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Abstract—Optimal signalling over the wire-tap MIMO Gaus-
sian channel is studied under the total transmit power constraint.
The recent results are extended in several directions, including
a rank-deficient solution for the optimal covariance, lower and
upper capacity bounds for the general case, and characterization
of optimality of the isotropic signaling.

An isotropic eavesdropper model is studied, which provides
(tight) upper and lower capacity bounds for the non-isotropic
case and also serves as the worst-case scenario. The optimal
signaling for this model is obtained in an explicit form and its
properties are studied, including the high and low-SNR behavior,
the conditions for the eavesdropper to be negligible and the
capacity saturation effect.

I. INTRODUCTION

Information-theoretic perspective on secure communica-
tions has recently attracted a significant attention [1]-[7]. In
particular, the secure Gaussian MIMO channel has been a
subject of intensive studies using Wyner’s wire-tap model [3]-
[10]. A number of results have been obtained, including the
proof of optimality of Gaussian signaling (far from trivial).
The optimal transmit covariance has been obtained for some
special cases (low/high SNR, MISO channel, rank-one case)
but the general case remains an open problem.

It was conjectured in [7] and proved in [6] using an indirect
approach (via the degraded channel) that the optimal signaling
is on the positive directions of the difference channel. A
direct proof (based on the necessary KKT conditions) has
been obtained in [9]. A weaker result (non-negative instead
of positive directions) has been obtained in [10].

Recently, an exact full-rank solution for the optimal covari-
ance has been obtained in [9] and its properties have been
characterized. In particular, unlike the regular channel (no
eavesdropper), the optimal power allocation does not converge
to uniform one at high SNR and the latter remains sub-optimal
at any finite SNR. In the case of weak eavesdropper, the
optimal signaling mimics the conventional one (water-filling
over the channel eigenmodes) with an adjustment for the
eavesdropper channel.

In the present paper, we extend the recent results in several
directions:

* The full-rank solution in [9] is extended to a rank-deficient
case where the null space of the legitimate channel belongs to
the null space of the eavesdropper channel.
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* Lower and upper (tight) capacity bounds are obtained
for the general case, which are achievable by an isotropic
eavesdropper.

* The case of isotropic eavesdropper is studied in details,
including the optimal signaling in an explicit closed form and
its properties. This case is shown to be the worst-case MIMO
wire-tap channel.

* The set of channels for which isotropic signaling is opti-
mal is fully characterized. It turns out to be much richer than
that of the conventional (no eavesdropper) MIMO channel.

It is hardly possible to expect that the eavesdropper will
share its channel with the transmitter to make eavesdropping
harder. Therefore, only limited eavesdropper channel state
information can be expected by the transmitter. To address
this issue, we use an isotropic eavesdropper model with only
one parameter, the channel power gain, which is known to the
transmitter, and study it in details in Section V. Not only this
model provides (tight) upper and lower bounds for the non-
isotropic eavesdropper case (Proposition 2), but it also serves
as the worst-case eavesdropper. From the physical viewpoint,
this model emerges when there is a minimum (protection) dis-
tance to the transmitter beyond which the eavesdropper cannot
approach the transmitter, so that its channel power gain is
upper-bounded due to the propagation path loss but otherwise
is not constrained. We obtain the optimal Tx covariance in
an explicit form (Proposition 2). This includes transmission
on the legitimate channel eigenmodes (akin to the regular
MIMO channel) and an optimal power allocation among the
eigenmodes which somewhat resembles the standard water-
filling but is not identical to it. Properties of this optimal power
allocation are studied (Proposition 3): all sufficiently strong
eigenmodes are active at high SNR, but there is a capacity
saturation effect (increasing the SNR beyond a threshold does
not increase the capacity), while only the strongest eigenmode
is active at low SNR. The impact of the eavesdropper at
high SNR is multiplicative (i.e. very significant and never
negligible) SNR loss (resulting in the saturation effect) and
an additive (mild) SNR loss at low SNR. The conditions for
the eavesdropper to be negligible are given. Overall, the low-
SNR regime (e.g. as in CDMA) is more friendly for secure
communications in the sense that the impact of eavesdropper
is not that high or even negligible.

II. WIRE-TAP GAUSSIAN MIMO CHANNEL MODEL

Let us consider the standard wire-tap Gaussian MIMO
channel model,

y1 = H1x+ ξ1, y2 = H2x+ ξ2 (1)
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where x = [x1, x2, ...xm]T ∈ Cm,1 is the transmitted
complex-valued signal vector of dimension m×1, “T” denotes
transposition, y1(2) ∈ Cn,1 are the received vectors at the
receiver (eavesdropper), ξ1(2) is the circularly-symmetric ad-
ditive white Gaussian noise at the receiver (eavesdropper) (nor-
malized to unit variance in each dimension), H1(2) ∈ Cn1(2),m

is the n1(2)×m matrix of the complex channel gains between
each Tx and each receive (eavesdropper) antenna, n1(2) and
m are the numbers of Rx (eavesdropper) and Tx antennas
respectively. The channels H1(2) are assumed to be quasistatic
(i.e., constant for a sufficiently long period of time so that
the infinite horizon information theory assumption holds) and
frequency-flat, with full channel state information (CSI) at the
Rx and Tx ends.

For a given transmit covariance matrix R = E {xx+},
where E {·} is statistical expectation, the maximum achievable
secure rate between the Tx and Rx (so that the rate between
the Tx and eavesdropper is zero) is [3]-[7]

C(R) = ln
|I+W1R|

|I+W2R|
= C1(R)− C2(R) (2)

where negative C(R) is interpreted as zero rate, Wi =
H+

i Hi, ()
+ means Hermitian conjugation, and the secrecy

capacity subject to the total Tx power constraint is

Cs = max
R≥0

C(R) s.t. trR ≤ PT (3)

where PT is the total transmit power (also the SNR since the
noise is normalized). It is well-known that the problem in (3)
is not convex in general and explicit solutions for the optimal
Tx covariance is not known for the general case, but only for
some special cases (e.g. low/high SNR, MISO channels, or for
the full-rank case [5][6][8][9]).

III. OPTIMAL SIGNALING: PRIOR RESULTS

Below, we summarize the relevant prior results in [9] for
reference purposes.

Theorem 1: Let R∗ be an optimal covariance in (3),

R∗ = argmax
R≥0

C(R) s.t. trR ≤ PT

and let ui+ be its active eigenvector (i.e. corresponding to a
positive eigenvalue). Then,1

U+
r+(W1 −W2)Ur+ > 0 (4)

where the columns of Ur+ are the active eigenvectors {ui+},
so that x+(W1 − W2)x > 0 ∀x ∈ span{ui+}, i.e. a
necessary condition for an optimal signaling strategy in (3)
is to transit over the positive directions of W1 −W2 (where
the legitimate channel is stronger than the eavesdropper).

The full-rank solution of the optimization problem in (3) is
given in the following Theorem.

Theorem 2: Consider the case of W1 > W2 ≥ 0 (a
degraded full-rank channel) and PT > PT0, where PT0 is a

1A > B means that A−B is positive definite.

certain threshold power (i.e. sufficiently high but finite SNR).
Then, R∗ is of full rank and is given by:

R∗ = UΛ1U
+ −W−1

1 (5)

where the columns of the unitary matrix U are the eigenvectors
of Z = W2 +W2(W1 −W2)

−1W2, Λ1 = diag{λ1i} > 0

is a diagonal positive-definite matrix, where

λ1i =
μi

2

(√
1 +

4

λμi

− 1

)
(6)

and μi > 0 are the eigenvalues of Z−1; λ > 0 is found from
the total power constraint trR∗ = PT as a unique solution of
the following equation:∑

i

μi

2

(√
1 +

4

λμi

− 1

)
= PT − tr(W−1

1 ) (7)

PT0 can be found as a unique solution of the following
equation:

λ1min(PT0)λmin(W1) = 1

where λ1min = mini{λ1i} and λmin(W1) is the minimum
eigenvalue of W1.

It should be pointed out that Theorem 2 gives an exact (not
approximate) optimal covariance at finite SNR (no PT →∞)
since PT0 is a finite constant that depends only on W1 and
W2 and can be found numerically.

IV. OPTIMAL SIGNALING: A RANK-DEFICIENT SOLUTION

Let us now extend this full-rank solution to the scenario
where the optimal covariance is rank-deficient.

Proposition 1. Consider the problem in (3) when N (W1) ∈
N (W2), where N (W) = {x : Wx = 0} is the null space of
matrix W [13], and assume that

x+(W1 −W2)x > 0 ∀x ∈ N⊥ (8)

where N⊥ is orthogonal complement of N (W1), i.e. W1 −
W2 is positive definite on N⊥. At sufficiently high SNR (as in
Theorem 2), the optimal covariance in (3) is

R∗ = U⊥R̃
∗U+

⊥ (9)

where R̃∗ is the optimal covariance of Theorem 2 with the sub-
stitution Wi → U+

⊥WiU⊥ and the columns of semi-unitary
matrix U⊥ form an orthonormal basis of N⊥. Furthermore,
rank(R∗) = dim(N⊥).

Proof: Observe that Wix = Wix⊥, where x⊥ =
U⊥U

+
⊥x is the orthogonal projection of x on N⊥, so that

|I+WiR| = |I+WiU⊥U
+
⊥RU⊥U

+
⊥|

= |I+U+
⊥WiU⊥U

+
⊥RU⊥| (10)

and tr(U+
⊥RU⊥) ≤ tr(R) so that one can use the projected

matrices R̃ = U+
⊥RU⊥,W̃i = U+

⊥WiU⊥ in Theorem 2 to
obtain the desired solution. (8) insures that W̃1−W̃2 > 0 so
that Theorem 2 applies.
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V. ISOTROPIC EAVESDROPPER AND CAPACITY BOUNDS

While it is a challenging analytical task to evaluate the
secure capacity in the general case, lower and upper bounds
can be obtained for the general case using the standard matrix
inequalities εmI ≤ W2 ≤ ε1I, where εi = λi(W2) denotes
i-th largest eigenvalue of W2, and the equalities are achieved
when ε1 = εm, i.e. W2 has identical eigenvalues.

Proposition 2. The MIMO secrecy capacity in (3) is bounded
as follows:

C∗(ε1) ≤ Cs ≤ C∗(εm) (11)

where C∗(ε) is the secrecy capacity Cs when W2 = εI, i.e.
for the isotropically-strong eavesdropper,

C∗(ε) = max
R≥0

trR≤PT

ln
|I+W1R|

|I+ εR|
=
∑
i

ln
1 + giλ

∗
i

1 + ελ∗i
(12)

gi = λi(W1), and λ∗i = λi(R
∗) are the eigenvalues of the

optimal transmit covariance R∗ = U1Λ
∗U+

1 ,

λ∗i =
ε+ gi
2εgi

(√
1 +

4εgi
(ε+ gi)2

(
gi − ε

λ
− 1

)
+

− 1

)
(13)

and λ > 0 is found from the total power constraint
∑

i λ
∗
i =

PT , the columns of U1 are the eigenvectors of W1.

Proof: See Appendix.

Thus, the optimal signalling is on the eigenvectors of W1

(or right singular vectors of H1), identically to the regular
MIMO channel, with the optimal power allocation somewhat
similar (but not identical) to the conventional water filling. The
latter is further elaborated for the high and low SNR regimes
below. Unlike the general case (of non-isotropic eavesdropper),
the secure capacity of the isotropic eavesdropper case does
not depend on the eigenvectors of W1 (but the optimal
signalling does) but only on its eigenvalues, so that the optimal
signaling problem here separates into 2 independent parts: (i)
optimal signalling directions are selected as the eigenvectors
of W1, and (ii) optimal power allocation is done based on the
eigenvalues of W1 and the eavesdropper channel gain ε. It is
the lack of this separation that makes the optimal signaling
problem so difficult in the general case.

The bounds in (11) coincide when ε1 = εm thus giving the
secrecy capacity of the isotropic eavesdropper. Furthermore,
they are reasonably close to each other when the condition
number ε1/εm of W2 is not too large, thus providing a
reasonable estimate of the capacity, see Fig. 1.

We note that the power allocation in (13) has properties
similar to those of the conventional water-filling, as established
next.

Proposition 3. Properties of the optimum power allocation:
1. λ∗i is an increasing function of gi (strictly increasing

unless λ∗i = 0 or PT ) , i.e. stronger eigenmodes get more
power (as in the standard WF).

2. λ∗i is an increasing function of PT (strictly increasing
unless λ∗i = 0). λ∗i = 0 for i > 1 and λ∗1 = PT as PT → 0

if g1 > g2, i.e. only the strongest eigenmode is active at low
SNR, and λ∗i > 0 if gi > ε as PT → ∞, i.e. all sufficiently
strong eigenmodes are active at high SNR.

3. λ∗i > 0 only if gi > ε, i.e. only the legitimate eigenmodes
stronger than the eavesdropper ones can be active.

4. λ is a strictly decreasing function of PT and 0 < λ <
g1 − ε; λ→ 0 as PT →∞ and λ→ g1 − ε as PT → 0.

5. There are m+ active eigenmodes if the following inequal-
ities hold:

Pm+ < PT ≤ Pm++1 (14)

where Pm+ is a threshold power (to have at least m+ active
eigenmodes):

Pm+ =

m+−1∑
i=1

ε+ gi
2εgi

(√
1 +

4εgi
(ε+ gi)2

gi − gm+

(gm+ − ε)+
− 1

)
,

(15)

for m+ = 2...m and P1 = 0, so that m+ is an increasing
function of PT .

Proof: Follows from Proposition 2 (details are ommited
due to the page limit).

It follows from Proposition 3 that there is only one active
eigenmode, i.e. beamforming is optimal, if g2 > ε and

PT ≤ P2 (16)

e.g. in the low SNR regime (note however that the single-mode
regime extends well beyond low SNR if ε→ g2 and g1 > g2),
or at any SNR if g1 > ε and g2 ≤ ε.

A further importance of the isotropic eavesdropper model is
coming from the fact that it is hardly possible to expect that the
eavesdropper will communicate its channel to the transmitter
to make eavesdropping harder. Therefore, the transmitter has
to assume a worst-case scenario due to the lack of its precise
knowledge, which is the isotropic eavesdropper from the lower
bound in (11). In our view, this isotropic eavesdropper model
is more practical than the full Tx CSI model.

A. High SNR regime

Let us now consider the isotropic eavesdropper model when
the SNR grows large, so that giλ∗i � 1, ελ∗i � 1. In this case,
(12) simplifies to

C∗∞ =
∑
i+

ln
gi
ε

(17)

where the summation is over active eigenmodes only, i+ =
{i : gi > ε}, so that the capacity is independent of the SNR
(saturation effect) and the impact of the eavesdropper is the
multiplicative SNR loss, which is never negligible. To obtain
a threshold value of PT at which the saturation takes place,
observe that λ→ 0 as PT →∞ so that (13) becomes

λ∗i =
PTαi∑
i+

αi

(1 + o(1)), αi =

√
ε−1 − g−1

i . (18)
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Using (18), the capacity becomes

C∗(ε) =
∑
i+

ln
gi
ε
−

1

PT

⎛
⎝∑

i+

αi

⎞
⎠

2

+ o

(
1

PT

)
(19)

which is a refinement of (17). The saturation takes place when
the second term is much smaller than the first one, so that

PT �

⎛
⎝∑

i+

αi

⎞
⎠

2

/
∑
i+

ln
gi
ε

(20)

and C∗(ε) ≈ C∗∞ under this condition. Another way to
interpret (20) is to say that its right-hand side gives the SNR
threshold beyond which further increase does not increase the
capacity significantly and thus is not justified. This effect in
illustrated in Fig. 1.

Note that, from (18), the optimal power allocation behaves
almost like water-filling in this case, due to the αi term.

Using (17), the gap ΔC∗∞ = C∗∞(εm) − C∗∞(ε1) between
the lower and upper bounds in (11) becomes

ΔC∗∞ = m1 ln
ε1
εm

+

m2∑
i=m1+1

ln
gi
εm

(21)

where m1(2) is the number of active eigenmodes when ε =
ε1(m). Note that this gap is SNR-independent and if m1 =
m2 = m+, which is the case if gm+ > ε1, then

ΔC∗∞ = m+ ln
ε1
εm

(22)

i.e. also independent of the eigenmode gains of the legitimate
user and is determined solely by the condition number of the
eavesdropper channel and the number of active eigenmodes.

10− 0 10 20 30
0

2

4

6

8

0ε =

0.2ε =

0.1ε =

SNR [dB]

*( )C ε

high SNR

low SNR

Fig. 1. Secrecy capacity for the isotropic eavesdropper and the capacity of
the regular MIMO channel (no eavesdropper, ε = 0) vs. the SNR (= PT

since the noise variance is unity); g1 = 2, g2 = 1. Note the saturation effect
at high SNR , where the capacity strongly depends on ε but not the SNR, and
the negligible impact of the eavesdropper at low SNR.

B. When is the eavesdropper negligible?

It is clear from (12) that under fixed {gi} and PT , the secure
capacity converges to the conventional one C∗(0) as ε → 0.
However, no any small but fixed ε can insure by itself that
the eavesdropper is negligible since one can always select
sufficiently high PT to make the saturation effect important
(see Fig. 1). To answer the question, we use (12) to obtain:

C∗(ε) = max
λi≥0∑
i
λi=PT

∑
i

ln

(
1 +

1 + (gi − ε)λi

1 + ελi

)

(a)
≈ max
{λi}

∑
i

ln(1 + (gi − ε)λi) (23)

(b)
≈ max
{λi}

∑
i

ln(1 + giλi) = C∗(0)

where (a) holds if

PT 
 1/ε (24)

(since λi ≤ PT ), i.e. if the SNR is not too large, and (b) holds
if

ε
 gi+ (25)

where i+ is the set of active eigenmodes, i.e. if the eavesdrop-
per is much weaker than the legitimate active eigenmodes.
It is the combination of (24) and (25) that insures that the
eavesdropper is negligible. Neither condition alone is able to
do so. Fig. 1 illustrates this point. Eq. (23) also indicates that
the impact of the eavesdropper is the per-eigenmode gain loss
of ε. Unlike the high-SNR regime in (17) where the loss is
multiplicative (i.e. very significant and never negligible), here
it is additive (mild or negligible in many cases).

C. Low SNR regime

Let us now consider the low-SNR regime, which is char-
acteristic for CDMA-type systems. Traditionally, this regime
is defined via PT → 0. We, however, use a more relaxed
definition requiring that m+ = 1, which holds under (16). In
this regime, assuming g1 > ε,

C∗(ε) = ln

(
1 +

(g1 − ε)PT

1 + εPT

)
(a)
≈ ln(1 + (g1 − ε)PT ) (26)

where (a) holds when PT 
 1/ε. It is clear from the last
expression that the impact of the eavesdropper is an additive
SNR loss of εPT , which is negligible when ε 
 g1. Note a
significant difference to the high SNR regime in (17), where
this impact is never negligible.

Note further from (26) that the difference between the lower
and upper bounds in (11) is the SNR gap of (ε1 − εm)PT so
that the bounds in (11) estimate the capacity accurately if g1 �
ε1 − εm. This may be the case even if the condition number
ε1/εm is large. Therefore, we conclude that the impact of the
eavesdropper is more pronounced in the high-SNR regime and
is negligible in the low-SNR one if its channel is weaker than
the strongest eigenmode of the legitimate user.
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VI. WHEN IS THE ISOTROPIC SIGNALING OPTIMAL?

In the regular MIMO channel (W2 = 0), isotropic signaling
is optimal (R∗ = aI) iff W1 = bI, i.e. W1 has identical
eigenvalues. Since this transmission strategy is appealing due
to its low complexity (all antennas send independent data
streams, no precoding, no Tx CSI and thus no feedback is
required), we consider the isotropic signaling over the wire-
tap MIMO channel and characterize the set of channels on
which it is optimal. It turns out to be much richer than that of
the regular MIMO channel.

Proposition 4. Consider the MIMO wire-tap channel in (1).
The isotropic signaling is optimal, i.e. R∗ = aI in (3), for
the set of channels {W1,W2} that can be characterized as
follows:

* W1 and W2 have the same (otherwise arbitrary) eigen-
vectors, U1 = U2.

* W1 > W2 so that λi(W1) = a−1
i > λi(W2) = b−1

i ,
where λi(W) are ordered eigenvalues of W.

* Take any b1 > 0 and a1 < b1 and set

λ = (a1 + a)−1 − (b1 + a)−1 > 0, (27)

* For i = 2...m, take any bi such that

bi > λa2(1− λa)−1 > 0, (28)

and set

ai = −a+ (λ+ (bi + a)−1)−1 > 0 (29)

This gives the complete characterization of the set of
channels for which isotropic signaling is optimal.

Proof: It is straightforward to see that any channel in
the given set satisfies the conditions of Theorem 2 and the
corresponding optimal covariance is isotropic. The converse
follows from Theorem 1, which requires W1 > W2, so that
the optimization problem is strictly convex and thus has a
unique solution. For isotropic signaling to be optimal, the
corresponding KKT conditions (see the proofs of Theorems
1 and 2 in [9]) imply the conditions stated above.

Note that the special case of this Proposition is when
W1 and W2 have identical eigenvalues, as in the case of
the regular MIMO channel, but, unlike the regular channel,
there is also a large set of channels with distinct eigenvalues
which dictate the isotropic signaling as well. It is the inter-
play between the legitimate user and the eavesdropper that is
responsible for this phenomenon, i.e. a non-isotropic nature
of the 1st channel is compensated for by a carefully-adjusted
non-isotropy of the 2nd one.

VII. APPENDIX

1st equality in (12) follows from (3). For 2nd equality, use

|I+W1R| ≤
∏
i

(1 + λi(W1)λi(R)) (30)

which follows from Theorem 3.3.14(c) in [14] with f(x) =
ln(1 + x), where the eigenvalues λi(W1), λi(R) are ordered

likewise and the equality is achieved when W1,R have the
same eigenvectors, in addition to |I+ εR| =

∏
i(1+ ελi(R)),

so that the maximum is achieved when the eigenvectors of
W1 and R are the same, R∗ = U1Λ

∗U+
1 . The remaining

maximization is over the eigenvalues of R only, i.e. the
optimal power allocation in (13), which can be formulated
as

C∗(ε) = max
{λi}

∑
i

ln
1 + giλi

1 + ελi

, s.t. λi ≥ 0,
∑
i

λi = PT (31)

First, we note that this optimization problem is not convex
in general (unless ε < gm) so that KKT conditions are not
sufficient for optimality [11]. However, when projected on
the set of active eigenmodes, the problem becomes convex
and KKT conditions provide a unique optimum. Formally, we
proceed using the 4-step method of Brinkhuis and Tikhomirov
[12]:

1) Establish an existence of a global solution: since the
objective is a continuous function of {λi} and the constraint
set is compact, the existence of a solution follows from
Weierstrass theorem.

2) Find necessary conditions: KKT conditions are necessary
for optimality (this follows from e.g. Slater condition [11]), so
that a global optimum is a solution of KKT conditions.

3) Find all solutions of KKT conditions.
4) By inspection, find the global maximum.
The rest of the proof is based on the KKT conditions in [9]

and follows the same steps as the proof of Theorem 2 there.
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