11, H22 > 0, it follows that

S22 = −H11 −H′
21H

−1
22H21 < 0,

S11 = H22 +H21H
−1
11H

′
21 > 0, (49)

where S11(22) is Schur complement of −H11(H22), so that the
matrix inversion Lemma in Proposition 2.8.7 of [34] applies
and one can invert H̆ as follows6

H̆−1 =

[
−H11 H′

21

H21 H22

]−1

=

[
S−1
22 −S−1

22H
′
21H

−1
22

S−1
11H21H

−1
11 S−1

11

]
(50)

which implies that H̆ is non-singular and that [H̆−1]11 =
S−1
22 < 0. �
Lemma 2: The KKT matrix in Proposition 2 is non-singular

under the conditions of Lemma 1.
Proof: We proceed as follows. Since the Hessian ∇2ft =

H̆ is non-singular (under conditions of Lemma 1), let us apply
the following transformation that preserves the determinant
of T:

T̃ =

[
H̆ A′

A 0

] [
I −H̆−1A′

0 I

]

=

[
H̆ 0

A −AH̆−1A′

]
, (51)

and observe that

|T̃| = |T| = |H̆|(−AH̆−1A′) (52)

(this follows from the properties of block-partitioned matri-
ces and their determinants, see e.g., [29]). From Lemma 1,
|H̆| �= 0. Further notice that AH̆−1A′ = a′[H̆−1]11a < 0,
since [H̆−1]11 < 0 from Lemma 1 and a �= 0. Using (52),
|T| = |H̆|(−AH̆−1A′) �= 0 so that the KKT matrix T is non-
singular. �

Thus, Lemmas 1 and 2 establish the non-singularity of KKT
matrix provided that partial Hessians ∇2

xxft, ∇2
yyft are non-

singular. This is indeed the case as Lemma 3 below shows.
Lemma 3: Partial Hessian ∇2

xxft, ∇2
yyft in (38) and (39) are

non-singular for each t > 0, R,K > 0.
Proof: See Appendix. �

Combining Lemmas 1–3, Proposition 2 follows. �
Thus, Proposition 2 insures that Newton step is always well-

defined and hence generates a sequence of decreasing-norm
residuals (according to (26)) which converges to zero for each
t > 0. The next proposition specifies the optimality gap of the
minimax barrier method for a given t.

Proposition 3: For each t > 0, the optimality gap of the
barrier method applied to the minimax problem in (4) can be
upper bounded as follows:

|f (R∗(t),K∗(t))− Cs| ≤ max(m,n1 + n2)/t (53)

6This idea of the proof was suggested by a reviewer.
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where R∗(t),K∗(t) are the optimal signal and noise covariance
matrices returned by the barrier method for a given t.

Proof: Using the bounds for the minimax problem in [33]
and adopting them to the problem in (4), one obtains

max
R

f (R,K∗(t))−m/t ≤ f (R∗(t),K∗(t)) (54)

≤ min
K

f (R∗(t),K) + (n1 + n2)/t

so that

f (R∗(t),K∗(t)) ≤ min
K

f (R∗(t),K) + (n1 + n2)/t

≤ max
R

min
K

f(R,K) + (n1 + n2)/t

= Cs + (n1 + n2)/t, (55)
f (R∗(t),K∗(t)) ≥ max

R
f (R,K∗(t))−m/t (56)

≥ min
K

max
R

f(R,K)−m/t = Cs −m/t

from which (53) follows. �
Therefore, using sufficiently large barrier parameter t insures

any desired accuracy, and f(R∗(t),K∗(t)) → Cs as t → ∞. If
desired accuracy is ε, then the stopping criterion in Algorithm 3
should be max(m,n1 + n2)/t < ε (assuming that the Newton
method produces sufficiently-accurate solution, which is always
the case in practice due to its quadratic convergence, see [23]).

C. Dual Problem

While the algorithm above is designed to maximize the
secrecy rate, its optimal covariance also solves the dual problem
of minimizing the total transmit power subject to the secrecy
rate constraint C(R) ≥ Rs, i.e.

min trR s.t. C(R) ≥ Rs, R ≥ 0 (57)

This can be easily shown by contradiction and observing that
1st inequality in (57) always holds with equality, or by compar-
ing the respective KKT conditions (which are necessary for op-
timality in both problems), both under the condition Rs = Cs.

D. Per-Antenna Power Constraints

Different forms of power constraint can also be incorporated
into the proposed algorithm in a straightforward way. In par-
ticular, the per-antenna power constraint rii ≤ Pi, where rii is
i-th diagonal entry of R (power in antenna i) and Pi is the
maximum power of i-th antenna, can be adopted by eliminating
matrix A from the KKT equations and adding m extra barrier
terms t−1 ln(Pi − rii) representing new power constraints in
(36). As a starting point, one can use e.g. rii = Pi/2.

In fact, these new constraints can be added to the existing
ones as well, representing the scenario where not only the total
power budget is limited but also the per-antenna powers are
limited due to e.g. limited dynamic range of power amplifiers.

The convergence of this modified algorithm to a global
optimum can be proved in the same way as above (with minor
modifications). In particular, one can observe that the new
barrier terms preserve the non-singularity of the KKT matrix
and the convex nature of the problem.

VI. DEGRADED CHANNEL

If the channel is degraded, W1 ≥ W2, then C(R) is concave
and the corresponding optimization problem in (3) is convex.
Therefore, the barrier method can be applied directly to this
problem with guaranteed convergence to a global optimum.
This reduces the problem complexity since there is no mini-
mization over K so that the number of variables reduces from
m(m+ 1)/2 + n1n2 to m(m+ 1)/2, which is a significant
improvement when n1n2 is large.

The modified objective (with the barrier term) becomes

ft(R) = C(R) + ψt(R), (58)

the variables are z = x = vech(R) (no y) and the equality
constraint parameters are

A = a′ = vech(I), b = P, (59)

Non-singularity of the KKT matrix, which guarantees well-
defined Newton steps, can be established following the lines
of the analysis in Section V. In particular, one observes that
Lemmas 1–3 hold. Lemma 3 holds since

∇2
xxft < 0 (60)

Lemma 1 holds since the Hessian in this case is H̆ = ∇2
xxft.

Lemma 2 holds since

a′H̆−1a < 0 (61)

so that the KKT matrix is non-singular and thus KKT condi-
tions have a well-defined solution at each step of the barrier
method.

The optimality gap in this case becomes

|C (R∗(t))− Cs| ≤ m/t (62)

where R∗(t) is an optimal R returned by the Newton method
for a given t, i.e. it is smaller for the same t than in the non-
degraded case (53), which is an extra advantage (in addition
to having less variables). For desired accuracy ε, the stopping
criterion in Algorithm 3 is m/t < ε.

As a side remark, we note that even though the problem is
convex in this case, existing convex solvers (see e.g. [30]–[32])
cannot be used to solve it directly since they do not allow dif-
ference of logarithms or matrix powers in objective/constraint
functions, while the algorithm above solves it with guaranteed
convergence to a global optimum.

VII. NUMERICAL EXPERIMENTS

To validate the algorithm and analysis and to demonstrate the
performance of the algorithm, extensive numerical experiments
have been carried out. Some of the representative results are
shown below.
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Fig. 2. Convergence of the Newton method for different values of t;m =
2, P = 10, α = 0.3, β = 0.5,H1,H2 as in (63). Note the presence of two
convergence phases: linear and quadratic. It takes only about 10 to 20 Newton
steps to reach the machine precision level.

Convergence of the Newton method for different values of
the barrier parameter t is demonstrated in Fig. 2 for

H1 =

[
0.77 −0.30
−0.32 −0.64

]
,

H2 =

[
0.54 −0.11
−0.93 −1.71

]
, (63)

which shows the residual r Euclidian norm versus Newton
steps. Even though this channel is not degraded, since the eigen-
values of W1 −W2 are {0.395,−3.293}, the algorithm does
find the global optimum (this particular channel was selected
because it is “difficult” for optimization). Note the presence
of two convergence phases: linear and quadratic, which is
typical for Newton method in general. After the quadratic phase
is reached, the convergence is very fast (water-fall region).
It takes about 10–20 Newton steps to reach very low resid-
ual (at the level of machine precision). This is in agreement
with the observations in [23] (although obtained for different
problems).

Fig. 3 shows the corresponding secrecy rate evaluated via the
upper bound in (5) and the actual achievable rate via C(R(t))
in (2), where R(t) is an optimal covariance at a particular step
of the Newton method and for a given t. As the algorithm
converges, they become almost equal if t is sufficiently large (in
this case, about 104 . . . 105). While t has negligible impact on
the upper bound, it does affect significantly the corresponding
C(R(t)) (since the optimal covariance R(t) returned by the
barrier method depends on t and C(R) is sensitive to R),
so that the choice of t is not critical if the secrecy capacity
is the only quantity of interest (since the upper bound is
quite tight even for moderate t). However, if a transmitter is
implemented with the optimal covariance R(t) returned by the
algorithm, it is C(R(t)) that determines the achievable rate
and this choice is important. We attribute this fact to higher
sensitivity of C(R) to R compared to that of f(R,K). Similar
observations apply to the number of Newton steps required to
achieve a certain performance: if Cs is the quantity of interest,

Fig. 3. Secrecy rates for the same setting as in Fig. 2. Solid line—via the
upper bound in (5) (the lines coincide for different t), dashed—via C(R)
in (2).

Fig. 4. Convergence of the barrier method (incrementally increasing t);m =
5, n1 = n2 = 10, P = 10, α = 0.3, β = 0.5, μ = 5,H1,H2 are randomly
generated (i.i.d. Gaussian entries of zero mean and unit variance). It takes about
5 to 10 steps to reduce the residual to a very low value of 10−10 for each t.

the upper bound converges to it in about 3–5 steps. However,
if implementing R is involved, one should use C(R) and, in
addition to proper choice of t, it takes about 5 . . . 10 steps to
achieve the convergence. Note that, in both cases, the number
of steps is not large and the execution time is small (a few
seconds). In general, larger t and m,n1, n2 require more steps
to achieve the same accuracy. As expected, the behavior of
upper bound is not monotonic while the residual norm does
decrease monotonically in each step.

Figs. 4 and 5 demonstrate the convergence of the minimax
barrier method (incrementally increasing t) for a larger system
(m = 5, n1 = n2 = 10). Note that a very low residual value
of 10−10 is achieved after about 7 Newton steps for each
value of t. Using incrementally-increasing t as opposed to
a fixed large value results in a smaller number of the total
Newton steps required to achieve a given residual value and
is less sensitive to system parameters and size. Also observe
from Fig. 5 that while the upper bound converges quite fast
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Fig. 5. Secrecy rates for the same setting as in Fig. 4. Solid line—via the upper
bound in (5), dashed—via C(R) in (2). Note that while the capacity value
evaluated via the upper bound converges very fast, significantly more iterations
are required for convergence of the secrecy rate C(R). We attribute this to
the fact that C(R) is more sensitive to R than f(R,K) is. Also note the
significantly non-monotonique behavior of the former.

(in a few Newton steps), it takes significantly more steps for
C(R) to converge and the convergence process is significantly
non-monotonic.

To demonstrate the convergence performance for differ-
ent channel realizations, Figs. 6 and 7 show the distribution
(histograms) of the number of steps required to achieve the
residual of 10−10 and 10−8 for 100 randomly-generated chan-
nels (with i.i.d. Gaussian entries of zero mean and unit variance)
for m = 4, n1 = n2 = 3 and m = 5, n1 = n2 = 10 systems.
While the actual number of required steps depends on a par-
ticular channel realization, 20 to 40 steps are sufficient in most
cases. We attribute this to the two-phase behaviour of the al-
gorithm’s convergence: once the quadratic (water-fall) phase is
reached, it takes just a few steps to reduce the residual to a very
low value (which is consistent with similar observations in [23],
albeit for different problems). Different channel realizations re-
sult in a different number of required steps for the linear phase,
before the quadratic phase is reached, but do not affect much
the latter.

VIII. CONCLUSION

Global secrecy rate maximization for (non-degraded)
Gaussian MIMO-WTC has been discussed. The problem is
challenging due to its non-convex nature and no analytical
solution is known for this setting. While the known numerical
algorithms converge to a stationary point (which may be a
local rather than global maximum or just a saddle point), the
algorithm proposed herein is guaranteed to converge to a global
rather than local maximum. The algorithm is based on the
minimax reformulation of the secrecy capacity problem (to
insure global convergence) and the primal-dual reformulation
of the Newton method in combination with the barrier method.
A proof of its global convergence is also given. Numerical ex-
periments indicate that 20 to 40 Newton steps are sufficient for
convergence with high precision (up to the machine precision

Fig. 6. A histogram showing the distribution of the number of Newton steps
needed to achieve the residual of 10−10 via the minimax barrier method
for 100 randomly generated channels (i.i.d. Gaussian entries of zero mean
and unit variance); P = 10, α = 0.3, β = 0.5,m = 4, n1 = n2 = 3, t0 =
100, tmax = 105, μ = 10.

Fig. 7. A histogram showing the distribution of the number of Newton steps
needed to achieve the residual of 10−8 for 100 randomly generated channels
(i.i.d. Gaussian entries of zero mean and unit variance); m = 5, n1 = n2 =
10, t0 = 100, tmax = 105, μ = 10, P = 10, α = 0.3, β = 0.5.

level). Extra power constraints (e.g., maximum per-antenna
power) can be easily incorporated in the algorithm. The dual
problem of total power minimization subject to the secrecy rate
constraint can also be solved.

APPENDIX

A. Gradients and Hessians

To derive the gradient and Hessian expressions, we use the
tools of matrix differential calculus [27], [28]. Let us consider
f(X) = ln |X|, where X > 0 is n× n positive definite matrix.
Using the perturbation method,

f(X+ dX) = ln |X|+ ln |I+X−1dX|
= f(X) +

∑
i

λi(X
−1dX)

− 1

2
λ2
i (X

−1dX) + o
(
λ2
i

)
= f(X)+tr(X−1dX)

− 1

2
tr(X−1dXX−1dX)+o

({
λ2
i

})
(64)
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Using

tr(X−1dX) = vec(dX)′vec(X−1)

= dx′D′
nvec(X

−1) (65)

where dx = vech(dX), one obtains the gradient ∇xf =
D′

nvec(X
−1). Applying this to

f(K) = ln |I+K−1Q| = ln |K+Q| − ln |K|, (66)

∇yft follows. Using

tr(X−1dXX−1dX) = vec(dX)′(X−1 ⊗X−1)vec(dX)

= dx′D′
n(X

−1 ⊗X−1)Dndx (67)

the Hessian ∇2
xxf can be identified as

∇2
xxf = −D′

n(X
−1 ⊗X−1)Dn (68)

Applying this to f(K),∇2
yft follows.

To derive ∇xft and ∇2
xft, use a modification of (64) for

f(R) = ln |I+WR|:

f(R+ dR) = f(R) + tr(ZdR)

− 1

2
tr(ZdRZdR) +

∑
i

o
(
λ2
i

)
(69)

where Z = (I+WR)−1W, so that

∇rft = D′
mvec(Z) (70)

where r = vech(R), and

∇2
rft = −D′

m(Z⊗ Z)Dm (71)

from which (37), (38) follow, where we have used the following
identities [27]:

tr(AB) = vec(A′)
′
vec(B),

tr(ABCD) = (vecD)′(A⊗C′)vec(B′) (72)

and the fact that Z is symmetric, Z′ = Z. To derive ∇2
xyft,

observe that

∇2
krf(R,K) = ∇2

kr ln |K+HRH′| (73)

where dk = vec(dK), so that one needs to consider only

f̃(R,K) = ln |K+HRH′| (74)

for which the perturbation method gives

f̃(R+ dR,K+ dK) = f̃(R,K)

− tr
(
H′(K+Q)−1dK(K+Q)−1HdR

)
+Δf̃ (75)

where Δf̃ denotes all other terms (which do not affect the
mixed derivatives), from which (40) follows by using vec
operator inside the trace.

B. Proof of Lemma 3

Observe that Q ≥ 0 so that (K+Q)−1 ≤ K−1 and thus

K−1 ⊗K−1 − (K+Q)−1 ⊗ (K+Q)−1 ≥ 0 (76)

(this follows from the properties of Kronecker products, see
e.g., [29]) and

(1 + t−1)K−1 ⊗K−1 − (K+Q)−1 ⊗ (K+Q)−1

≥ t−1K−1 ⊗K−1 > 0 (77)

Now consider the following quadratic form for any y �= 0:

y′∇2
yyfty = ỹ′ ((1 + t−1)K−1 ⊗K−1

−(K+Q)−1 ⊗ (K+Q)−1
)
ỹ > 0 (78)

since ỹ = D̃ny �= 0 (this follows from the fact that all columns
of D̃n are linearly independent, which in turn is implied by
linear independence of columns of Dn since it has a full
column rank [27]). Therefore, ∇2

yyft > 0. Non-singularity of
∇2

xxft can be proved in a similar way. First, one observes that
W ≥ W2:

W = H′K−1H (79)

= [H′
1H

′
2]

[
I K′

21

K21 I

]−1 [
H1

H2

]
(80)

= H′
2H2 + (H1 −K′

21H2)
′
(I−K′

21K21)
−1

× (H1 −K′
21H2) (81)

≥ H′
2H2 = W2 (82)

since 2nd term in (81) is positive semi-definite, where we have
used the matrix inversion Lemma:

K−1 =

[
I K′

21

K21 I

]−1

(83)

=

[
(I−K′

21K21)
−1 K′

21 (K21K
′
21 − I)−1

(K21K
′
21 − I)−1 K21 (I−K21K

′
21)

−1

]

and the fact that K′
21K21 < I,K21K

′
21 < I, which follows

from K > 0 (since this implies |K21|2 < 1, where | · |2 is
the spectral norm, see e.g., [29]). Therefore, Z1 ≥ Z2, which
follows from the following argument when W, W2 are
non-singular:

W ≥ W2 ⇒ W−1 ≤ W−1
2 (84)

⇒ W−1 +R ≤ W−1
2 +R (85)

⇒ Z1 = (W−1 +R)
−1

≥ (W−1
2 +R)

−1
= Z2 (86)

When W and/or W2 are singular, one can use the continuity
argument [29]: use Wε = W + εI > 0,W2ε = W2 + εI > 0
with ε > 0, instead of W, W2 and then take ε → 0; since
both sides of the inequality are continuous functions, the result
follows. Since Z1 ≥ Z2, it follows that Z1 ⊗ Z1 ≥ Z2 ⊗ Z2

and thus

Z1 ⊗ Z1 − Z2 ⊗ Z2 + t−1R−1 ⊗R−1 > 0 (87)

(since R−1 ⊗R−1 > 0) from which it follows that ∇2
xxft < 0.
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