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Abstract—Secrecy capacity of a class of non-degraded com-
pound MIMO Gaussian channels is obtained. Earlier results
established for isotropic uncertainty sets are extended to broader
class of (non-isotropic) sets, which bound not only the gain but
also the eigendirections of the eavesdropper channel. When a
maximum element exists in the uncertainty set, a saddle-point
exists so that the compound and worst-case channel capacities
coincide and signaling on the worst-case channel also works for
the whole class of channels. The case of additive uncertainty in
the legitimate channel, in addition to the unknown eavesdropper
channel of a bounded spectral norm, is also studied. Its compound
secrecy capacity and the optimal signaling are established in
a closed-form, revealing the saddle-point property. The optimal
signaling is Gaussian and on the eigenvectors of the legitimate
channel and the worst-case eavesdropper is isotropic. The eigen-
mode power allocation somewhat resembles the standard water-
filling but is not identical to it.

I. INTRODUCTION

Currently, there is a growing interest in information-
theoretic security stimulated by wide-spread use of wireless
networks [1]. Since multiple-input multiple-output (MIMO)
architectures are indispensable for modern wireless systems
due to their high spectral efficiency, security aspects of MIMO
systems have gained importance as well. The secrecy capacity
of the MIMO Gaussian wiretap channel is established in [2–
5] under full channel state information (CSI), where it turns
out that Gaussian signaling is optimal. The optimal transmit
covariance matrix under the total power constraint has then
been found for a number of special cases [2, 3, 6, 7] while the
general solution remains illusive.

The provision of accurate channel state information to the
transmitter (Tx) is a major challenge for wireless communica-
tion systems. Along with this, it is hardly possible to expect
that the eavesdropper (Ev) will share its CSI with the Tx
to make the eavesdropping harder, which makes the perfect
Ev CSI model more than questionable. A standard approach
to address this problem is via the compound channel model,
where the exact CSI is not known to the Tx; it is only known
that it remains fixed during the whole transmission duration
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and that it belongs to a known set of channels (uncertainty
set).

The discrete memoryless compound wiretap channel with
a countably-finite uncertainty set (i.e. finite-state channels) is
studied in [8, 9]. The corresponding MIMO Gaussian channel
with countably-finite uncertainty sets is analyzed in [8]. Its
secrecy capacity is established under the degradedness as-
sumption. When the channel is not degraded, an achievable
rate is given while the capacity remains unknown. Interference
alignment for the compound MIMO Gaussian wiretap channel
is explored in [10]. A MIMO Gaussian wiretap channel where
the noiseless Ev channel is arbitrarily varying is considered
in [11]. Its achievable secrecy rate is given and the secrecy
degrees of freedom are established while its capacity remains
unknown.

The secrecy capacity of non-degraded compound MIMO
Gaussian channels was established in [12] under the full CSI
of the legitimate user (Rx) and an Ev uncertainty set subject
to the spectral norm constraint (which is uncountably-infinite).
This represents the scenario where perfect feedback exists for
the Rx channel while the Ev channel is not known, but is
known to have a bounded channel gain (due to e.g. propagation
path loss). This automatically implies only a minimal Ev CSI
at the Tx, which reflects well the natural eavesdropper desire
to be confidential and its lack of cooperation. The compound
capacity was shown to be equal to the worst-case channel
capacity thus establishing a saddle point. The optimal signaling
is Gaussian and on the eigenmodes of the worst-case channel,
while the eigenmode power allocation somewhat resembles the
classical water-filling (WF) but is not identical to it [12].

In this paper, we study the case where the Ev uncertainty set
is non-isotropic (not only the gain but also the eigendirections
are bounded). This is motivated by the fact that there may
be some physical (non-isotropic) constraints in the propaga-
tion environment which limit possible eigendirections of the
eavesdropper channel. Its compound capacity is characterized
via maximum and maximal elements of the uncertainty set. In
particular, the existence of a maximum element is sufficient
for the saddle point to exist so that the compound capacity
equals the worst-case channel capacity and the signaling on
the latter is optimal for the whole class of channels. When
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the maximum element does not exist, the optimal solution is
shown to be on a part of the boundary of the uncertainty set
so that optimization over a reduced set of maximal elements
is sufficient for the overall optimality (see Propositions 1-3 for
details).

Next, we study the case of double-sided channel uncertainty,
when both the legitimate and eavesdropper channels are not
known precisely at the Tx. The Rx channel is allowed to have
(additive) uncertainty, which represents channel estimation
and feedback link limitations, while the Ev channel has a
bounded spectral norm (due to the propagation path loss).
No degradedness assumption is made. This is motivated by
the Rx channel estimation inaccuracy, in addition to the lack
of knowledge of eavesdropper channel. Under this conditions,
the saddle point is shown to exist, so that the compound and
worst-case capacities are the same and the signaling on the
worst-case channel in the uncertainty set is optimal for the
whole class of channels. The optimal signaling directions are
the eigenmodes of the worst-case Rx channel and the optimal
power allocation is somewhat similar but not identical to the
WF (see Theorem 2 for details).

II. MIMO GAUSSIAN WIRETAP CHANNEL

Let NT and N1(2) be the numbers of antennas at the
transmitter and legitimate receiver (eavesdropper). The MIMO
Gaussian wiretap channel is then given by

y1 = H1x + ξ1, y2 = H2x + ξ2 (1)

where x = [x1, x2, ..., xNT
]T ∈ CNT×1 is the Tx signal,

y1(2) ∈ CN1(2)×1 is the signal at the Rx (Ev), ξ1(2) ∈ CN1(2)×1

is the circularly-symmetric additive white Gaussian noise at
the receiver (eavesdropper) (normalized to unit variance in
each dimension), and H1(2) ∈ CN1(2)×NT is the channel
matrix. The channels H1(2) are assumed to be fixed (constant)
during the whole transmission of block length n. We assume
an average power constraint tr R ≤ PT where PT is the total
transmit power and R = E{xx+} is the transmit covariance
matrix.

The secrecy is insured by requiring the information leakage
to the eavesdropper to vanish, which implies that its bit error
probability Pb approaches 1/2 as n→∞ (and thus codeword
error probability approaches 1) and the speed of convergence
depends on the secrecy criterion adopted. In particular, it can
be shown that

Pb = 1/2− o(1) under weak secrecy,

Pb = 1/2− o
(
1/
√
n
)

under strong secrecy,

so that Pb → 1/2 in any case, but the speed of convergence
can be arbitrarily slow under weak secrecy, while it is at least
as 1/

√
n under strong secrecy. Using the recent result in [9]

on exponential convergence of information leakage to zero, it
can be further shown that

Pb = 1/2−O(e−an)

i.e. exponentially fast in that scenario, where a > 0. This
provides an operational meaning for the secrecy criteria.

For the channel in (1), the secrecy capacity subject to the
total average transmit power constraint is [2–5]

Cs = max
R≥0

ln
|I + W1R|
|I + W2R|

s.t. tr R ≤ PT (2)

where Wi = H+
i Hi, i = 1, 2, and + is Hermitian conjugation.

The problem in (2) is not convex in general and explicit
solutions for the optimal transmit covariance are not known
for the general case, but only for some special cases (e.g. low-
SNR, MISO channels, or for the full-rank case) [2–6].

III. EAVESDROPPER CHANNEL UNCERTAINTY

Let us consider a compound channel with single-sided
uncertainty, where H1 in (1) is known to the transmitter and
H2 can be any (unknown to the Tx) subject to the spectral
norm constraint

S2 =
{
H2 : |H2|2 = max

|x|=1
|H2x| ≤

√
ε
}

=
{
W2 : |W2|2 = λ1(W2) ≤ ε

} (3)

where |x| =
√

x+x is the Euclidean norm of x, |H|2 = σ1(H)
is the spectral norm of H, i.e. its largest singular value σ1(H);
λ1(W2) is the largest eigenvalue of W2. Thus, the set S2

includes all W2 that are less than or equal to εI.
Note that |Hx| represents the channel (voltage) gain in

transmit direction x so that |H|2 is the largest channel gain.
|W|2 represents the largest channel power gain. The set in (3)
limits the maximum gain of the eavesdropper channel without
putting any constraint on its eigenvectors. This represents the
physical scenario where the Ev cannot approach the transmitter
beyond a certain minimum (protection) distance (so that the
channel gain is bounded due to propagation path loss) being
unconstrained otherwise. The secrecy requirement must hold
for all possible Ev channels in S2 simultaneously. Throughout
the paper, full CSI at the eavesdropper is assumed (the safest
assumption from the secrecy perspective).

The compound secrecy capacity of this channel has been
established in [12], which is summarized below.

Theorem 1 ([12]). Consider the compound MIMO Gaussian
wiretap channel in (1) with known W1 and unknown W2 ∈
S2 as in (3). Its compound secrecy capacity Cc equals to the
worst-case channel capacity Cw,

Cc = max
R

min
W2

C(R,W2) = min
W2

max
R

C(R,W2) = Cw

where

C(R,W2) = ln |I + W1R| − ln |I + W2R| , (4)

max and min are over all admissible R,W2: R,W2 ≥ 0,
tr R ≤ PT , W2 ∈ S2, and

Cw = C∗(ε) = max
trR≤PT

C(R, εI) (5)

is the secure capacity for the isotropic Ev W2w = εI, which
is the worst-case one in S2. The optimal signaling is on the
eigenmodes of the legitimate channel,

R∗ = U1Λ
∗U+

1 , (6)
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Fig. 1. An example of two uncertainty sets when W2 = diag{d1, d2} ≥ 0.
The (whole) set Sa corresponds to the uncertainty set given in (3), while the
shaded set Sb corresponds to (8).

where the columns of unitary matrix U1 are the eigenvectors of
W1, diagonal matrix Λ = diag{λ∗i } collects the eigenvalues
of R∗,

λ∗i =
ε+ gi
2εgi

zi, zi =

√
1+

4εgi
(ε+ gi)2

(
gi − ε
λ
− 1

)
+

−1 (7)

and λ > 0 is found from the total power constraint
∑
i λ
∗
i =

PT , gi = λi(W1), (x)+ = max{x, 0}.

This result shows that the secrecy capacity of the worst-case
channel is also the (compound) secrecy capacity of the class
of channels (achievable by a single code on the whole class).

Moreover, it follows that the isotropic eavesdropper is the
worst-case one under a bounded channel gain for any W1.
This is also appealing from the channel feedback perspective:
it is hardly possible to expect that the eavesdropper will
share its channel with the transmitter to make eavesdropping
harder, so only minimal information can be expected by the
transmitter about the eavesdropper channel.

A. Broader Class of Compound MIMO Channels

Theorem 1 can be further extended to a broader class of
compound MIMO channels. To this end, let us generalize the
uncertainty set S2 for the eavesdropper channel as follows

W2 ∈ S2 →W2 ≤ εI ∈ S2, (8)

i.e., all its members are less than or equal to εI. Unlike (3),
it may include not all such W2; it is not required to be
convex, compact etc. Fig. 1 illustrates the difference between
the uncertainty sets defined in (3) and (8) for diagonal W2.

Proposition 1. Consider the compound MIMO Gaussian wire-
tap channel in (1) when W1 is known and unknown W2

belongs to the uncertainty set S2 in (8). Its compound secrecy
capacity is Cc = C∗(ε), i.e., as in Theorem 1.

Proof: Observe that the compound secrecy capacity of
this channel is not smaller than that in Theorem 1, since
the uncertainty set here is included in the uncertainty set of
Theorem 1 (which includes all W2 ≤ εI, since it is equivalent
to λ1(W2) ≤ ε). On the other hand, setting W2 = εI

Sa

d1

d2 W ∗
2

S2m

Sb

Fig. 2. An example of two uncertainty sets Sa and Sb when m = 2 and
W2 = diag{d1, d2} ≥ 0. Sa has a (unique) maximum element W∗

2 (dark
dot) while Sb does not, but only a set of maximal elements (dark line) S2m.

demonstrates that the lower bound is achieved by this worst-
case channel. Since the compound capacity does not exceed
the worst-case one, the desired result follows.

We remark that the set S2 is not necessarily isotropic,
convex or compact (as in (3)), nor it has some other “nice”
properties, except that εI is its dominant (maximum) element,
and that Theorem 1 is a special case. This demonstrates the
importance of the isotropic eavesdropper for compound MIMO
wiretap channels under minimum Ev CSI at the Tx, even when
the uncertainty set is not isotropic.

To generalize these results further, we will need the follow-
ing definitions.

Definition 1. Let S2 be an uncertainty set of W2. W∗
2 is its

(unique) maximum element if W∗
2 ∈ S2 and ∀W2 ∈ S2 →

W2 ≤W∗
2 .

Definition 2. W2m is a maximal element of S2 if
W2,W2m ∈ S2 and W2 ≥ W2m → W2 = W2m (i.e.
the only element in S2 greater or equal to W2m is W2m

itself).

Note that Definition 2 is due to the fact that not any two
positive semi-definite matrices can be compared (i.e. it can be
that neither W1 ≥ W2 nor W1 < W2 is true, unlike the
scalar case), so that a maximum element may not exist. While
maximum element, if it exists, is unique, there may be many
maximal elements in a set (see e.g. [14] for more details).
Fig. 2 illustrates these definitions for the case of diagonal W2

and m = 2. We are now able to generalize Proposition 1.

Proposition 2. Consider the compound MIMO Gaussian wire-
tap channel in (1) when W1 is known and unknown W2

belongs to an arbitrary uncertainty set S2, whose maximum
element is W∗

2 . The saddle-point property holds, so that the
compound secrecy capacity equals to the worst-case secrecy
capacity:

Cc = max
R

min
W2∈S2

C(R,W2)

= min
W2∈S2

max
R

C(R,W2)

= max
R

C(R,W∗
2) (9)

where the worst-case channel is W∗
2 , and the transmission on

this channel is optimal for the whole class of channels in S2.
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Proof: Observe that

C(R,W2) ≥ C(R,W∗
2) ∀R,W2 ∈ S2

which is due to the fact that |I + WR| is monotonically
increasing in W [13] for any (positive semi-definite) R, so
that, by using max min and min max on both sides,

max
R

min
W2∈S2

C(R,W2) = max
R

C(R,W∗
2)

= min
W2∈S2

max
R

C(R,W2)

which proves the desired result.

This proposition says, in effect, that the saddle-point prop-
erty holds and, thus, the compound secrecy capacity equals to
the worst-case one, if a maximum element of the uncertainty
set S2 exists and the rest of its structure is irrelevant. Under
this condition, a code designed for the worst-case channel
works for the whole class of compound channels.

When the uncertainty set does not have a maximum element,
its worst-case secrecy capacity can be characterized using
maximal elements as follows.

Proposition 3. Consider the compound MIMO Gaussian
channel in (1) when W1 is known and unknown W2 belongs
to a bounded and closed uncertainty set S2, which does not
have a maximum element. Then,

min
W2∈S2

C(R,W2) = min
W2∈S2m

C(R,W2) ∀R (10)

where S2m is the set of all maximal elements W2m of S2,
and the worst-case secrecy capacity is

Cw = min
W2∈S2

max
R

C(R,W2) = min
W2∈S2m

max
R

C(R,W2)

(11)

i.e. minimizing over the whole uncertainty set S2 is equivalent
to minimizing over (normally much smaller) set of its maximal
elements.

Proof: The proof is relegated to Appendix A.

We remark that Proposition 3 effectively reduces the dimen-
sionality of the related optimization problem: if the original
problem in (11) is D-dimensional, the reduced one (on the
right hand side) is at most (D−1)-dimensional, since S2m is
on the boundary of S2 (this can be proved by contradiction).

The last two propositions demonstrate the key role of the
maximum element in the uncertainty set: if it exists, a saddle-
point exists, so it is a sufficient condition. It can be shown,
via examples, that the absence of a maximum element may or
may not result in the absence of a saddle-point, so there is no
necessary condition here.

IV. DOUBLE-SIDED CHANNEL UNCERTAINTY

Here we consider the case where both the legitimate and
eavesdropper channels are not known precisely at the Tx,

i.e. double-sided channel uncertainty. The compound channel
model follows the model in (1) where:

S1 =
{
H1 : H1 = H0 + ∆H, |∆H|2 ≤ ε1

}
(12a)

S2 =
{
W2 : |W2|2 ≤ ε

}
(12b)

where H0 is the nominal part of H1 known to the transmitter,
and ∆H is the uncertain, unknown part; |∆H|2 = σ1(∆H)
is the spectral norm of ∆H, i.e. the largest singular value
σ1(∆H). The uncertainty of W2 follows the same model as
in (3). This compound model reflects two important points:

First, the desire of the eavesdropper to be confidential to
keep its spying abilities uncompromised, so it does not share
its channel with the transmitter and therefore only minimal
information about H2 is available to the latter. Second, the
legitimate receiver, on the other hand, wishes to maximize the
rate so it shares its channel with the transmitter. Its channel
uncertainty is due to the limitations of the feedback and
estimation procedure, which is normally much smaller than
that of the eavesdropper (and hence the known nominal part).

Let us define

C(R,W1,W2) = ln
|I + W1R|
|I + W2R|

which depends on the transmit covariance matrix R and the
unknown channels W1 = H+

1 H1 and W2 = H+
2 H2. The

secrecy capacity of the compound channel in (12) can now be
characterized as follows.

Theorem 2. Consider the compound MIMO Gaussian wiretap
channel in (1) when fixed W1 and W2 are unknown at the
Tx but known to belong to the uncertainty sets S1 and S2 in
(12). Then, the compound secrecy capacity Cc is

Cc = max
R

min
W1,W2

C(W1,W2,R)

= min
W1,W2

max
R

C(W1,W2,R) = Cw

= C(W1w, εI,R
∗), (13)

i.e., the worst-case secrecy capacity Cw is also the (compound)
secrecy capacity Cc of the class of channels. The saddle-point
property holds,

C(W1w, εI,R) ≤ Cc = C(W1w, εI,R
∗)

≤ C(W1,W2,R
∗), (14)

where (W1w, εI,R
∗) is the saddle-point. The worst-case

channel is

W1w = H+
1wH1w, H1w = V0(Σ0 − ε1I)+U+

0 ,

W2w = εI, (15)

where U0,V0 are unitary matrices of right and left singular
vectors of the nominal channel H0 and Σ0 is the diagonal
matrix of its singular values. The optimal covariance R∗ is
as in Theorem 1 with the substitution

gi → (σi(H0)− ε1)2+, U1 → U0, (16)
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i.e., the optimal signaling is on the eigenmodes of the worst
nominal channel H1w and isotropic eavesdropper.

Proof: The proof can be found in Appendix B.

Remarkably, the saddle-point property holds and the
isotropic eavesdropper (of the maximum gain) is still the
worst-case one, even under the legitimate channel uncertainty,
and the optimal signaling is almost the same as in Theorem 1,
with the legitimate channel substituted by its degraded (due to
uncertainty) version H1w. We observe that, as the uncertainty
(i.e. ε1 and/or ε) increases, fewer and fewer eigenmodes are
used until only the strongest one remains active, in which case
the beamforming is optimal. From this perspective, beamform-
ing is the most robust strategy.

The game-theoretic interpretation of the inequalities in (14)
is the same as for the single-sided uncertainty: {W1w, εI,R

∗}
is a saddle-point in the matrix game between the transmitter
on one side and the eavesdropper and nature on the other;
neither can deviate from the optimal strategy without incurring
a penalty provided that the other player follows the strategy.

V. WEAK VS. STRONG SECRECY

The results above have been established under the strong
secrecy condition. It was demonstrated in [16, 17] that, for
regular (non-compound or known channels), strong and weak
secrecy capacities are the same. That result, however, does not
immediately apply to the compound setting here. Nevertheless,
it can be shown that the weak Cweakc and strong Cstrongc

secrecy compound capacities are the same,

Cweakc = Cstrongc (17)

if the saddle-point property holds under strong secrecy, i.e.
Cw = Cstrongc . Indeed, under the saddle point property,

Cw = Cstrongc ≤ Cweakc ≤ Cw (18)

from which (17) follows, where we have used the fact that the
worst-case capacity is the same under the strong and weak
secrecies, and that the compound strong secrecy capacity is
not larger than the weak one. In particular, the results in
Theorems 4, 5 and Proposition 5 also hold under weak secrecy,
so that one can go from weak to strong secrecy for free in the
compound settings as well under the saddle-point property.

In fact, the chain argument in (18) has the following
implications:
• the saddle point under strong secrecy (Cw = Cstrongc ) im-

plies a saddle point under weak secrecy (Cw = Cweakc ),
• no saddle point under weak secrecy (Cw > Cweakc )

implies no saddle point under strong secrecy (Cw >
Cstrongc ).

VI. CONCLUSION

In this paper, the compound wiretap channel has been
studied. The (strong) secrecy capacity of a class of non-
degraded compound MIMO Gaussian wiretap channels has
been established under the spectral norm constraint on the
eavesdropper channel. The channel is not required to be

degraded. The optimal signaling as well as the secrecy capacity
are given in a closed form. The saddle-point property has
been shown to hold, so that the compound capacity equals to
the worst-case one and signaling on the worst-case channel
achieves the compound capacity. Isotropic eavesdropper is
the worst-case one and signaling on the eigenmodes of the
legitimate channel is optimal. The results are extended to non-
isotropic uncertainty sets. It is shown that the existence of
a maximum element in the uncertainty set is sufficient for
a saddle-point to exist, so that compound capacity equals to
the worst-case one and signaling on the worst-case channel
achieves the capacity of the whole class of channels. Finally,
these results are extended to include the legitimate channel
uncertainty.
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APPENDIX

A. Proof of Proposition 3

The following lemma is instrumental.

Lemma 1. Let W1,W2, ... be a bounded and increasing
sequence of positive semi-definite matrices, i.e.

0 ≤W1 ≤W2 ≤ .. ≤Wi ≤ ... ≤ aI (19)

where 0 < a < ∞ is a positive constant. This sequence
converges.

Proof: Consider the following sequence of (non-negative)
scalars αi = x+Wix, where x is a vector of appropriate size;
for convenience, we take |x| = 1. Since {Wi} is an increasing
and bounded sequence, so is {αi},

0 ≤ α1 ≤ α2 ≤ .. ≤ αi ≤ ... ≤ a (20)

and therefore it converges to some non-negative number
b(x) = limi→∞ αi ≤ a. Hence, for any ε > 0, there is
such n(ε,x) that b(x) − αi < ε ∀i > n(ε,x),x. Since this
is true for any x, take n(ε) = maxx n(ε,x) and observe that
|b(x) − αi| < ε ∀i > n(ε) and all x. It follows that {αi} is
a Cauchy sequence, i.e. |αj − αi| < ε ∀i, j > n(ε) and all x,
i.e.

x+(Wj −Wi)x < ε ∀x

from which it follows that λ1(Wj−Wi) < ε and thus ‖Wj−
Wi‖ → 0 in any norm (since all norms are equivalent [13]),
i.e. {Wi} is a Cauchy sequence and thus converges [18, 19],
Wi →W ≤ aI. Taking Frobenius norm, one obtains element-
wise convergence of this matrix sequence.

Note that this result generalizes to matrices the well-
known fact that any scalar increasing and bounded sequence
converges.

To proceed further, observe from the definition of S2m that

min
W2∈S2

C(R,W2) ≤ min
W2∈S2m

C(R,W2). (21)
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We prove the equality by contradiction. Assume that

min
W2∈S2

C(R,W2) < min
W2∈S2m

C(R,W2) (22)

and let W∗
2 = arg minW2∈S2 C(R,W2) be a minimizer over

S2. Then, W∗
2 /∈ S2m (due to the strict inequality) so that

there exists W21 ∈ S2 such that W21 ≥W∗
2 (otherwise W∗

2

were in S2m), W21 6= W∗
2 , and C(R,W21) ≤ C(R,W∗

2).
If W21 ∈ S2m, we have a contradiction:

C(R,W21) ≤ C(R,W∗
2)

< min
W2∈S2m

C(R,W2)

≤ C(R,W21). (23)

Assume further that W21 /∈ S2m so that there exists such
W22 ∈ S2 that W22 ≥ W21, W22 6= W21, and the
process is repeated. In this way, we construct a non-decreasing,
bounded sequence {W∗

2,W21, ...,W2i, ...}, which either ter-
minates in a finite number of steps (when some W2k ∈ S2m

so we cannot find a greater one) or it continues indefinitely. In
the first case, we have a contradiction and thus the assertion
is proved.

In the second case, we claim that the sequence will converge
to some W ∈ S2m. To see this, first observe that this sequence
will converge to some W ∈ S2 (due to Lemma 1, since S2

is bounded and closed and thus compact and the sequence is
increasing and bounded; the boundedness can be understood
in any norm, since all matrix norms are equivalent). Thus, we
have to prove that W ∈ S2m. To see this, first observe that
W ≥W2i ∀i (since the sequence is increasing). If W /∈ S2m,
then there exists W∗ ∈ S2 such that W∗ ≥ W ≥ W21 so
it can be taken as a part of the constructed sequence and thus
W cannot be its limit - a contradiction. Therefore, W ∈ S2m,
as claimed. This, however, results in a contradiction to (22)
so that (10) holds. To see (11), take maxR in (21)-(23) and
apply the same argument.

B. Proof of Theorem 2

First, we observe that

C(W1,W2,R) ≥ C(W1, εI,R) ∀R,W1, (24)

since W2 ≤ εI (which follows from |W2|2 ≤ ε) and |I+WR|
is monotonically increasing in W for any (positive semi-
definite) R. The lower bound is achieved by W2 = εI.
Therefore,

min
W2

C(W1,W2,R) = C(W1, εI,R) ∀R,W1, (25)

and also

Cw = min
W1

max
R

C(W1, εI,R)

= min
W1

max
R

ln
|I + W1R|
|I + εΛ|

(a)
= min

W1

max
R

∑
i

ln
1 + λi(W1)λi(R)

1 + ελi(R)

(b)
= max
{λi}

∑
i

ln
1 + (σi(H0)− ε1)2+λi

1 + ελi

= C(W1w, εI,R
∗) (26)

where (a) follows from the inequality

|I + W1R| ≤
∏
i

(1 + λi(W1)λi(R)) (27)

and the equality is achieved when W1,R have the same
eigenvectors; (b) follows from the inequality σi(H1) ≥
(σi(H0)− σ1(∆H))+ (see e.g. [13]) and λi(W1) = σ2

i (H1)
where the equality is achieved by H1w.

We further observe that the saddle-point property in (13) is
equivalent to (see e.g. [15])

C(W1w, εI,R)
(a)

≤C(W1w, εI,R
∗)

(b)

≤C(W1,W2,R
∗) (28)

and we prove these inequalities below thus establishing (13).
Note that (a) follows from (26) (since R∗ is the optimal

covariance for W1 = W1w,W2 = εI). To prove (b), we
need the following technical lemma, which is an extension of
well-known singular value inequalities for a sum and a product
of two matrices (see e.g. [13]):

Lemma 2. Let A, B and C be n×m and m×m matrices,
and let the right singular vectors of A be the same as the left
singular vectors of C so that their singular value decompo-
sitions (SVD) are A = UΣaV

+ and C = VΣcW
+, where

U,V,W are unitary and Σa = diag{σai},Σc = diag{σci}
are “diagonal” matrices of singular values of A and C.
Assume that {σai} and {σci} are in decreasing order. Then,

σi((A + B)C) ≥ (σi(A)− σ1(B))+σi(C) (29)

where σi((A + B)C) are also in decreasing order. The
equality is achieved by B = −UΣbV

+, where Σb =
diag{min(σi(A), ε)}.

Using this lemma, one obtains:

Cw = C(W1w, εI,R
∗)

(a)
=
∑
i

ln
1 + (σi(H0)− ε1)2+λ

∗
i

1 + ελ∗i

(b)

≤
∑
i

ln
1 + σ2

i (H1R
∗1/2)

1 + ελ∗i

= C(W1, εI,R
∗)

(c)

≤C(W1,W2,R
∗) (30)
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where (a) follows from (26), (b) follows from Lemma 2
applied to A = H0,B = ∆H,C = R∗1/2 (and observing,
from (7), that the singular values of H0 and R∗1/2 are ordered
likewise), where we have used λi(R) = σ2

i (R1/2), and (c)
follows from (24). This establishes (28) and thus (13).
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