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Optimal Detection Ordering for Coded V-BLAST
Alain U. Toboso, Sergey Loyka, and Francois Gagnon

Abstract—Optimum ordering strategies for the coded Vertical
Bell Labs Layered Space-Time (V-BLAST) architecture with
capacity achieving temporal codes on each stream are analytically
studied, including 4 different power/rate allocation strategies
among data streams. Compact closed-form solutions are obtained
for the case of zero-forcing (ZF) V-BLAST with two transmit
antennas and necessary optimality conditions are found for the
general case. The optimal rate allocation is shown to have a major
impact (stronger streams are detected last) while the optimal
power allocation does not alter the original Foschini ordering
(stronger streams are detected first). Sufficient conditions for the
optimality of the greedy ordering are established: it is optimal
for the ZF V-BLAST under an optimal rate allocation with two
transmit antennas at any SNR and with any number of antennas
in the low and high SNR regimes. It satisfies the necessary
optimality conditions for larger systems at any SNR and is nearly-
optimal in many cases. An SNR gain of ordering is introduced
and studied, including closed-form expressions as well as lower
and upper bounds and the conditions for their achievability. For
the minimum mean square error (MMSE) V-BLAST under an
optimal rate allocation, any ordering is shown to deliver the same
system capacity. All the results also apply to a multiple-access
channel with the successive interference cancelation receiver.

Index Terms—MIMO, V-BLAST, optimal ordering, successive
interference cancellation.

I. INTRODUCTION

THE multiple-input multiple-output (MIMO) communi-
cation architecture has been widely adopted by the

academia and industry due to its high spectral efficiency
unattainable by conventional techniques [1]. To reduce its
processing complexity, Vertical Bell Labs Layered Space-Time
(V-BLAST) was proposed in [2][3] as a low-complexity archi-
tecture that is able to achieve a substantial portion of the total
MIMO channel capacity given that the multipath environment
is rich enough and capacity-approaching temporal codes (e.g.
LDPC, turbo or polar codes) are used for each data stream
[4][21]. In addition to spatial multiplexing at the transmitter,
its key processing steps at the receiver are (i) interference
cancellation from already detected symbols (i.e. successive
interference cancellation (SIC)), (ii) interference nulling from
yet-to-be-detected symbols (either zero-forcing or MMSE),
and (iii) an optimal detection ordering procedure to optimize
the overall performance.

While unordered V-BLAST analysis is feasible [5][7][8],
the optimal ordering procedure presents a significant problem
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for the analysis so that only the two Tx antennas case has
been fully settled [6]. A number of approximate results (high-
SNR) or bounds have been reported in [9][10] for the general
case. Due to these difficulties and also because its smaller
complexity, unordered V-BLAST became popular [5][7][8].
Since its performance may be not satisfactory in some cases,
various optimization techniques have been proposed, e.g.
optimal power and/or rate allocation among data streams, near-
ML sphere decoding etc. [12]-[19], which can be considered
as an alternative to a computationally-demanding optimal
ordering procedure. Optimal power and/or rate allocations for
the unordered, uncoded and coded ZF V-BLAST have been
obtained in [14] and [18][19] and their performance have
also been analyzed, demonstrating significant benefit of such
optimization.

The optimal ordering procedure requires m! orderings to be
compared in the general case, where m is the number of Tx an-
tennas. This can be prohibitively complex for large m in real-
time implementations. Thus, various sub-optimal orderings
have been proposed [9][16][17]. The greedy ordering, which
is based on the ”strongest-goes-last” principle, was introduced
in an ad-hoc way in [17] and its advantage was demonstrated
via simulations. It was further shown in [16] to achieve the
optimal diversity-multiplexing tradeoff (DMT), but this holds
only asymptotically (SNR → ∞) and in i.i.d. Rayleigh-fading
channel. It is not clear what the finite-SNR implications are1

and whether this holds for other fading distributions or for
a fixed (static) channel. The present paper will answer these
questions.

An optimal ordering for the V-BLAST is a hard geometric
combinatorial (and hence non-convex [22]) problem in gen-
eral. While Foschini et al [2][3] has found the optimal ordering
to minimize the overall block error rate for a given (fixed)
channel and the essentially uncoded system under uniform
power/rate allocation, in which stronger streams are detected
first, no analytical solution is known to date for a coded
V-BLAST with an optimal power/rate allocation. The only
remaining option explored in the literature is a brute force
approach by comparing all m! orderings numerically.

In the present paper, we study optimal ordering for coded
V-BLAST under 4 different power/rate allocation policies,
provide closed-from analytical solutions for the m = 2 case
and compare the performance improvement they bring in. The
considered power/rate allocation policies are (i) the uniform
power/rate allocation (UPRA); (ii) an optimal instantaneous
(for a given fixed channel) rate allocation (IRA); (iii) an
optimal instantaneous power allocation (IPA); (iv) an optimal
instantaneous power/rate allocation (IPRA)2. In the case of the

1since better DMT does not imply better finite-SNR performance, even at
high SNR, see e.g. [24][25].

2see [19] for details of these allocation policies. They are motivated by
modern adaptive systems that make use of variable-power amplifiers and/or
variable modulation/coding, as in 3 or 4G systems [20].

0090-6778/14$31.00 c© 2014 IEEE



TOBOSO et al.: OPTIMAL DETECTION ORDERING FOR CODED V-BLAST 101

UPRA or the IPA (i.e. when the rate allocation is uniform),
an optimal ordering is the original Foschini ordering, i.e.
stronger streams are detected first [2]-[4]. In the case of the
IRA or IPRA, i.e. under an optimal rate allocation, an optimal
ordering is just the opposite: stronger stream are detected last,
thus revealing a dramatic impact of the rate allocation policy
on an optimal ordering procedure.

In the general case of m > 2 ZF V-BLAST, we provide
compact necessary optimality conditions, which depend on
the channel matrix only and are independent of the SNR and
other system parameters. These conditions can be used to rule
out many of the possible m! combinations so that the brute-
force approach can be applied to a much-smaller set and thus
becomes practically-feasible. These conditions also provide a
number of insights into the optimal ordering procedure and its
properties which cannot be obtained numerically. In particular,
their reveal essentially the same dramatic impact of the rate
allocation policy on an optimal ordering as in the m = 2 case.

The sufficient optimality conditions of Section III show that
the greedy ordering of [16][17] is actually optimal one under
the IRA/IPRA for the m = 2 case and in any fixed channel
or, equivalently, for any realization of a slowly-fading channel,
i.e. ”point-wise”. This point-wise optimality implies statistical
optimality (in terms of outage or ergodic capacity or outage
probability) for any fading distribution. In the m > 2 case,
the greedy ordering is shown to meet the necessary optimality
conditions under the IRA/IPRA and is nearly optimal in many
cases. We attribute this to the fact that the greedy ordering
algorithm, while not finding a best ordering in general, does
eliminate most ”bad” orderings.

To quantify the impact of optimal ordering, an SNR gain
of ordering is introduced and studied, including compact
analytical solutions and upper/lower bounds and conditions
for their achievability. The coded MMSE V-BLAST under
the IRA/IPRA is shown to have the same system capacity
under any ordering and thus an optimal detection ordering
procedure is not required, which provides an extra incentive
(less complexity) to use MMSE rather than ZF V-BLAST.
This is in stark contrast to the MMSE V-BLAST under the
UPRA, where optimal ordering improves the performance
significantly [10].

The major insight from this study is that the optimal rate
allocation among data streams has a much more pronounced
impact on the optimal ordering (stronger streams are detected
last) as opposed to the optimal power allocation, which does
not alter the original Foschini ordering (stronger streams are
detected first), regardless of whether temporal coding is used
or not.

Finally, we mention that the V-BLAST system architecture
naturally represents the multiple-access channel (MAC), i.e.
an unlink of a cellular system, under successive interference
cancellation so that all our results, including optimal user
detection order, also apply to such setting.

The rest of the paper is organized as follows. Section II
introduces the basic system and channel model. In Section
III, we consider the ZF V-BLAST and find sufficient and
necessary ordering optimality conditions under four different
power/rate allocation policies. The SNR gain of ordering is
introduced and studied in Section IV. The greedy ordering is

considered in Section V and its optimality is shown for the
m = 2 case. Section VI deals with the MMSE V-BLAST.
Finally, Section VII concludes the paper.

II. SYSTEM MODEL

The standard discrete-time MIMO channel model is

r = HΛq+ ξ =
∑m

i=1
hi
√
αiqi + ξ, (1)

where q = [q1, q2, ..., qm]T and r = [r1, r2, ..., rn]
T are the

transmitted and received signal vectors respectively, H =
[h1..hm] is the n × m channel matrix (n Rx and m Tx
antennas, n ≥ m) representing the complex channel gains
from each transmit to each receive antenna, and hi is its i-th
column. The channel matrix H is assumed to be fixed (e.g.
a given realization of a quasi-static fading channel) so that
the standard infinite-horizon information theory assumption
holds; ξ is the circularly symmetric additive white Gaussian
noise vector with i.i.d. entries i.e. ξ ∼ CN(0, σ2

0I). Λ is a
diagonal matrix whose entries are

√
αi, where αi represents

the normalized power allocation to i-th stream,
∑

i αi = m.
We assume that the receiver has full channel state information
(CSI), while the transmitter has a partial CSI in the form of
powers and rates allocated to various streams.

The V-BLAST detection algorithm includes 3 major steps3:
(i) interference cancelation from already detected symbols

(the SIC);
(ii) interference nulling (ZF or MMSE) from yet-to-be-

detected symbols via orthogonal projections; unless otherwise
indicated, we will assume ZF interference nulling;

(iii) an optimal detection ordering to improve overall system
performance.

After the interference cancellation and ZF nulling steps and
for the standard ordering (i.e. stream 1 is detected first etc.),
which is also known as unordered detection, the equivalent
scalar channel of the i-th stream is [18][19],

ri = |hi⊥| √αiqi + ξ̃i, (2)

where ri is the i-th component of r after the projec-
tion, hi⊥ is the projection of hi onto the sub-space or-
thogonal to that spanned by yet-to-be-detected streams, i.e.
hi⊥⊥{hi+1, ...,hm}, |h| is the Euclidean norm (length) of
vector h, and ξ̃i is the projected noise of i-th stream (still
Gaussian after the projection). Our analysis below is based on
information-theoretic principles as in e.g. [20][21]. Assuming
that each stream employs a capacity-achieving temporal code4,
this stream can support a target rate Ri up to its instantaneous
capacity5 given by

Ci = ln(1 + |hi⊥|2 αiγ) [nat/s/Hz], (3)

where γ = 1
/
σ2
0 is the average SNR at each Rx antenna, with

arbitrary-low probability of error, which can be reduced to any
desired value by using sufficiently long codewords [20][21].
As a consequence, the use of capacity-achieving codes at each

3See e.g. [2]-[4][8][9][21] for further details of these steps and their
mathematical models.

4this models well practical codes operating very close to the capacity, e.g.
LDPC, turbo or polar codes [20][21].

5i.e. the capacity for a given (fixed) channel realization.
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stream under the condition Ri ≤ Ci eliminates the error
propagation effect, which is in stark contrast to the uncoded
V-BLAST, where error propagation degrades the performance
significantly [5]-[10]. Unlike the uncoded system, the weakest
stream does not necessarily dominate the performance of
coded V-BLAST.

The total system capacity C, which includes the channel as
well as the transmission and reception strategy, depends on the
power and rate allocation strategy [18][19]. When the uniform
rate/power allocation (UPRA) is used, i.e. all streams transmit
at the same target rate and using the same power (αi = 1),
the system capacity is limited by the weakest stream so that

CUPRA = mmin
i

Ci = m ln
(
1 + min

i
|hi⊥|2 γ

)
. (4)

When the optimal instantaneous rate allocation (IRA) is used,
i.e. the rate of each stream is adjusted to match its capacity,
Ri = Ci, under the uniform power allocation, the system
capacity is

CIRA =
m∑
i=1

Ci. (5)

This two strategies can be further combined with the instanta-
neous power allocation to maximize the system capacity [19].
Comparing (4) to (5), we conclude that while the weakest
stream does dominate the system performance under the
UPRA, it is not the case for the IRA.

We note that this system model also applies to a multiple-
access channel (MAC) where different streams represent dif-
ference users, e.g. an uplink of a cellular system, so that all
our results will also hold in that scenario as well.

To further improve the system performance, the stream
detection order can be optimized to maximize the system
capacity [16][17]. Let π = {k1, k2, ..., km} represents the
detection order where stream k1 is detected first etc. All the
capacities above then become the functions of the detection
order. Changing the detection order is equivalent to swapping
the columns of the channel matrix H so that the re-ordered
matrix Hπ = [hk1 ..hkm ] represent detection ordering π.

Below, we consider an optimal ordering strategy for each
of the power/rate allocation strategies. It turns out that it is
the rate allocation strategy that affects the optimal detection
ordering most. To make the analysis tractable, we consider
first the case of 2 Tx antennas, and generalize the results later
to the m > 2 case.

III. OPTIMUM ORDERING FOR ZF V-BLAST

In this section, we consider four instantaneous power/rate
allocation strategies (uniform/optimal for power/rate) for the
ZF V-BLAST to see the impact they have on optimal ordering.
By comparing them, we observe that it is the IRA that brings
the largest incremental improvement; using the optimal power
allocation on top of it brings little improvement. For the case
of m = 2, we give explicit closed-form solutions, while for
m > 2, we provide necessary optimality conditions.

A. Optimum Ordering Under the IRA

Under the IRA, the per-stream rates are adjusted to match
the per-stream capacities with the uniform power allocation.

The optimum detection ordering maximizes the instantaneous
sum capacity of the system,

π∗ = argmax
π

CIRA (π) = argmax
π

∑m

i=1
Ci (π) , (6)

where C (π) and Ci(π) = ln(1 + |hki⊥|2 γ) are the total
system capacity and the per-stream capacity as functions of
the detection ordering π, and hki⊥ is the projection of hki

orthogonal to {hki+1 ..hkm}.
For m = 2, the optimum detection order is as follows.
Proposition 1: The optimum detection ordering for the

coded V-BLAST with two Tx and n Rx antennas under the
IRA is to detect the strongest stream (with highest unprojected
channel gain) last,

π∗ = argmax
π

∑2

i=1
Ci (π) = {1, 2} iff |h1| ≤ |h2| . (7)

The “only if” part in (7) holds when h1, h2 are not orthogonal,
φ 	= π/2, where φ is the angle between them. When φ = π/2
and/or |h1| = |h2|, any ordering delivers the same system
capacity.

Proof: Let gi = |hi|2, β = sin2 φ, π1 = {1, 2}, π2 =
{2, 1}. If β = 1, any ordering is optimal (since the streams
are independent), so that the assertion holds trivially. Thus,
assume β < 1 and C(π1) ≥ C(π2), and observe that the
following chain of inequalities hold:

C(π1)− C(π2) ≥ 0

⇒ (1 + γβg1)(1 + γg2)− (1 + γβg2)(1 + γg1) ≥ 0

⇒ (1− β)g2 − (1 − β)g1 ≥ 0

⇒ g2 ≥ g1,

which proves the ”only if” part. The ”if” part can be proved
by observing that the same chain of inequalities holds in the
other direction.

Note that this ordering is opposite of that of the uncoded,
unoptimized (the UPRA) V-BLAST [2][3][6], which detects
the strongest stream first. It is also SNR and other system
parameters-independent, since it is based on the channel
matrix only. Unfortunately, as numerical observations indicate,
this independence does not hold anymore for larger systems
(m > 2), where, in general, an optimal ordering is SNR-
dependent.

However, using the same reasoning as in Proposition 1, a
necessary optimality condition can be formulated for any m.

Proposition 2: Given that hki−1⊥ and hki⊥ are non-
orthogonal to each other, an optimum channel ordering π∗ =
{k1, k2, ..., km} must satisfy the following necessary condi-
tions: ∣∣hki−1⊥

∣∣ ≤ |hki⊥| ∀ 2 ≤ i ≤ m, (8)

where hki−1⊥ and hki⊥ are the projections of vectors
hki−1 and hki orthogonal to the sub-space spanned by
{hki+1 , ...hkm}. If some hki−1⊥ and hki⊥ are of equal length
and/or orthogonal to each other, any ordering among them is
optimum.

Proof: Consider two orderings π1 =
{k1, ..ki−1, ki, ...km} and π2 = {k1, ..ki, ki−1, ...km}
(i.e. streams ki and ki−1 are swapped over) and observe that
the difference in their capacities is due to the contributions
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TABLE I
NUMBER OF ORDERINGS SATISFYING THE NECESSARY OPTIMALITY

CONDITIONS.

m Total
Remaining

LB % UB %
3 6 2 33.3 3 50
4 24 5 20.8 6 25
5 120 16 13.3 30 25
6 720 61 8.5 90 12.5
7 7040 272 5.4 880 12.5
8 40320 1385 3.4 2520 6.3

of the streams ki and ki−1 only, since their swapping does
not affect the capacity of the other streams6. Apply now
Proposition 1 to the sum capacity of these two streams to
obtain the desired result. We observe that the necessary
conditions do not determine the optimal ordering uniquely
in the general case but rather specify ”suspicious” orderings
which include an optimal one, i.e. they are not sufficient for
optimality, and that optimal ordering is not unique in general7.
In the general case, optimal ordering is SNR-dependent so
that any ordering procedure that is based on the channel
matrix only cannot provide optimal result in general.

While there may be more than one ordering satisfying these
conditions for m > 2 , there is only one such ordering for the
m = 2 case, so that they are both sufficient and necessary as
Proposition 1 indicates.

Three important properties follow from the necessary opti-
mality conditions:

1) Given that all hki⊥ are of different length and non-
orthogonal to each other, swapping two consecutive columns
for a given order that meets the necessary optimality condi-
tions results in a lower system capacity.

2) A (before-projection) weakest stream is never detected
last.

3) The strongest (before-projection) stream is never detected
2nd last.

These properties allow one to reduce significantly the num-
ber of possible orderings during a brute-force combinatorial
optimization, as Table I demonstrates by comparing the total
number of orderings with lower (LB) and upper (UB) bounds
to the number of remaining orderings that satisfy the necessary
optimality conditions8. Clearly, the larger the system size,
the larger the benefit offered by the necessary optimality
conditions, which rule out most of the orderings thus reducing
significantly the computational complexity of the ordering
procedure.

B. Optimum Ordering Under the UPRA

The coded V-BLAST with uniform power and rate alloca-
tion (UPRA) among the data streams may be used to simplify
the system design. Since its system capacity is dominated

6the streams detected before them are projected orthogonally to these two
(interference nulling), and the later streams are not aware about their existence
at all (interference cancelation).

7this can be seen by considering an orthogonal channel, where all column
vectors are orthogonal to each other, for which any ordering is optimal.

8we use the bounds since an exact number is channel-dependent and finding
it is a hard combinatorial problem for which a solution is not known.

by the weakest stream [19], C = mmini Ci, the optimum
ordering is

π∗ = argmax
π

min
i

Ci (π) = argmax
π

min
i

|hki⊥| , (9)

where hki⊥ is orthogonal to {hki+1 , ...hkm}, i.e. maximizes
the weakest after-projection stream gain.

In the case of m = 2, this can be evaluated explicitly.
Proposition 3: The optimum detection ordering for the

coded V-BLAST with two Tx and n Rx antennas under the
UPRA is to detect the strongest (before-projection) stream
first,

π∗ = argmax
π

min
i

Ci(π)

= {1, 2} iff |h1| ≥ |h2| for ∀φ 	= 0 . (10)

The “only if” part in (10) holds if h1 and h2 are not
orthogonal, φ 	= π/2. If φ = π/2 and/or |h1| = |h2|, any
ordering delivers the same capacity. If φ = 0 , the system
capacity is zero for any ordering.

Proof: The proof is by contradiction. Assume that π∗ =
{1, 2} is optimal but g1 < g2 (and also 0 < β < 1, otherwise
any ordering is optimal). Therefore, for the other ordering
π = {2, 1},

C1(π) = ln(1 + γβg2) > C1(π
∗) = ln(1 + γβg1)

C2(π) = ln(1 + γg1) > C1(π
∗) = ln(1 + γβg1)

so that

C(π) = min
i

Ci(π) > C1(π
∗) ≥ min

i
Ci(π

∗),

a contradiction. Therefore, g1 ≥ g2.
Note that this is in fact the Foschini ordering. Hence, unlike

the IRA, the power allocation strategy has no impact on the
optimal ordering, even when coding is used.

This result can be further generalized to any m.
Proposition 4: Let Ci = minj Cj be the smallest per-

stream capacity in the coded V-BLAST under the UPRA with
any number of Tx and Rx antennas and let Ci < Cj ∀j 	= i.
Then, a detection ordering π∗ = {k1, .., ki, ki+1, ..km} is
optimum only if

|hki⊥| ≥ |hki+1⊥|, (11)

when hki⊥ and hki+1⊥ are non-orthogonal to each other (both
are orthogonal to {hki+2 , ...hkm}), and any ordering among
them offers the same capacity otherwise. Ordering of all the
other streams is arbitrary as long as i-th stream remains the
weakest one.

Proof: The proof is similar to that of Proposition 2.
Observe that swapping streams i and i + 1 does not affect
any other stream. Since Ci = minj Cj , if |hki⊥| ≥ |hki+1⊥|
does not hold, one can increase the capacity of i-th stream
by swapping these two streams (and keeping the rest of the
ordering) due to Proposition 3 (we assume here that hki⊥
and hki+1⊥ are not orthogonal, otherwise any ordering among
them offers the same capacity). This, in turn, will increase the
system capacity, which is impossible for an optimal ordering,
so that |hki⊥| ≥ |hki+1⊥| must hold. We note that the ordering
of all other streams can be arbitrary as long as Ci remains
the smallest per-stream capacity, since it is the least-capacity
stream that dominates the system performance.
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Thus, pairwise Foschini ordering around the least-capacity
stream is necessary for optimality.

C. Optimum ordering under the IPA

Let us now consider the optimal instantaneous power allo-
cation (IPA) under the uniform rate allocation, when different
streams make use of the same code/modulation format. From
[19], the system capacity under the IPA for a given ordering
π is given by

CIPA (π) = m ln (1 + g (π) γ) if |hki⊥| > 0 ∀i, (12)

and 0 otherwise, where g (π) is the harmonic mean per-stream
power gain for a given ordering π,

g (π) =

(
1

m

m∑
i=1

|hki⊥|−2

)−1

, (13)

where hki⊥ is orthogonal to {hki+1 , ...hkm}, so that the
optimum ordering is to maximize the harmonic mean gain,

π∗ = argmax
π

g (π) . (14)

Note that this holds for any m and is SNR-independent, as
opposed to the case of the IRA. For m = 2, one obtains:

Proposition 5: The optimum detection ordering for the
coded V-BLAST with two Tx and n Rx antennas under the
IPA (and uniform rate allocation) is to detect the strongest
stream first (i.e. the Foschini ordering),

π∗ = argmax
π

g (π) = {1, 2} iff |h1| ≥ |h2| ∀φ 	= 0. (15)

The “only if” part in (15) holds when h1 and h2 are not
orthogonal, φ 	= π/2. If φ = π/2 and/or |h1| = |h2|, any
ordering delivers the same capacity.

Proof: First, observe that C = 0 if φ = 0 and that any
ordering is optimum if φ = π/2, so there is nothing to prove in
these cases. Assume further that 0 < φ < π/2 and C(π∗) ≥
C(π), where π = {2, 1}, and note the following chain of
inequalities:

C(π∗) ≥ C(π)

⇒ g(π∗) ≥ g(π)

⇒ g2 + g1β

g1g2β
≤ g1 + g2β

g1g2β

⇒ g2(1− β) ≤ g1(1− β)

⇒ g2 ≤ g1,

which proves the ”only if” part. The ”if” part is proved by
observing that the same chain holds in the other direction.

Observe that this ordering is the same as for the UPRA
under the uniform power allocation. Thus, we conclude that,
for m = 2, power allocation does not affect the ordering, only
the rate allocation does.

This can be further extended to the m > 2 case as follows.
Proposition 6: A detection ordering π∗ = {k1, k2, ..., km}

for the coded V-BLAST under the IPA (and uniform rate al-
location) with any number of Tx and Rx antennas is optimum
only if

|hki−1⊥| ≥ |hki⊥|, (16)

for any hki−1⊥ and hki⊥ that are non-orthogonal to each other
(both are orthogonal to {hki+1 , ...hkm}), and any ordering
among them offers the same capacity otherwise.

Proof: This is similar to the proof of Proposition 2.
Let π∗ = {k1, ..ki−1, ki, ...km} be an optimal ordering and
let π = {k1, ..ki, ki−1, ...km}, i.e. streams ki−1 and k are
swapped over. Observe that the swapping does not affect the
gains of the other streams, i.e. gj(π∗) = gj(π) ∀j 	= i − 1, i,
where gi(π

∗) = |hki⊥|2 is i-th stream (projected) gain under
ordering π∗ and gi(π) is defined likewise. Now observe that
C(π∗) ≥ C(π) only if

1

gi−1(π∗)
+

1

gi(π∗)
≤ 1

gi−1(π)
+

1

gi(π)
,

which implies, from Proposition 5 applied to these two
streams, that |hki−1⊥| ≥ |hki⊥|.

Thus, Foschini ordering (strongest stream detected first)
satisfies these necessary pair-wise optimality conditions.

D. Optimum Ordering Under the IPRA

It was demonstrated in [19] that, for a given ordering, the
well-known water-filling (WF) algorithm does not maximize
(in general) the system capacity of the coded V-BLAST via
optimum power/rate allocation (IPRA)9 and a new algorithm
was proposed, the fractional water-filling (FWF), which does
so by using the WF on all possible sub-sets of active streams10.
Since both algorithms provide equal system capacity under an
optimal ordering11, we consider the WF in this section with
understanding that the same results apply to the FWF. The
optimal ordering procedure can be formulated as follows:

π∗ = argmax
π

∑
i

ln(1 + α∗
i (π) |hki⊥|2 γ), (17)

where the optimum power allocation α∗
i (π) is given by the

WF algorithm,

α∗
i (π) =

[
μ (π)− 1

γ |hki⊥|2
]
+

, (18)

where [x]+ = max{x, 0}, μ(π) is the water level for a given
order π and is calculated from the total power constraint. In the
general case (any m), the problem is difficult due to the fact
that different ordering may result in different number of active
streams. However, if m = 2, either one or two streams are
active and the analysis becomes feasible. The optimal ordering
can be characterized as follows.

Proposition 7: The optimum detection ordering for the
coded V-BLAST with two Tx and n Rx antennas under the

9due to the successive interference cancellation, channel gains become
functions of allocated powers, albeit in a binary way: if some streams are
allocated zero power, there is no need to project out the interference they
create to preceding streams. This dependence is not accounted for in the
standard WF algorithm, which assumes that the stream gains are fixed. See
[19] for more details.

10So that a binary dependence of stream gains on allocated powers is taken
into account.

11This follows from the fact that, searching among all possible orderings,
one always finds an ordering where all the inactive streams of the optimal
FWF ordering/allocation are located first; for this ordering, the WF also
allocates zero power to those inactive streams so that the WF and FWF are
identical for this particular ordering.
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IPRA (via the WF or FWF) is to detect the strongest stream
last,

π∗ = argmax
π

2∑
i=1

ln(1 + α∗
i (π)|hki⊥|2γ)

= {1, 2} iff |h1| ≤ |h2| . (19)

The “only if” part in (19) holds when h1 and h2 are not
orthogonal, φ 	= π/2. If φ = π/2 and/or |h1| = |h2|, any
ordering delivers the same system capacity.

Proof: See Appendix.
It is a remarkable fact that, whether uniform or optimal

power allocation is used, optimal rate allocation always results
in the greedy ordering as in (7), (19). This re-enforces our
earlier conclusion that it is the rate allocation that is critical for
optimal ordering, with power allocation playing no significant
role. This conclusion is especially important for the MAC
channel, where different users are likely to have different rates.

We are now in a position to establish necessary optimality
conditions for m > 2.

Proposition 8: Consider the ZF V-BLAST under the IPRA
with any number of Tx and Rx antennas and any SNR. An
optimal ordering satisfies the same necessary conditions as in
Proposition 2.

Proof: The key idea of the proof follows that of Propo-
sition 2. Let π∗ = {k1...km} be optimal ordering. Fix the
ordering and power allocation among all streams but ki−1, ki.
Observe that swapping these two streams and re-allocating
power among them (but not the rest) does not affect the
capacities of all other streams. Now, apply Proposition 7 to
conclude that π∗ is optimal only if |hki−1⊥| ≤ |hki⊥|.

We observe that adding the optimum power allocation
on top of the IRA does not affect the necessary optimality
conditions of ordering for any m. Unlike the m = 2 case,
channel-only ordering cannot be optimal for m > 2 since it
is SNR-dependent (as numerical experiments show).

IV. SNR GAIN OF ORDERING

To quantify the impact of optimal ordering, we introduce an
SNR gain of ordering, which compares the optimally-ordered
and unordered systems. The SNR gain G of ordering is defined
as the difference in SNR required by the unordered V-BLAST
to achieve the same capacity as the optimally ordered i.e.

Cπ∗(γ) = C(Gγ), (20)

where Cπ∗(γ) and C(Gγ) are the system capacities with and
without optimal ordering.

First, we consider the case of two Tx antennas and the IPRA
via the WF, and extend (via bounds) the closed-form results
to more general scenarios afterwards. Based on the number of
active streams for the m = 2 case, we consider below three
different SNR regimes. This exploits the well-known property
of the WF algorithm: while all streams are active at high SNR,
only one is active at low SNR.

• Low SNR regime: Both orderings have one active stream:

γ ≤ 1

2

∣∣∣∣ 1g1 − 1

g2β

∣∣∣∣ , (21)

where gi = |hi|2 and sin2 φ = β, and we assume, without
loss of generality and following (19), that g1 ≤ g2.

• High SNR regime: Both orderings have two active
streams:

γ >
1

2

(
1

g1β
− 1

g2

)
. (22)

• Intermediate SNR regime: The optimum ordering has one
active stream and the suboptimum one has two active
streams when the SNR is between the bounds in (21)
and (22).

Since it is not possible for the sub-optimal ordering to
have one active stream and, at the same time, for the optimal
one to have two active streams, the characterization above is
complete.

Proposition 9: Consider the ZF V-BLAST under the IPRA
(via the WF). Assuming unfavorable standard ordering, the
SNR gain of ordering in the low SNR regime (as in (21)) is
given by

G = min

[
1

β
,
g2
g1

]
, (23)

at high SNR (as in (22)) by

G = 1 +
1

2γ

(
1

β
− 1

)(
1

g1
− 1

g2

)
, (24)

and at intermediate SNR by

G =
1

γ

(√
1 + 2g2γ

g1g2β
− g2β + g1

2g1g2β

)
. (25)

Proof: Follows from the definition (20) after some manip-
ulations and using the optimal ordering in (19). See Appendix
for details.

The SNR gain of ordering is illustrated in Fig. 1, 2. Some
conclusions follow from Proposition 9:
∗ If g1 = g2 (the per-stream SNRs are equal) and/or β = 1

(h1 and h2 are orthogonal), there is no gain (both orderings
offer the same capacity) at any SNR.
∗ In the low SNR regime, the gain is SNR-independent, and

it is an increasing function of g2/g1 and decreasing in β.
∗ In the high SNR regime and for fixed g1, g2 and β, G

is decreasing in SNR and G → 1 as γ → ∞. For fixed g1,
g2 and γ, it is decreasing in β. For fixed g2, β and γ, it is
decreasing in g1.

Below, we obtain a more general result.
Proposition 10: The SNR gain G of ordering of the m = 2

ZF V-BLAST under any power/rate allocation policy can be
bounded as follows:

1 ≤ G ≤ min

[
1

β
,
g2
g1

]
. (26)

Proof: Let C(g1β, g2, γ) be the system capacity as a
function of 1st and 2nd stream gains and the SNR. First, we
note that C is monotonically increasing in all its arguments
and is symmetric in first two under any power/rate allocation
(this can be easily verified). To be specific, we consider the
IPRA via the WF (the same argument applies to all other
policies after a slight change in notations),

C(x1, x2, γ) = max
{αi}

{ln(1 + γα1x1) + ln(1 + γα2x2)} .
(27)
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Fig. 1. Impact of ordering on the capacity and the SNR gain G of ordering
for the 2 × 2 system and given H. m∗ is the number of active streams for
both orderings.

Due to monotonicity of C(x1, x2, γ) in all arguments,

C(βg1, g2, γ) ≤ C(βg22/g1, g2, γ)

= C(βg2, g1, γg2/g1). (28)

from which it follows that G ≤ g2/g1. To prove G ≤ 1/β,
observe that

C(βg1, g2, γ) ≤ C(g1/β, g2, γ)

= C(g2, g1/β, γ)

= C(βg2, g1, γ/β), (29)

where 1st equality makes use of the symmetry property
C(βg1, g2, γ) = C(g2, βg1, γ).

Thus, there is no gain if β = 1 or g1 = g2 and little gain
if β or g2/g1 are close to 1.

Numerical simulations have been carried out to validate the
closed-form expressions for the SNR gain of ordering at each
SNR regime. Fig. 1 shows the system capacity vs. SNR for
the 2 × 2 coded V-BLAST system under the IPRA (via WF)
for a fixed channel realization H. Note that the SNR gain is
a decreasing function of the SNR, as Fig. 2 confirms, so that
there is no much advantage from the optimal ordering at high
SNR.

Fig. 2 shows the SNR gain of ordering (numerical and
analytical) as a function of SNR under the setting in Fig. 1.
Note that, in the low SNR regime, the SNR gain is highest and
is SNR-independent when both ordering employ only 1 active
stream. In the intermediate SNR regime, the gain decreases
with the SNR but is still considerable, while it becomes low
at high SNR. Thus, we conclude that the major advantage of
the optimal ordering is at low SNR, i.e. precisely when it is
needed.

The SNR gain of ordering for the general case (any m) can
be bounded as follows.

Proposition 11: Consider the ZF V-BLAST under the IPRA
(via the WF or the FWF) for any m. Its SNR gain of ordering
is bounded at low SNR as follows,

1 ≤ G ≤ |hmax|2
|hmin|2 , (30)
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Fig. 2. The SNR gain of ordering vs. SNR (numerical and analytical). The
low and intermediate SNR regimes are the largest beneficiaries.

where |hmax|, |hmin| are the columns with the largest and
smallest norms respectively.

Proof: It is a well-known property of the WF (and also
the FWF) that only one (strongest) stream is active at low
SNR [19]. Therefore, the system capacity under the WF and
any ordering π = {k1...km} is

C = ln(1 +mγmax
i

|hki⊥|2), (31)

and the best stream gain maxi |hki⊥|2 can be bounded as
follows:

|hmin|2 ≤ |hkm |2 ≤ max
i

|hki⊥|2 ≤ max
i

|hki |2 = |hmax|2,
(32)

so that the system capacity is bounded, for any ordering, as

ln(1 +mγ|hmin|2) ≤ C ≤ ln(1 +mγ|hmax|2), (33)

from which (30) follows since the lower and upper bounds
are ordering-independent. Since only one stream is active,
the same argument holds for the FWF. It can be seen (via
examples) that the bounds are tight (i.e. achievable, see below).

Note that the lower bound in (30) also holds for any system
and any SNR (optimal ordering cannot reduce the capacity),
and the upper bound holds at any SNR for a rank-one channel
(since only one stream is active in such a channel as the
projections result in zero per-stream gain for all streams but the
last one). The upper bound is attained in a rank-one channel
at any SNR when |hm| = |hmin| in the unordered system.

Using the results of Section VI, the lower bound in (30)
is attained (i.e the ordering does not offer any gain) for
the MMSE V-BLAST (under the IRA or the IPRA), in any
channel and at any SNR.

For the ZF V-BLAST, it is attained at any SNR and any
m when the channel is orthogonal (i.e. all column vectors are
orthogonal to each other), since any ordering results in the
same capacity as projections are not required. It is also attained
for any full-rank channel at high SNR, as the following
proposition shows.
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Proposition 12: Consider the ZF V-BLAST under the IRA
or the IPRA (via the WF) in any full-rank channel, or under
the IPRA via the FWF in any channel, all for any m at high
SNR. Its SNR gain of ordering is,

G → 1 as γ → ∞, (34)

i.e. all orderings deliver asymptotically the same capacity.
Proof: Assume first that the channel is of full rank. Under

the IRA, αi = 1. Under the IPRA, it is well-known that the
optimal power allocation is uniform as γ → ∞, αi → 1 [19],
so that the system capacity, for any ordering π, is

C(Hπ) =
∑
i

ln(γ|hki⊥|2) + o(1)

= m ln γ + ln |H+
πHπ|+ o(1)

= m ln γ + 2
∑
i

lnσi(Hπ) + o(1)

= m ln γ + 2
∑
i

lnσi(H) + o(1)

= C(H) + o(1), (35)

i.e. unaffected by ordering asymptotically, where we have used
the singular value invariance under ordering from Lemma
1 and the property of Gramian

∏
i |hki⊥|2 = |H+

πHπ| =∏
i σ

2
i (Hπ) [23]. If channel is rank-deficient, the power is

distributed only over a sub-set of streams which correspond
to non-zero singular values and the proof goes through when
applied to that sub-set.

V. GREEDY ORDERING

Since an optimal ordering can be computationally demand-
ing for m > 2, the greedy ordering was introduced in [16][17]
as a sub-optimal solution to the optimal ordering problem.
Its advantage was demonstrated in [17] via simulations and
in [16] via the DMT analysis. Since the latter holds only
asymptotically (SNR → ∞) and in i.i.d. Rayleigh-fading
channel, it is not clear what the finite-SNR implications are12

and whether this still holds under other fading distributions
or for a given, fixed channel (or a given realization of a
fading channel). To answer these questions, we will apply the
sufficient optimality conditions of Propositions 1 and 7 in this
Section.

The greedy ordering algorithm is as follows:
1) Select the largest |hi|; the corresponding stream is

detected last: km = argmaxi |hi|.
2) Select the second largest |hi⊥km |; the correspond-

ing stream is detected second last: km−1 =
argmaxi |hi⊥km |.

3) Repeat step 2 until finished (always projecting orthogo-
nally to already selected streams). The greedy ordering
is π = {k1...km}.

i.e. it follows the principle ”strongest goes last”, unlike the
original Foschini ordering [3], which follows the principle
”strongest goes first”.

We note that its computational complexity is significantly
reduced compared to the optimal ordering: while the latter

12since better DMT does not imply better finite-SNR performance, even at
high SNR, see e.g. [24].
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and under the IRA, with optimal and sub-optimal orderings; SNR=10dB; 104

channel realizations of Rayleigh-fading channel.

compares all m! possible orderings, the former compares only
m(m + 1)/2− 1 orderings, most of which are in sub-spaces
of reduced dimension (< m), i.e. a significant advantage for
large m.

By noting that this ordering algorithm always satisfies
the conditions of Propositions 1 and 7, it follows that the
greedy ordering is optimal for any fixed channel (or a given
realization of a fading channel, i.e. ”point-wise”) and at any
SNR for the m = 2 ZF V-BLAST under the IRA or IPRA.
This point-wise optimality implies the statistical optimality (in
terms of ergodic or outage capacity or outage probability) for
any fading distribution and at any SNR. Furthermore, from
Propositions 12 and 11, the greedy ordering is optimal at
high and low SNR regimes and for any m,n since it attains
the upper bound in (30) when |hm| = |hmin| under the
standard ordering. From Propositions 13, 14, it is optimal for
the MMSE V-BLAST.

For larger systems (m > 2), this ordering satisfies the
necessary optimality conditions in Propositions 2 and 6.
This, however, does not guarantee its optimality in general
(any SNR, any channel). Indeed, since numerical experiments
indicate that an optimal ordering for the m > 2 case is a
function of SNR and since the greedy ordering is not, it
cannot be optimal ”point-wise” in general. However, extensive
numerical experiments show that it is nearly optimal statis-
tically under the IRA or the IPRA in i.i.d. Rayleigh-fading
channel, as Fig.3-6 illustrate. The analysis above indicates
that the gain of optimal ordering depends significantly on
the channel matrix. However, since we wish to have more
or less general performance indicator, let us consider below
i.i.d. Rayleigh fading and use the system outage probability
as its performance measure13, which takes into account many
channel realizations, not just a few particular channel matrices,
so that the aggregate benefit of ordering will be clear.

Fig. 3 compares various ordering strategies in terms of

13Since it is the main performance indicator in quasy-static fading channels
[21]. This is also inline with the existing literature, see e.g. [5]-[10][19].
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channel realizations.

the outage probability in i.i.d. Rayleigh-fading channel. The
optimality of Foschini ordering under the UPRA is clearly
observed. It can also be seen that the greedy ordering under the
IRA is almost optimum. Finally, the significantly-better per-
formance of the ordered rate-optimized system as compared to
the unordered, unoptimized one is evident: while Pout = 10−3

is essentially unachievable by the latter, it is achieved by the
former at R ≈ 4.5 [nat/s/Hz].

The performance of the greedy and Foschini orderings are
evaluated under the WF (IPRA) and the IPA respectively in
Fig. 4. It can be seen that both orderings are almost optimum
for each respective case and perform significantly better than
the unordered, unoptimized system. Specifically, while Pout =
10−3 is achieved at R ≈ 0.1 [nat/s/Hz] by the unoptimized,
unordered system, R ≈ 2 and 10 [nat/s/Hz] are delivered by
the IPA and IPRA respectively under the greedy ordering.

The near-optimality of the greedy ordering is also observed
for larger systems under the IPRA and at different SNR
regimes, as Fig. 5 and 6 demonstrate. We attribute this to
the fact that the greedy ordering, while not being optimal
in general, does rule out many ”bad” orderings so that the
remaining ordering does perform well. Given that the greedy
ordering has much smaller computational complexity com-
pared to the exhaustive search of an optimal ordering, the
former is a valuable practical alternative.

VI. MMSE V-BLAST

In this section, we consider the MMSE V-BLAST, where
nulling the interference from yet-to-be-detected symbols is
balanced against the noise enhancement so that per-stream
SNR is maximized [21]. We demonstrate that, contrary to
the ZF V-BLAST considered before, any ordering is optimal
(delivers the same capacity) when the IRA or the IPRA are
used.
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A. MMSE V-BLAST under IRA

Under the MMSE combining at each step, the per-stream
SNR at step i under the standard ordering is [21]

γi = h+
i (σ

2
0I+HiH

+
i )

−1hi, (36)

where Hi = [hi+1...hm] is the reduced channel matrix
representing yet-to-be detected streams (i + 1)...m, and the
stream capacity is ln(1+ γi) so that the total system capacity
is

CIRA =
∑
i

ln(1 + γi). (37)

It follows that, in this system, any ordering delivers the same
capacity.

Proposition 13: Consider the MMSE V-BLAST under the
IRA (and the uniform power allocation among the streams).
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Then, any ordering is optimal, i.e. delivers the same system
capacity,

CIRA = CIRA(Hπ) ∀ π, (38)

at any SNR.
Proof: See Appendix.

It is a remarkable fact that any ordering works equally
well with coded MMSE V-BLAST under the IRA, since
it eliminates the need for computationally-intensive ordering
procedure. This provides an extra incentive for using MMSE
rather than ZF interference nulling, beyond the well-known
better uncoded error rate performance of the former. This
conclusion is also in stark contrast to the case of coded MMSE
V-BLAST under the UPRA, where optimal ordering does
provide significant performance improvement [10].

We further proceed to establish this property for the MMSE
V-BLAST under the IPRA (via the WF or FWF) as well.

B. MMSE V-BLAST under IPRA

Under the IPRA (via the WF or FWF), per-stream powers
are optimally allocated so that the channel model in (1) applies
and the total system capacity is

CIPRA =
∑
i

ln(1 + γ̃i), (39)

where the per-stream SNR γ̃i is

γ̃i = h̃+
i (σ

2
0I+ H̃iH̃

+
i )

−1h̃i, (40)

where H̃ = HΛ is the equivalent channel matrix (which
accounts for non-uniform power allocation) and H̃i, h̃i are
defined likewise.

Proposition 14: Consider the MMSE V-BLAST under the
IPRA (via the WF or FWF). Then, any ordering delivers the
same system capacity (i.e. optimal),

CIPRA = CIPRA(Hπ) ∀ π, (41)

at any SNR.
Proof: Follows from Proposition 13 via the substitution

H → H̃, so that for any power allocation, including the
optimal one, any channel ordering delivers the same system
capacity.

VII. CONCLUSION

An optimal ordering problem for the coded ZF and MMSE
V-BLAST has been considered in this paper. The sufficient
and necessary optimality conditions have been established
under four different power/rate allocation policies (UPRA,
IPA, IRA and IPRA), motivated by modern adaptive systems.
In the case of m = 2 ZF V-BLAST, the optimal ordering
is shown to be the greedy ordering (”strongest goes last”)
under the IRA/IPRA at any SNR and for any fixed channel,
while the Foschini ordering (”strongest goes first”) is optimal
under the UPRA/IPA, i.e. it is the rate allocation policy that
has a major impact on the optimal ordering procedure. The
point-wise optimality of the greedy ordering translates into its
statistical optimality (in terms of ergodic or outage capacity
or outage probability) under any fading and at any SNR. The
SNR gain of ordering was introduced and studied to quantify
the beneficial impact of ordering. Any ordering is shown to be
optimal for the coded MMSE V-BLAST under the IRA/IPRA.

VIII. APPENDIX

A. Proof of Proposition 7

First, observe that any ordering is optimal when g1 = g2 so
we further assume that g2 > g1. The key idea of the proof is
to demonstrate that π = {2, 1} cannot be optimal at any SNR.
The main difficulty is that two orderings may have different
number of active streams under the WF (or FWF), which
makes the algebra very lengthy (except when only 1 stream is
active in both cases). Instead, we demonstrate that swapping
the streams without changing the power allocation provides
higher capacity. Let C1 = C(π) be the capacity of ordering
π,

C1 = ln(1 + γα1βg2) + ln(1 + γα2g1), (42)

and C2 be the capacity of ordering π∗ = {1, 2} with the same
power allocation as that of π,

C2 = ln(1 + γα1βg1) + ln(1 + γα2g2). (43)

Assume first that α2 > α1 and observe that

eC2 − eC1 = (1 + γα1βg1)(1 + γα2g2)

− (1 + γα1βg2)(1 + γα2g1)

= (α2 − α1β)(g2 − g1) > 0, (44)

so that C1 < C2 ≤ C(π∗), where the last inequality is due to
the fact that {α1, α2} is not optimal under π∗. If α1 ≥ α2,
consider g′2 = α1g2 > g′1 = α2g1 as an equivalent channel
(with uniform power allocation) and swap the streams so that

C1 < ln(1 + γβg′1) + ln(1 + γg′2) ≤ C(π∗), (45)

where 1st inequality is from Proposition 1 (π is not optimal
on the equivalent channel {g′2, g′1} since g′2 > g′1), and 2nd
one from the fact that {α1, α2} is not optimal under π∗. Thus,
in both cases, C1 ≤ C(π∗), which proves the ”if” part. The
”only if” part follows from essentially the same argument.

B. Proof of Proposition 9

First, we demonstrate that the SNR regimes in (21) and (22)
indeed correspond to 1 and 2 active streams respectively for
both orderings.

Let π∗ = {1, 2} and π = {2, 1}. Then, from (18), there
is only one active stream for π∗ if μ(π∗) ≤ 1/(g1βγ) (the
weakest stream is inactive), where

μ(π∗) = 1 +
1

2γ

(
1

g1β
+

1

g2

)
, (46)

which can be expressed as

γ ≤ g2 − g1β

2g1g2β
. (47)

Applying the same reasoning to π, one obtains

γ ≤ |g1 − g2β|
2g1g2β

. (48)

Using the fact that g2−g1β ≥ |g1−g2β| for g2 ≥ g1, the last
bound is tighter, which results in (21). This also proves that
the scenario where the optimal ordering has 2 active streams
but sub-optimal - only one is impossible. Following the same
reasoning and reversing the inequalities in (47) and (48), one
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obtains (22). As a side remark, we note that the intermediate
SNR regime does not exist if g1 = g2 or/and β = 1 (any
ordering is optimal in this case).

Let C1(2) be the capacity under π(π∗). To prove (23), con-
sider 1st the case g1 > g2β so that Ci = ln(1+2γgi) and using
this in the gain definition (20) results in G = g2/g1. Now let
g1 < g2β, so that C2 stays the same and C1 = ln(1+2γβg2)
and the comparison reveals G = 1/β, which proves (23).

To prove (25), notice that Ci = ln(μ2
i βg1g2γ

2) when
both streams are active for both orderings, where μi is the
corresponding water level: μ2 = μ(π∗) and

μ1 = μ(π) = 1 +
1

2γ

(
1

g2β
+

1

g1

)
. (49)

Using Ci in the gain definition results in (25), after some
manipulations.

Finally, to prove (24), notice that C1 = ln(1 + 2γg2) and
C2 = ln(μ2

2βg1g2γ
2). Using these in the gain definition, one

obtains, after some manipulations, (24).

C. Proof of Proposition 13

It is well-known (see e.g. [4][21]) that the MMSE V-BLAST
under the IRA achieves the full MIMO channel capacity
(under the isotropic signalling), i.e. is information-lossless14,

CIRA =
∑
i

ln(1 + γi)

= ln |I+ γHH+|
=
∑
i

ln(1 + γσ2
i (H)), (50)

where γ = 1/σ2
0 and σi(H) are singular values of H. Any

detection (stream) ordering is equivalent to permutation (re-
ordering) of the columns of H. We further need the following
technical lemma.

Lemma 1: Singular values of any matrix are not affected
by re-ordering of its columns, i.e.

σi(H) = σi(Hπ)

Proof: Consider the singular value decomposition H =
UΣV+, where U,V are unitary matrices of left and right
singular vectors of H and Σ is a diagonal matrix of its singular
values. Observe that

Hπ = HPπ

= UΣV+Pπ

= UΣV+
π , (51)

where Pπ = [ek1 ...ekm ] is the permutation matrix correspond-
ing to permutation π = {k1...km}, ek = [0..0, 1, 0..0]T is a
standard basis vector with all zero entries except k-th one, and
V+

π = V+Pπ , where we have used the fact that the column
permutation is equivalent to right multiplication by Pπ. It
is straightforward to verify that simultaneous permutation of
the entries of any two vectors does preserve their scalar
product (and thus the Euclidean norm), a+b = a+π bπ, where
aπ(bπ) has the same entries as a(b) but arranged according

14It essentially implements the chain rule of mutual information via the
SIC and hence is an information-preserving processing [21] .

to ordering π. Therefore, since V+ has orthonormal rows, so
is V+

π and hence it is unitary. Thus, (51) is a valid singular
value decomposition of Hπ, which demonstrates that only
right singular vectors are affected by the column permutation
while the left ones and singular values are not affected. As
a side remark, we note that column permutation does affect
eigenvalues of a matrix.

Applying this Lemma to (50), one obtains:

CIRA(Hπ) =
∑
i

ln(1 + γσ2
i (Hπ))

=
∑
i

ln(1 + γσ2
i (H))

= CIRA(H). (52)
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