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Asymptotic Analysis of Interference in Cognitive
Radio Networks

Yaobin Wen, Sergey Loyka and Abbas Yongacoglu

Abstract—The aggregate interference distribution in cognitive
radio networks is studied in a rigorous analytical way using
the popular Poisson point process model. While a number of
results are available for this model of regular (non-cognitive)
networks, cognitive ones present an extra level of difficulties
for the analysis, mainly due to the exclusion region around the
primary receiver, which are typically addressed via various ad-
hoc approximations (e.g. based on the interference cumulants)
or via the large-deviation analysis. Unlike the previous studies,
we do not use here ad-hoc approximations but rather obtain
the asymptotic interference distribution in a systematic and
rigorous way, which also has a guaranteed level of accuracy
at the distribution tail. This is in contrast to the large deviation
analysis, which provides only the (exponential) order of scaling
but not the outage probability itself. Unlike the cumulant-based
analysis, our approach provides a guaranteed level of accuracy
at the distribution tail. Additionally, our analysis provides a
number of novel insights. In particular, we demonstrate that
there is a critical transition point below which the outage
probability decays only polynomially but above which it decays
super-exponentially. This provides a solid analytical foundation
to the earlier empirical observations in the literature and also
reveals what are the typical ways outage events occur in different
regimes. The analysis is further extended to include interference
cancelation and fading (from a broad class of distributions).
The outage probability is shown to scale down exponentially in
the number of canceled nearest interferers in the below-critical
region and does not change significantly in the above-critical one.
The proposed asymptotic expressions are shown to be accurate
in the non-asymptotic regimes.

Index Terms—Cognitive radio, wireless network, interference
distribution, outage probability, fading, interference cancellation.

I. INTRODUCTION

AS HIGHER data rate services are required in wireless
communications over a limited spectrum, there is a

need for higher spectrum efficiency. Cognitive Radio (CR),
which suggests allowing secondary users (SU) to use the
spectrum currently not in use by a primary user (PU), is seen
as the main way to overcome the underutilized/overcrowded
spectrum problem and to use the available spectrum more
efficiently [1]. Due to the uncertainty in the number of SUs
and their locations, the PU performance may be seriously
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affected by the aggregate interference induced by the SUs in
the PU receiver. Therefore, its accurate modeling is important
to design cognitive radio networks and also to estimate their
potential benefits.

There is an extensive literature dealing with aggregate in-
terference modeling of conventional (non-cognitive) networks
[2]. The most popular elements of those models are a Poisson
point process (to model the interferers’ spatial locations) and
the standard propagation path loss models (e.g. path loss
exponent and fading). Based on that, Sousa and Silvester [3]
studied the aggregate interference power obtaining its charac-
teristic function (CF) and concluding that it is an α-stable ran-
dom variable. Except for some special cases, the closed-form
probability density function (PDF) is not available. Using the
multivariate Lepage series representation, Ilow and Hatzinakos
[4] obtained the CF of the aggregate interference including
the lognormal and Rayleigh fading effects and concluding
that the aggregate interference is a spherically symmetric α-
stable random vector. The benefits of interference cancelation
of various forms in wireless networks have been investigated
in [5]-[7]. Unlike the previous studies, which were mainly
based on the CF approach, [6] studied the tail of the aggregate
interference distribution directly and found that, at the low
outage regime, the aggregate interference is dominated by the
nearest interferer, and this also holds under various fading
models and interference cancelation mechanisms. Based on
the direct asymptotic analysis, compact and accurate closed-
form expressions for the outage probability were obtained and
a number of insights were pointed out. The beneficial impact
of optimum combining using the standard array processing
techniques (e.g. MMSE spatial filter) has been studied in [7].
While in some special cases the aggregate interference distri-
bution of a large wireless network approaches the Gaussian
one [8], it is far from being accurate in general.

The studies above are limited to the conventional (non-CR)
networks. The cognitive ones present additional difficulties for
the analysis due to the presence of the forbidden (exclusion)
region around the PU receiver where no SUs are allowed to
transmit (to ensure the PU’s proper quality-of-service), so that
the distribution of the aggregate interference is not α-stable
any more. Consequently, the above-mentioned models/results
cannot be used as they are fundamentally based on the α-stable
nature of the problem. Furthermore, the asymptotic analysis
of the interference distribution tail (low outage region) does
not apply either, since the forbidden region has a major impact
on the tail. These difficulties are addressed in the literature in
mainly two typical ways: via various ad-hoc approximations
(e.g. using the interference distribution cumulants found from
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its CF) [9][11] or via the large deviation analysis [12]. Addi-
tionally, numerical simulations provide a wealth of empirical
observations [10]. Since a direct analysis of the interference
distribution is challenging while the characteristic function is
much more amenable to the analysis, from which its cumulants
can be found, this approach was adopted in [9] and [11] to
obtain approximations of the interference distribution based
on the Edgeworth expansion and truncated stable distributions
respectively. While this approach predicts the main body of the
distribution well, its accuracy deteriorates significantly at the
distribution tail, i.e. at the practically-important low-outage
regime (high quality-of-service for the PU). This happens
because a limited number of cumulants (typically two) cannot
represent well the tail. On the other hand, the use of the large
deviation analysis allows one to predict the (exponential) rate
of decay of the distribution tail but not the distribution itself
(as all constants and slowly-varying functions are neglected in
the analysis; in particular, the results are independent of the
node density) so that “more refined estimates of the actual
probability are needed” [12]. This is accomplished in the
present paper.
To overcome the above-mentioned difficulties, we develop

a direct approach to the outage probability analysis based on
the heavy tail and saddle-point approximation theories. The
advantage of this combined approach is that the distribution
tail can be found in an explicit closed-form with a guaranteed
level of % accuracy, to the best of our knowledge, for the
first time. Additionally, this analysis provides a number of
insights and the expressions are also accurate in the non-
asymptotic regime (in fact, some of them are accurate over
the whole range), and it can also be extended to include
the impacts of interference cancelation and fading (from a
broad class of distributions), also in combination with each
other. Important geometrical and system parameters affecting
critically the outage probability are clearly identified.
We have studied a similar CR scenario in [14][15] based

on the concept of typical outage events and using ad-hoc
approximations in different regimes, which were validated
via Monte-Carlo simulations but not via a rigorous analysis.
Unlike [14][15], the present paper gives a rigorous analytical
evaluation of the asymptotic outage probability (summarized
in Theorems 1-4, Corollaries 1-3 and Proposition 4), from
which the typical outage events of [14][15] follow as a
consequence and do not require any ad-hoc assumptions or
approximations.
Using the present approach, we demonstrate that there is

a critical point below which the outage probability decays
polynomially (i.e. slowly) but above which it decays super-
exponentially (i.e. very fast), as a function of the threshold
interference-to-noise ratio (INR), thus revealing a qualitative
transition around this point. This provides a rigorous ana-
lytical foundation for the earlier empirical observations in
the literature [10], and is also in agreement with a similar
phenomenon observed in statistical physics [16]. The analysis
also reveals the outage-forming mechanism that is responsible
for such behavior: the polynomial (heavy tail) decay is due to
a dominant contribution of the nearest active interferer (this
also holds under interference cancelation and fading) and the
super-exponential decay is due to the aggregate effect of many

interferers, none of which is able to cause an outage alone. The
main analytical tools are the heavy tail distribution theory for
the below-critical region and the saddle-point approximation
theory for the above-critical one.
While increasing the forbidden region gives more protection

to the PU receiver (by reducing the interference), it also
reduces the spectral efficiency of the SUs by allowing fewer
of them to transmit. A compromise solution is to decrease the
forbidden region and to implement some form of interference
cancelation in the PU receiver to keep its quality-of-service at
an acceptable level1. This configuration is studied in Section
IV (to the best of our knowledge, for the first time) by
extending the analysis above. The nearest active node is shown
to provide the dominant contribution to the outage probability
in this case as well, which scales down exponentially in
the number of canceled nodes thus demonstrating significant
potential of this approach, at the below-critical level. On the
contrary, this approach gives little improvement in the above-
critical region. The obtained results are extended in Section
V to include the effect of fading from a broad class of fading
distributions whose tails decay faster than polynomially, which
includes all popular models, e.g. Rayleigh, Rice, Nakagami,
log-normal, Weibull, also in combination with each other and
with interference cancelation. In particular, Rayleigh fading is
shown to have a negligible impact on the outage probability
in the below-critical region and significantly increases it in the
above-critical region, while the log-normal fading induces a
slight increase in the former and a significantly higher increase
in the latter region. Similarly to non-CR networks [2], it is
the random CR network geometry that dominates the outage
probability in the below-critical region.
The rest of the paper is organized as follows. Section II

introduces the system model. In Section III, the rigorous
asymptotic analysis of interference is presented, and the non-
asymptotic approximations are obtained based on it and val-
idated via Monte-Carlo simulations. The analysis is further
extended to the case of interference cancelation in Section IV
and fading in Section V Section VI concludes the paper. The
proofs are given in the Appendix.

II. SYSTEM MODEL

Let us consider a cognitive radio network which contains a
primary user receiver and many secondary users’ transmitters
(nodes) on a plane. The PU is located at the origin. The SUs
are randomly located according to a Poisson point process of
the density λ [nodes/m2]. Interference coming from the SU
nodes outside the circle of a certain radius Rmax is assumed
to be negligible (alternatively, no SUs are located outside
of this circle, which models a realistic finite-size network).
The CR protocol considered here is that all SUs which are
inside of a forbidden (exclusion) region (FR), i.e. the circle of
the radius Rs centered on the PU, cease their transmissions
so that some protection to the PU receiver is provided. The
interference generated by PUs to each other is assumed to
be negligible (which can be achieved by proper frequency
planning and/or resource allocation). The geometry of the CR
network is illustrated in Fig. 1.

1This becomes a feasible solution when the PU is offered some incentives
[23] to implement interference cancelation such as a reduced license fee.
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Fig. 1. The geometry of the CR network. Interference coming from the SU
nodes outside the circle of the radius Rmax is negligible (i.e. the network is
finite). The interference coming from the nodes outside of the circle of radius
R0 is below the noise level at the PU receiver. The average number of nodes
in the disk of the radius R1 is one. All SUs inside the circle of the radius
Rs centered on the PU, the forbidden region (FR), cease their transmissions.

We assume that the desired signal, interferences and noise
are independent of each other. The total received power at the
PU receiver can be expressed as:

PPU = Pd +

N∑
i=1

Ii + P0 (1)

where Pd is the desired signal power; Ii is the interference
signal power coming from i-th SU node; P0 is the noise power;
N is a Poisson random variable which denotes the number of
nodes in the ring between circles of the radii Rs and Rmax,
i.e. the potential interference zone where all active interferers
are located. The power at the receiver antenna input coming
from a transmitter of power Pt is given by the standard link
budget equation, Pr = PtGtGrg, where Gt and Gr are the
transmitter and receiver antenna gains; g is the propagation
path gain. In this paper, we focus on the impact of the network
geometry on the aggregate interference distribution (which is
known to have a dominant contribution in regular (non-CR)
networks [2]) and consider first a non-fading scenario2 so that
g = aνr

−ν is the average path gain, where ν is the path
loss exponent, r is the distance between the transmitter and
receiver, and aν is a constant independent of r. For simplicity,
we assume the transmitter and receiver antennas are isotropic
with unity gain, and all SUs transmit at the same constant
power level Ps, so that Pr = Psg. The i-th SU generates the
interference power Ii = Psaνr

−ν
i at the PU receiver, where

ri is the distance between the i-th SU and the PU. Without
loss of generality, we normalize Psaν = 1, so that Ii = r−ν

i .
The analysis is further extended to fading channels in Section
V, where giaνr

−ν is the propagation path gain and gi is the
fading power gain.

Table I summarizes the main notations of this paper.

2these results will also apply to fading scenarios and delay-insensitive
applications, where the PU performance is determined by the average (over
fading) powers [10].

TABLE I
SUMMARY OF NOTATIONS AND SYMBOLS

λ the SU node density.
ν the path loss exponent.
θ̂ a solution of the saddle-point equation.
D = Ith/P0, an interference-to-noise (INR) threshold value.
D1 the INR from the boundary of the disk with radius R1.
Dmax = Imax/P0, the maximum INR caused by a single node.
d = D/Dmax.
d1 = D/D1.
Iag the aggregate interference power (at the PU receiver).
I1 the nearest node interference power.
Ith the threshold interference power.
Ik k-th nearest node’s interference power.
N0 the average number of nodes in the disk of radius R0.
Nmax the average number of nodes in the disk of radius Rmax.
Nr = πλ(R2

max −R2
s), the average number of nodes

in the annulus of radii Rmax and Rs.
Ns the average number of nodes in the forbidden region.
P0 the receiver own noise power.
Pcon the outage probability of the conventional network

(no forbidden region).
Pout the outage probability of the CR network.
Pout,1 = Pr{I1 > Ith}, a probability of the nearest node

interference I1 exceeding the threshold Ith = DP0.
Pout,k = Pr{Ik > Ith}, a probability of k-th nearest node’s

interference Ik exceeding the threshold Ith.
R0 a SU at the distance R0 from the receiver induces

the interference equal to the receiver noise level.
R1 the average number of nodes in the disk of radius R1 is one.
Rmax maximum distance from the PU receiver to a SU

(no SU nodes are located outside of this area).
Rs the radius of the forbidden region (no active SU nodes

are located inside).

III. AGGREGATE INTERFERENCE AND OUTAGE
PROBABILITY

When the signal to interference plus noise ratio (SINR) is
less than a certain threshold η, there is significant performance
degradation of a wireless link and it is considered to be in
outage. This is equivalent, under the adopted channel model,
to the aggregate interference power Iag =

∑
i Ii exceeding

the threshold Ith = Pd/η−P0, so that the outage probability
is

Pout = Pr{SINR < η} = Pr{Iag > Ith} (2)

We further assume that Pd is fixed (e.g. non-fading signal
power at the cell boundary). Defining the INR as

γ =

N∑
i=1

Ii/P0, (3)

its threshold value is D = Ith/P0, so that the outage
probability can be expressed as

Pout = Pr{γ > D} = 1− F (D) (4)

where F (D) is the cumulative distribution function (CDF) of
the INR. Under the adopted channel model, Pout also serves as
a complementary CDF (CCDF) of the aggregate interference
Iag .

A. Asymptotic Results

In this section, we present our main contributions in Theo-
rem 1 and 2, and Corollaries 1, 2, which are further extended
to the non-asymptotic regime in the next section, and to the



WEN et al.: ASYMPTOTIC ANALYSIS OF INTERFERENCE IN COGNITIVE RADIO NETWORKS 2043

case of interference cancelation and fading in the following
sections.
Since the CR protocol forces all SU nodes inside the

forbidden region of the radius Rs to cease their transmissions,
the interference generated by a single node can not exceed
Imax = R−ν

s , i.e. the value coming from an active SU node
at the closest possible distance, so that the maximum INR
caused by a single node is Dmax = Imax/P0. Let us compare
the CR network with the forbidden region of the radius Rs

and a corresponding conventional (non-CR) network, which is
identical to the CR one except that there is no forbidden region
(i.e. Rs = 0). The relationship of their respective outage
probabilities Pout and Pcon in the asymptotic (low-outage)
regime and when D < Dmax is characterized as follows.

Theorem 1: Let d = D/Dmax < 1 be the normalized
threshold INR bounded away from unity, and D → ∞. The
CR outage probability Pout is then asymptotically proportional
to the conventional one Pcon (for which Rs = 0):

Pout = Pr{Iag > DP0} = (1− d2/ν)Pcon · (1 + o(1)) (5)

where o(·) is the small o function 3.
Proof: see the Appendix. �
From Theorem 1 and the corresponding result for the

conventional network in [6], it follows that the aggregate
interference tail is dominated by the nearest node when d < 1,
which is formalized below.

Corollary 1: Let Pout,1 = Pr{I1 > Ith} be the probability
that the nearest node interference exceeds the threshold (thus
causing an outage event). The lower bound

Pout ≥ Pout,1

holds for any D and is tight at low (D → 0) as well as high
INR, when d < 1 and D → ∞,

Pout = Pout,1(1 + o(1))

= (1− d2/ν)N0D
−2/ν(1 + o(1)) (6)

where N0 = πλR2
0 is the average number of nodes in the disk

of radius R0.
Proof: see the Appendix. �
It follows from Corollary 1 that the lower bound Pout ≥

Pout,1 is tight at high INR as well as at low (since Pout,1 → 1
as D → 0). In fact, this Corollary says that the way a typical
(dominant) outage event occurs is when the nearest node
interference exceeds the threshold rather than the combined
interference from many distant nodes does so. This insight
has a dramatic consequence for the interference cancelation
considered in Section IV. It is clear from the (1 + o(1)) term
in (5) and (6) that they provide low relative (%) error and
thus can be used as accurate approximations (without o(1)
term) for finite but large D (low-outage or high quality-of-
service region) when D < Dmax, as we demonstrate below in
Section III-B. Note that (6) gives the tail behavior of Pout with
a guaranteed accuracy level (vanishing % error as D → ∞)
as an explicit function of geometrical and system parameters.

3y = o(x) if limD→∞ y/x = 0 [19].

While Theorem 1 holds for the D < Dmax case, the
opposite case of D > Dmax is also of considerable practical
interest for CR networks. In fact, while the outage proba-
bility decreases only polynomially with D in the 1st case
(i.e. comparatively slowly), Corollary 2 below shows that it
decreases super-exponentially in the latter case (i.e. very fast),
thus revealing a remarkable qualitative transition around the
D = Dmax point. To understand better why this happens,
observe that d < 1 in Theorem 1 implies D < Dmax, so that
single-node interference can exceed the thresholdD and cause
an outage event. Corollary 1 further demonstrates that this is
a typical outage event. On the other hand, when D > Dmax,
the single-node interference cannot exceed the threshold so
that a combined effect of several nodes is required. Let
n = �D/Dmax�, where �x� = min {n ∈ Z | n ≥ x} is a
ceiling function. The outage occurs when the combination of
at least n nodes’ interference exceeds the threshold. When
Dmax < ∞ and D → ∞, we have n → ∞, so that
some form of the central limit theorem (CLT) should apply
to the combined interference, which results in the Gaussian
approximation being a main candidate and an exponential
scaling follows. As is well-known, this applies around the
mean of the distribution but quickly deteriorates as one moves
to the distribution tail, i.e. the region we are interested in (that
is the low-outage region), when n is not sufficiently large.
To overcome this problem, we use the saddle-point theory
(also known as the tilted Edgeworth expansion), which suggest
tilting the original distribution in such a way that the point of
interest is always around the mean (akin to the importance
sampling technique) [13]. An immediate effect is that the
relative rather than absolute error becomes small, which has
a dramatic positive consequence for the distribution tail [17].
A summary of the saddlepoint approximation theory is

given in the following Lemma, which is instrumental for the
further analysis.

Lemma 1: Let Y1, · · · , Yn be independent and identically
distributed (i.i.d) random variables with the Moment Genera-
tion Function (MGF) MY (θ) = E[exp(θY )], and

τ2 = sup{θ : MY (θ) < ∞}.
The compound sum Sn =

∑n
i=1 Yi, where n is a Poisson

random variable with mean υ, has the following MGF

Mc(θ) = E [exp(θSn)] = exp {υ(MY (θ)− 1)} (7)

where the subscript c stands for compound. When MY (θ) is
finite for θ < τ2 with τ2 > 0, and MY (θ) → ∞ for θ → τ2,
the probability of Sn exceeding a threshold s is

Pr (Sn > s) = Q(z2 + z−1
2 ln(z3/z2))(1 +O{ρc4(θ̂)}) (8)

where

Q(x) =
1√
2π

∫ ∞

x

exp
(−u2/2

)
du

is the standard Q-function, O is the big-O function4, θ̂ is a
saddle point which is a solution of the stationarity condition

4y(x) = O{g(x)} if |y(x)/g(x)| ≤ C < ∞ as x → ∞, where C is a
constant [20][19].
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υM ′
Y (θ) = s;

ρck(θ̂) = υM
(k)
Y (θ̂){υM ′′

Y (θ̂)}−k/2,

z2 = sgn(θ̂){2θ̂s− 2υ(MY (θ̂)− 1)}1/2,
z3 = θ̂{υM ′′

Y (θ̂)}1/2,
and sgn(x) = 1 for x ≥ 0 and -1 otherwise.
Proof: see [[13], Ch.7]. �
Based on this Lemma, we obtain a rigorous result support-

ing the intuitive discussion above.

Theorem 2:When Dmax < ∞ and D → ∞, which implies
D > Dmax, the CR outage probability can be expressed as:

Pout = Q
(
z2 + z−1

2 ln(z3/z2)
)
(1 + o (1)) (9)

where

z2 =
√
2 sgn(θ̂)(θ̂d1 − J−1 −Nr)

1/2, (10)

z3 = θ̂J
1/2
1 , (11)

Jk =
2

ν

∫ N−ν/2
s

N
−ν/2
max

exp(θ̂x) xk−2/νdx,

d1 = D/D1 is the normalized threshold INR,

D1 = 1/Rν
1P0 = (πλ)ν/2/P0,

R1 is the radius of the disk with on average one node in
it (so that D1 is the INR from the boundary of that disk5);
Nr = πλ(R2

max −R2
s) is the average number of nodes in the

ring between the circles of radii Rmax and Rs; Ns = πλR2
s

is the average number of nodes in the forbidden region of
the radius Rs; Nmax = πλR2

max is the average number of
nodes in the disk of radius Rmax, and θ̂ is the solution of the
following saddle-point equation6

d1 =
2

ν

∫ N−ν/2
s

N
−ν/2
max

exp(θ̂x) x−2/νdx (12)

An asymptotic analytic solution for the saddle-point θ̂ is

θ̂ = Nν/2
s (lnw + ln lnw) + o(ln lnw) (13)

where w = νN
ν/2−1
s d1/2, and

z2 =
√
2 sgn(θ̂)(d1(θ̂ −Nν/2

s )−Ns)
1/2(1 + o(1)), (14)

z3 = θ̂(d1N
−ν/2
s )1/2(1 + o(1)). (15)

Proof: see the Appendix. �
Note that Theorem 2 includes two parts: part I is the asymp-

totic outage probability in (9)-(11) while the saddle-point is
evaluated via (12) (e.g. numerically); part II also makes use
of (9) but also adds to it the asymptotic expansions in (13)-
(15). While the Gaussian or Edgeworth expansion [9][8] can
provide a small absolute error (and thus non-negligible %
error), the saddle point approximation above gives a small
relative (%) error as shown by the (1 + o(1)) term in (9),

5it is also a critical value which separates the high and low outage
probability regions in non-CR networks [6].
6Unfortunately, this is an integral equation for which an analytic solution

is not known. Since it involves a finite-interval integral, it can be solved
efficiently using any known numerical technique [22]. Alternatively, (13),
(14) and (15) give a closed-form asymptotic solution.

so that only the latter is accurate at the distribution tail [17].
The next section shows that (9) can be used as an accurate
approximation (without o(1) term) for finite but large D when
D > Dmax, and that the saddlepoint approach reduces the
approximation error significantly compared to the Gaussian
or Edgeworth approximations. The following Corollary shows
that, unlike the outage probability in (6) which decays only
polynomially in D (heavy tail), that in (9) decays super-
exponentially, i.e. much faster [18].

Corollary 2: When Dmax < ∞ and D → ∞, the outage
probability in (9) decays as

Pout = exp{−Nν/2
s d1 ln d1(1 + o(1))} (16)

Proof: Combining (13), (14) and (15) with (9) results in
(16) after some manipulations. �
This qualitative transition in the behavior of Pout around the

D = Dmax point is in agreement with the earlier empirical
observations in the literature [10].
A similar result has been obtained earlier in [12] via the

large deviation analysis. In our notations, it can be expressed
as (see Theorems 12 in [12]):

Pout = c · exp (−b · d1 ln (d1) (1 + o(1))) (17)

where c and b are undetermined constants7. Comparing this to
(16), one observes that the latter includes the relevant constant
and thus can be used to estimate Pout, unlike the former.
Unfortunately, the (1+o(1)) term appears in the exponent and
thus creates a significant uncertainty8 (see also below). The
following Corollary eliminates this uncertainty via an upper
bound, leaving vanishing multiplicative uncertainty only.
Corollary 3: When Dmax < ∞ and D → ∞, the outage

probability in (9) can be upper bounded as

Pout ≤ 1

2
exp

{
−d1

(
a1 ln d1 − N

1+2/ν
max

Ns
+

Nr

d1

)}
× (1 + o (1)) (18)

where a1 = 1
2N

ν/2
s (ν lnNs − 2 ln(2Nmax/ν)).

Proof: see the Appendix. �
Further comparison of (16) and (17) to (9) shows that the

latter eliminates any exponential uncertainty and provides low
% error when estimating Pout (provided that a numerical
solution is used for (12)), which is also supported by the
simulation study below. To understand the implications of the
o(1) term better, consider the relative error ε in (9):

ε =
Pout − P̃out

Pout
= o(1) (19)

where P̃out is the right-hand side of (9) without the o(1) term,
i.e. used as an approximation. It follows that ε → 0 as D →
∞, i.e. % error → 0. On the other hand, when P̃out is the

7The large deviation analysis does not capture them. In fact, c can also be
a function of d1: c = o(d1 lnd1).
8It can be shown that dp1 = eo(d1 ln d1) ∀p < ∞ or d

dα1
1 =

eo(d1 lnd1), 0 < α < 1, i.e. unbounded polynomial or super-polynomial
may be present in front of the exponent in (16) and (17).
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Fig. 2. Outage probability for Dmax > D1 (Rs < R1, i.e small
forbidden region). The simulation parameters are ν = 4, Rs = 10m,
R1 = 56m, R0 = 200m, Rmax = 103m, λ = 10−4 [nodes/m2],
D1 = 22dB, Dmax = 52dB. MC denotes Monte-Carlo simulations (5×106

runs).

right-hand side of (16) or (17) without the o(1) term, one
obtains

ε = eo(d1 ln d1) (20)

so that % error may be unbounded (→ ∞) as the examples in
footnote 6 demonstrate. Therefore, the saddle-point asymptotic
in Theorem 2 is the best as the (1 + o(1)) term enters
multiplicatively rather than exponentially, providing small %
error.

B. Non-asymptotic outage probability

The asymptotic results In Theorems 1, 2 and Corollary 1 can
be used as approximations (without o(1) terms) for finite but
large D under certain conditions, which we summarize below
based on the concept of typical outage events by considering
3 typical cases.

• Case 1: D < Dmax and D1 < Dmax.
From Theorem 1 and Corollary 1, for finite but large D

and D < Dmax, Pout ≈ Pout,1. The key question is: ”When
is D sufficiently large so that the approximation is accurate?”
From [6], the nearest interferer approximation is accurate in
the conventional network when D > D1 (i.e. the low-outage
regime), where D1 = (πλ)ν/2/P0 is a critical value which
separates the high and low outage probability regions, and
is the INR coming from the boundary of the disk (centered
on the PU) with on average one node in it. As Theorem 1
links Pout and Pcon, the corresponding condition also applies
to the former, so that large D means Dmax > D > D1,
the aggregate interference is dominated by the nearest node
one and Pout ≈ Pout,1. This is possible when D1 < Dmax,
which implies Rs < R1, i.e. a small forbidden region. The
1st constraint D1 < D can be further removed by observing
that Pout,1 ≤ Pout ∀D (since one way for an outage to occur
is when the nearest node interference exceeds the threshold)
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Fig. 3. Three different regimes in the outage probability vs. INR behavior
when D1 < Dmax. If D1 > Dmax, the heavy-tail regime disappears.

and that Pout,1 → 1 as D → 0 so that Pout,1 ≈ Pout in this
high-outage regime; finally, Pout ≈ Pout,1 ∀D < Dmax. Fig.
2 shows the outage probability for Case 1. When D < Dmax

(heavy tail or below-critical regime), it is well approximated
by the nearest node one Pout,1. Note that the standard Edge-
worth expansion (e.g. as in [9]) is significantly less accurate
in this case. On the other hand, since the nearest node
interference cannot exceed Dmax, the above approximation
breaks down when D > Dmax (super-exponential or above-
critical regime). These observation have been validated via
extensive Monte-Carlo simulations for a wide range of system
parameters, of which Fig. 2 is only a sample.

• Case 2: D > Dmax and D1 < Dmax.
When D1 < Dmax (which implies Rs < R1, i.e. a small

forbidden region) and D > Dmax, a single node contribution
cannot cause an outage so that combined contribution of a few
nodes is required. On the other hand, the number n of nodes
contributing to a typical outage event is not sufficiently large
for a practically-important outage range (say Pout > 10−10),
so that and Gaussian or Edgeworth approximations are not
accurate, as Fig. 2 shows. However, as explained above, the
saddlepoint method tilts the original distribution and makes the
relative (%) error small so that its accuracy is much better at
the tail. Fig. 2 shows the saddlepoint approximation for Rs <
R1. WhenD > Dmax, its accuracy is remarkably good. On the
other hand, when D < Dmax, the saddlepoint approximation
is not accurate since the aggregate interference is dominated
by the nearest node one and the CLT-type argument is not
expected to work well in this case, so that Theorems 1 and
2 are essentially complementary to each other, providing a
combined accurate approximation of Pout for the whole INR
range via three typical regimes, which is summarized below:
� High-outage regime: D < D1 so that Pout ≈ 1. Nearest

node dominates.
� Below-critical (heavy tail) regime: D1 < D < Dmax

so that Pout ≈ Pout,1 ≈ (1 − d2/ν)N0D
−2/ν . Nearest node

dominates.
� Above-critical (super-exponential tail) regime:D > Dmax

so that Pout is as in (9) and (16). Several nodes contribute to
typical outage events.
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Fig. 4. Outage probability for D1 > Dmax (Rs > R1, i.e. large forbidden
region). The simulation parameters are ν = 4, Rs = 32m, R1 = 18m,
R0 = 200m, Rmax = 103m, λ = 10−3[nodes/m2],D1 = 42dB,Dmax =
32dB. MC denotes Monte-Carlo simulations (106 runs).

These regimes are illustrated in Fig. 3. It is interesting to
observe that these regimes are also inline with the correspond-
ing observations in [16] which identify different modes of
convergence for truncated Levy flights.
• Case 3: D1 > Dmax.
When D1 > Dmax, which implies Rs > R1, i.e. a large

forbidden region, n is large in the low outage range, i.e. a
typical outage event is when the combination of interference
from many nodes exceeds the threshold, and the aggregate
interference is closely approximated by a Gaussian random
variable,

∑N
i=1 Ii ∼ N [10][15]. As Fig. 4 demonstrates, the

Gaussian and Edgeworth approximations are accurate with 1−
2 dB gap at the tail, and the saddlepoint approximation is the
most accurate one with 0.1 dB gap at the tail. The closed-form
expression of the saddlepoint approximation is less accurate
than the numerical one, since the former was based on the
asymptotic expansions in (13) - (15).

IV. IMPACT OF INTERFERENCE CANCELATION

In a CR network and a location-based protocol, some form
of protection to the PU receiver is provided by not allowing
all the SUs in the forbidden region (FR) to transmit. Clearly,
the larger the FR, the smaller the interference generated by
the remaining (active) SUs, but also the lower the SU spectral
efficiency as fewer SUs are allowed to transmit. A compromise
solution is to reduce the FR (so that more SUs are allowed
to transmit) and to implement an interference cancelation
scheme9 in the PU receiver (so that its quality of service is
maintained). In this section, we analyze this scenario using
the asymptotic tools developed above.

Theorem 3: Consider the scenario where, in an addition
to the forbidden region, (k − 1) nearest (to the PU receiver)
interferers located outside the FR are canceled. When d =

9e.g. null forming by an antenna array as in [24] or any other suitable
technique.

D/Dmax < 1 and D → ∞, the CR outage probability Pout =
Pr{∑N

i=k Ii > DP0} is still dominated by the nearest active
(k-th) node and can be expressed as:

Pout = Pout,k(1 + o(1)) =
1

k!
P k
out,1(1 + o(1))

=
1

k!

(
N0

D2/ν
(1− d2/ν)

)k

(1 + o(1)) (21)

where Pout,k = Pr{Ik > DP0} is the probability that k-th
nearest node’s interferer exceeds the threshold, and Pout,1 is
that without interference cancelation (k = 1). The lower bound

Pout ≥ Pout,k

holds for any D and is tight at high (D → ∞) as well as low
(D → 0) INR.
Proof: see the Appendix. �
Note from (21) that Pout scales down faster than exponen-

tially in k, so that canceling nearest active interferers pays off
well, allowing to maintain low Pout for the PU receiver and to
increase the spectral efficiency of the SUs. To see this effect
in more details, consider the ratio:

Pout,(k+1)

Pout,k
=

N0(1 − d2/ν)

D2/ν(k + 1)
(1 + o(1))

Clearly, canceling an extra nearest interferer has a significant
beneficial effect for large D. Compared to the conventional
network (d = 0), the impact of the forbidden region on the
outage probability is captured by the (1−d2/ν)k term in (21).
Corollary 1 can now seen as a special case of Theorem 3

with k = 1. Similarly to the no interference cancelation case
(k = 1), (21) can serve as an approximation (without o(1)
term) when D < Dmax,

Pout ≈ Pout,k ≈ min{1, (N0D
−2/ν(1 − d2/ν))k/k!} (22)

where we have used the fact that 1 ≥ Pout ≥ Pout,k, i.e.
that Pout is at least as large as that due to k-th nearest node
and cannot exceed one. To validate this approximation, Fig. 5
shows the outage probability under interference cancelation
when Rs < R1 (small forbidden region)10. Note that the
approximation in (22) is quite accurate when D < Dmax.
It is also clear that canceling nearest active node reduces
significantly Pout in this below-critical regime. For the non-
fading k = 1 case, also note the transition from the heavy
tail region (polynomial decrease in Pout as in (22)) to the
steep decrease region (super-exponential, as in (18)) around
the D = Dmax = 52dB point.

V. IMPACT OF FADING

In this section, we study the impact of fading on the
aggregate interference distribution. Let us consider the ordered
average interference powers I1 ≥ I2 ≥ · · · ≥ IN which are
further subjected to fading so that the fading received powers
are Igi = giIi, where gi are the fading power gains, assumed
to be i.i.d. with the PDF fg(x) and the CDF Fg(x)

11.

10Since Dmax = 52dB is a constant in this figure, d = D/Dmax becomes
a variable along with D.
11Here we tacitly assume that the required signal is not fading, e.g. due

to line-of-sight propagation. Alternatively, our results represent the CCDF of
the aggregate interference.
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Fig. 5. Outage probability with interference cancelation and fading when
Rs < R1 (small forbidden region). The simulation parameters are ν = 4,
Rs = 10m, R1 = 56m, R0 = 200m, Rmax = 103m, λ =
10−4[nodes/m2], D1 = 22dB, Dmax = 52dB; σ = 6 dB. MC denotes
Monte-Carlo simulations (5× 106 runs).

A. Asymptotic Results

The theorem and corollary below characterize the asymp-
totic outage probability under fading (from a broad class of
distributions) alone and both fading and interference cancela-
tion simultaneously.

Theorem 4: Let d = D/Dmax < 1 and the fading
distribution tail decays faster than polynomially, i.e.

lim
x→∞(1− Fg(x))x

p = 0 ∀p < ∞,

where Fg(x) is the CDF of the fading factor. When D → ∞,
the outage probability Pout = Pr{∑i Igi > DP0} is domi-
nated by the nearest node interference:

Pout = Pr{Ig1 > DP0}(1 + o(1))

= N0D
−2/νM1 (d) · (1 + o(1)) (23)

where

Mk(d) =

∫ ∞

d

(g2/ν − d2/ν)kfg(g)dg

is a biased moment of g of order 2k/ν (when d = 0, it is the
moment of g of order 2k/ν).
Proof: see the Appendix. �

Note that M1 (d) includes the impact of both the forbidden
region and fading. The impact of fading alone is quantified,
via comparison of (6) and (23), by M1 (d) (1 − d2/ν)−1: if
the latter is greater than 1, the impact is negative (higher Pout

due to fading), and positive otherwise.
Based on Theorem 4, the impact of fading and interference

cancelation can now be quantified.

Proposition 4: Under the conditions of Theorem 4 and
when (k−1) nearest nodes are canceled, the outage probability

is dominated by the nearest active (k-th) node:

Pout = Pr{gkIk > DP0}(1 + o(1))

=
1

k!

(
N0

D2/ν

)k

Mk(d)(1 + o(1)). (24)

Proof: see the Appendix. �
Note that (N0D

−2/ν)k/k! represent the conventional outage
probability, i.e. no forbidden region and fading, and Mk (d)
quantifies the impact of the latter two.
It should be emphasized that Theorem 4 and Proposition 4

allow for a broad class of fading distributions, encompassing
all popular models such as Rayleigh, Rice, Nakagami, Weibull
and log-normal (also in combination with each other), whose
tail decays faster than polynomially.
Theorem 4 can be considered as a generalization of The-

orem 1: the latter can be recovered from the former using
fg(x) = δ(x−1). It can also be considered as a generalization
of Theorem 4 in [6]: the latter can be recovered by using
d = 0, i.e. no forbidden region.
Let us now specify the results above to the two popular

fading models.
Rayleigh fading (small scale): The power gain PDF is

fg(x) = exp(−x). The outage probability is as in Theorem 4
and Proposition 4 with,

Mk (d) =

k∑
i=0

Ci
k(−1)id2i/νΓ (2(k − i)/ν + 1, d) (25)

where Ci
k = k!/(i!(k − i)!) is the binomial coefficient and

Γ (a, x) =
∫∞
x

ta−1e−tdt is the incomplete Gamma function.
In particular, when k = 1, i.e. no interference cancelation,

M1 (d) = Γ (2/ν + 1, d)− d2/νe−d (26)

Log-normal fading (large scale): The power gain PDF is

fgl(x) =
1√
2πxσ

exp

(
− ln2 x

2σ2

)
,

where σ is the standard deviation of lnx in natural units, and
the impact of fading and forbidden region is given by

Mk (d) =

k∑
i=0

(−1)id2i/νCi
k exp

(
2σ2(k − i)2

ν2

)

×Q

(
ln d

σ
− 2σ(k − i)

ν

)
(27)

When k = 1, i.e. no interference cancelation,

M1 (d) = exp

(
2σ2

ν2

)
Q

(
ln d

σ
− 2σ

ν

)
− d2/νQ

(
ln d

σ

)
(28)

B. Non-asymptotic outage probability

Similarly to the non-fading scenario, the asymptotic results
above can be used as approximations (without o(1) terms)
for finite but large D under certain conditions, which we
summarize below based on the concept of typical outage
events by considering 3 typical cases depending on the size
of the forbidden region.

• Case 1: Rs < R1 (small forbidden region).
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Fig. 6. Outage probability under Rayleigh fading as in Fig. 5 (k = 1):
comparison to Gaussian and Edgeworth expansions.

From Theorem 4 and Proposition 4, for finite but large D <
Dmax, the outage probability is dominated by the k-th nearest
node after the cancelation, and thus can be approximated by
(24) without the o(1) term,

Pout ≈ 1

k!

(
N0

D2/ν

)k

Mk(d) (29)

Similar to the non-fading case, this approximation holds when
D1 < D < Dmax, which implies D1 < Dmax, which is
equivalent to Rs < R1, i.e. a small forbidden region. The
condition D1 < D can be relaxed by noting that Pout,k ≤
Pout ≤ 1, i.e. via the combined approximation/lower bound,

Pout ≈ min

{
1,

Mk(d)

k!

(
N0

D2/ν

)k
}

(30)

To evaluate the approximation accuracy, Fig. 5 illustrates this
case under Rayleigh and log-normal fading distributions. As
expected, when D < Dmax, Pout is well approximated by the
contribution of the nearest active node as in (29), which is a
lower bound in the general case.
Extensive simulation experiments for a wide range of sys-

tem parameters (of which Fig. 5 is only a sample) show
that the above approximation holds even when D > Dmax.
We attribute this to the fact that when fading is present, the
nearest node contribution can exceed Dmax, and the outage
probability is dominated by the nearest node in a positive
fading state (g > 1). Comparing log-normal and Rayleigh
fading in this case, both have a minor impact whenD < Dmax

(with the impact of Rayleigh fading hardly noticeable at all)
and both have a major impact when D > Dmax, with the
former far outweighing the latter, which is explained by the
longer tail of the log-normal distribution (exp(−(lnx)2) vs.
exp(−x)). Thus, similarly to non-CR networks [2], it is the
random network geometry that dominates the outage proba-
bility when D < Dmax. As Fig. 6 shows, the nearest neighbor
approximation in (29), (30) is much more accurate than the
Gaussian or Edgeworth expansions over the whole INR range
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Fig. 7. Outage probability with interference cancelation and fading when
Rs > R1 (D1 > Dmax). The simulation parameters are ν = 4, Rs = 32m,
R1 = 18m, R0 = 200m, Rmax = 103m, λ = 10−3[nodes/m2], D1 =
42dB, Dmax = 32dB; σ = 6 dB. MC denotes Monte-Carlo simulations
(106 runs).

and it is also able to predict accurately the outage probability
in all three distinct regions (high outage (D < 20 dB), heavy
(polynomial) tail (20 < D < 50 dB) and exponential (D > 50
dB)) and this also holds for log-normal fading.

• Case 2: Rs > R1 (large forbidden region).
Because of the effect of fading, single node INR can exceed

Dmax when it is in a positive fading state (g > 1), so that
single node can still cause an outage even when D > Dmax.
The typical outage event is when the combined interference
from a few nearest nodes in positive fading states exceed the
threshold. As Fig. 7 shows, the approximation in (30) is still
reasonably accurate, especially for the log-normal fading12.
We attribute this to the fact that, while many nodes contribute
to the typical outage event in the high-outage region (before
the steep transition region) so that the Gaussian approximation
is appropriate, it is a few nearest nodes plus positive fading that
is dominant in the steep transition low-outage region, where
the Gaussian approximation is remarkably less accurate. Also
note that interference cancelation does not bring significant
advantage in this case: since there is no dominant node,
canceling the nearest one does not help much. As far as the
approximation in (29) is concerned, the Mk(d) term provides
a dominant contribution in this case, which explains why Pout

is not reduced significantly by going from k = 1 to k = 2.

VI. CONCLUSION

This paper has provided the accurate, closed-form outage
provability approximations for CR networks, which are based
on the asymptotic analysis of interference and the saddle-
point theory. They can serve as an important evaluation tool
in the deployment of the future CR networks since they
provide insights into the interference-generating mechanism

12Since Dmax = 32dB is a constant in this figure, d = D/Dmax becomes
a variable along with D.
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Fig. 8. Geometry of conventional (no forbidden region) and CR wireless
networks. Disk 1 and Ring 1 are active interference zones (presence of a single
node there causes an outage event), while Ring 2 is a potential interference
zone (several nodes there are required to cause an outage event).

and suggest ways to combat it, and include the system and
network parameters in a clear way. Unlike the prior results,
these expressions are accurate in the low-outage region. The
asymptotic analysis revealed the qualitative transition in the
outage probability behavior around the critical point, when
the decay changes from polynomial to super-exponential,
thus providing a rigorous analytical foundation for the earlier
empirical observations in the literature. Typical outage events
have been identified, which farther facilitate a reduction in
the outage probability via e.g. interference cancelation. The
impacts of fading and interference cancelation, either alone or
in combination with each other, have been also included in the
analysis. In particular, the outage probability is shown to scale
down exponentially in the number of canceled nearest inter-
ferers in the below-critical region. All results and conclusions
are validated via extensive Monte-Carlo simulations.

APPENDIX

A. Proof of Theorem 1

Let nD be the number of nodes in disk 1 of the radius RD

in Fig. 8.a, and n1 be the number of nodes in ring 1 which is
between the circles of radii Rs and RD in Fig. 8.b. Let ring 2
be the ring between the circles of radii RD and Rmax in Fig.
8. Define the following probabilities:

P1 = Pr{nD ≥ 1}, P3 = Pr{n1 ≥ 1}

P2 = Pr

⎧⎨
⎩ ∑

i⊆ring 2
Ii > DP0

⎫⎬
⎭

The conventional outage probability can be now expressed as:

Pcon = P1 + (1 − P1)P2

From the Poisson point process, P1 = 1− exp(−λπR2
D), and

from Theorem 1 in [6], as D → ∞,
(1− P1)P2/P1 = o(1) (31)

The CR outage probability can be expressed as:

Pout = P3 + (1− P3)P2

Since D = d ·Dmax, one obtains

P3 = 1− exp(−λπR2
D(1− d2/ν)).

When d < 1 and D → ∞, the limit of the ratio of Pout and
Pcon can be evaluated as follows:

lim
D→∞

Pout

Pcon
= lim

D→∞

(
P3

P1
+

(1− P3)P2(1 − P1)

P1(1 − P1)

)

×
(
1 +

(1 − P1)P2

P1

)−1

= (1− d2/ν) (32)

from which (5) follows. �

B. Proof of Corollary 1

From [[6] Theorem 1], when D → ∞,
Pcon = N0D

−2/ν · (1 + o(1)) (33)

where N0 = πλR2
0. When d < 1 and D → ∞, one obtains

from (5) and (33),

Pout = N0(D
−2/ν −D−2/ν

max ) · (1 + o(1)) (34)

where Dmax = D/d. On the other hand, using the Poisson
point process probabilities when d < 1,

Pout,1 = N0(D
−2/ν −D−2/ν

max ) (35)

Comparing (34) and (35), when d > 1 and D → ∞, Pout =
Pout,1 · (1 + o(1)) from which Corollary 1 follows. �

C. Proof of Theorem 2

The proof is essentially based on Lemma 1 and properties
of Poisson point processes. An important property is that the
number of nodes in the region S is independent with that in
any other disjoint region. Based on that, the distances between
randomly-selected nodes and the origin are independent of
each other, so that the interference powers coming from
individual nodes without ordering are i.i.d random variables.
The PDF of the interference power I coming from a single
node (without ordering) is:

f(I) =

{
2
ν

I−1−2/ν

R2
max−R2

s
if R−ν

max ≤ I ≤ R−ν
s

0 otherwise
(36)

Let x1, · · · , xN be the INRs coming from individual nodes
without ordering after normalizing by D1, so that the PDF of
x = I/(P0D1) is

f(x) =

{
2
ν
x−1−2/ν

Nr
if N

−ν/2
max ≤ x ≤ N

−ν/2
s

0 otherwise
(37)

whereNr = πλ(R2
max−R2

s) is the average number of nodes in
the ring between the circles of radii Rmax and Rs; Nmax =
πλR2

max is the average number of nodes in the disk of the
radius Rmax; Ns = πλR2

s is the average number of nodes in
the disk of the radius Rs. The MGF of x is

Mx(θ) =
2

νNr

∫ N−ν/2
s

N
−ν/2
max

exp(θx) x−1−2/νdx (38)

When Dmax < ∞, 0 < N
−ν/2
s < ∞. Since 0 < N

−ν/2
max < ∞,

0 < N
−ν/2
s < ∞, and 0 < exp(θx) x−1−2/ν < ∞
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when N
−ν/2
max < x < N

−ν/2
s and θ < ∞, it follows that

0 < Mx(θ) < ∞, and
sup{θ : Mx (θ) < ∞} = ∞ (39)

Since the conditions of Lemma 1 are satisfied, the saddlepoint
approximation can now be used.
The saddle point θ̂ can be found by solving the station-

arity condition NrM
′
x(θ̂) = d1, where d1 = D/D1 is the

normalized threshold INR. After changing the variables, the
saddle-point equation becomes

d1 = p

∫ b

a

exp(θ̂x) x−pdx (40)

where p = 2/ν < 1 (ν > 2); a = N
−ν/2
max and b = N

−ν/2
s .

Unfortunately, this is a transcendental equation for which an
analytic solution is not known. It can be solved numerically in
an efficient way (since the right hand-side is a well-behaved
monotonic function of θ̂) using any of known techniques.
Below, we give an asymptotic analytic solution to obtain some
insights unavailable from a purely-numerical solution. When
d1 → ∞, it follows that θ̂ → ∞. Using the integration by
parts [19], (40) can be further reduced to

d1 =
p exp(θ̂b)

θ̂bp
[1 + o(1)] (41)

as d1 → ∞. Using the standard tools of asymptotic anal-
ysis (see e.g. [19][20]), one obtains, after some lengthy but
straightforward manipulations, an asymptotic solution for θ̂
(keeping the two leading terms):

θ̂ =
1

b
ln

(
d1b

p−1

p

)
+

1

b
ln ln

(
d1b

p−1

p

)
(1 + o(1))

= Nν/2
s (lnw + ln lnw) + o(ln lnw) (42)

where w = νd1N
ν/2−1
s /2.

Let us now evaluate z2 and z3. From Lemma 1, z2 can be
expressed as:

z2 = sgn(θ̂)(2θ̂d1 − 2Nr(Mx(θ̂)− 1))1/2 (43)

where

Nr(Mx(θ̂)− 1) = p

∫ b

a

exp(θ̂x) x−1−pdx−Nr

= (d1N
ν/2
s +Ns) (1 + o(1)) (44)

so (14) follows. From Lemma 1, z3 can now be expressed as:

z3 = θ̂

√
NrM ′′

x (θ̂) = θ̂

√
p

∫ b

a

exp(θ̂x) x1−pdx (45)

= θ̂

√
d1N

−ν/2
s (1 + o(1))

and from Lemma 1, an asymptotic solution for ρc4(θ) can be
expressed as

ρc4(θ) =
ν

2

∫ N−ν/2
s

N
−ν/2
max

exp(θx) x3−2/νdx[∫ N
−ν/2
s

N
−ν/2
max

exp(θx) x1−2/νdx

]2
=

νb

2

θb2/ν

exp(θb)
[1 + o (1)] (46)

and using (41),

ρc4(θ̂) = bd−1
1 [1 + o (1)] (47)

Finally, using (47) in (8), one obtains (9). �

D. Proof of Corollary 3

Let us consider the integral
∫ b

a exp(θ̂x) x−pdx in (40). It
can be upper bounded as

d1
p

=

∫ b

a

exp(θ̂x)x−pdx ≤ a−p

∫ b

a

exp(θ̂x)dx

≤ exp(θ̂b)

apθ̂
[1− exp(−θ̂(b− a))] (48)

similarly,

d1
p

≥ exp(θ̂b)

bpθ̂
[1− exp(−θ̂(b− a))] (49)

Using the standard tools of asymptotic analysis (see e.g. [19]),
when x is large, the lower bound for x in the equation ex/x =
μ is x ≥ lnμ, so that the lower bound for θ̂ is

θ̂ ≥ a1 ln d1 (50)

where

a1 = (p ln a−ln b−ln p)/b =
1

2
Nν/2

s [ν lnNs−2 ln(2Nmax/ν)]

When D → ∞, then θ̂ → ∞, which implies that θ̂ > 0 for
sufficiently large D, so that

z22 ≤ 2θ̂d1 + 2Nr,

z23 ≥ pa1−pθ̂ exp(θ̂b)[1− exp(−θ̂(b− a))] = θ̂2d1(1 + o(1))

and also z3 ≥ z2 > 0. Therefore, z−1
2 ln(z3/z2) ≥ 0 and

z1 = z2 + z−1
2 ln(z3/z2) ≥ z2.

On the other hand, when θ̂ > 0,

z22 ≥ 2θ̂d1 + 2Nr − 2p exp(θ̂b)

a1+pθ̂
[1− exp(−θ̂(b − a))] (51)

and using (49) and (51), one obtain

z22 ≥ 2θ̂d1 + 2Nr − 2d1b
p

a1+p
(52)

Using these facts, the outage probability in (9) can now be
bounded as

Pout = Q(z1)(1 + o(1)) ≤ 1

2
exp(−z21/2)(1 + o(1))

≤ 1

2
exp(−z22/2)(1 + o(1))

≤ 1

2
exp

{
−d1

(
a1 ln d1 − N

1+2/ν
max

Ns
+

Nr

d1

)}
(1 + o (1))

(53)
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E. Proof of Theorem 3

From the system model, the SUs are randomly located
according to a Poisson point process, so that the CDF of the
distance rk between kth nearest node and the origin is

Pr{rk < RD} = Fk(πλ(R
2
D −R2

s)) (54)

if RD > Rs and 0 otherwise, where

Fk(x) = 1−
k−1∑
i=0

xi

i!
exp(−x)

Let d = D/Dmax < 1. After canceling interference from
(k− 1) nearest nodes, the probability of the kth nearest node
along causing an outage is

Pout,k = Pr{Ik > DP0} = Pr{rk < RD} (55)

= Fk

(
N0

D2/ν
(1− d2/ν)

)
where I1 ≥ I2 ≥ ... ≥ IN are ordered interference powers.
When D → ∞, (55) simplifies to

Pout,k =
1

k!

(
N0

D2/ν
(1− d2/ν)

)k

(1 + o(1)) (56)

We further need the following technical lemma, which is a
generalization of Lemma 4.4.2 in [21].
Lemma 2: Let X be a positive random variable with a

regularly varying tail, i.e. there is a constant b > 0 such that
∀a > 1,

lim
x→∞

Pr{X > a · x}
Pr{X > x} = a−b (57)

and let the tail of X to dominate the tail of another positive
random variables Y1, i.e.

lim
x→∞

Pr{Y1 > x}
Pr{X > x} = 0 (58)

Then

lim
x→∞

Pr{X +
∑n

i=1 Yi > x}
Pr{X > x} = 1 (59)

where Y1 ≥ Y2 ≥ · · · ≥ Yn are ordered positive random
variables and n < ∞.
Proof of Lemma 2: It follows from Lemma 4.4.2 in [21]

applied to X and Y1 that

lim
x→∞

Pr{X + Y1 > x}
Pr{X > x} = 1 (60)

Using (60), it is straight forward to verify that

lim
x→∞

Pr{X + Y1 > x}
Pr{X > x} = lim

x→∞
Pr{X + n · Y1 > x}

Pr{X > x} = 1

(61)

Consider now the following bounds

Pr{X + Y1 > x} ≤ Pr

{
X +

n∑
i=1

Yi > x

}

≤ Pr{X + nY1 > x} (62)

and use (61) to obtain (59). �

Using (55), it is straightforward to verify that

lim
x→∞

Pr{Ik+1 > x}
Pr{Ik > x} = 0

Now, observe that N is finite with probability one and use
Lemma 2 with X = Ik , Yi = Ik+i, i = 1...N − k, so that

lim
x→∞

Pr
{∑N

i=k Ii > x
}

Pr{Ik > x} = 1 (63)

Thus, the outage probability is dominated by the nearest active
(k-th) node and 1st equality in (21) follows. 2nd and 3rd
equalities follow from (56).

F. Proof of Theorem 4

The nearest-node INR under fading is ds = g1I1/P0.
The probability of it exceeding the threshold D (and thus
causing an outage event) is given by (64), where f(g,D) =
fg(g)F (D/g), F (x) = Pr{I1 > DP0} is the CCDF of the
nearest-node non-fading INR I1/P0, and 0 < ε < 1 is a
constant. When g ∈ [0, D/Dmax), D/g > Dmax, so that
F (D/g) = 0 and thus J1 = 0. When D → ∞,

J2 =

∫ (D/D1)
ε

D/Dmax

[
1− exp

(
N0

D
2/ν
max

− N0

(D/g)2/ν

)]
fg(g)dg

=

∫ (D/D1)
ε

d

[
1− exp

(
− N0

D2/ν
(g2/ν − d2/ν)

)]
fg(g)dg

= N0D
−2/ν

∫ (D/D1)
ε

d

(g2/ν − d2/ν)(1 + o(1))fg(g)dg

= N0D
−2/ν

∫ ∞

d

(g2/ν − d2/ν)fg(g)dg · (1 + o (1))

= N0D
−2/νM1 (d) · (1 + o (1)) (65)

where d = D/Dmax. On the other hand,

J3 =

∫ ∞

(D/D1)ε
fg(g)F (D/g)dg

≤
∫ ∞

(D/D1)ε
fg(g)dg = 1− Fg((D/D1)

ε) = o(J2) (66)

since 1− Fg(x) decays faster than polynomially, and thus J3
can be neglected, so that

Pout,1 = J2(1 + o(1)) = N0D
−2/νM1 (d) · (1 + o (1))

(67)

In a similar way, using (55), one obtains Pout,k:

Pout,k = Pr{gkIk > DP0} =
Mk (d)

k!

(
N0

D2/ν

)k

(1 + o (1))

(68)

Observe further that Pout,k has regularly-varying tails and that
the tail of g1I1 dominates that of g2I2, so that Lemma 2
applies and thus (23) follows.

G. Proof of Proposition 4

The outage probability caused by the k-th nearest node
alone under fading is given by (68). Using Lemma 2 and the
reasoning similar to that in the proofs of Theorems 3 and 4,
(24) follows, i.e. the nearest active node dominates the outage
probability for a broad class of fading distributions whose tails
decay faster than polynomially.
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Pout,1 = Pr{ds > D} =

∫ ∞

0

f(g,D)dg =

∫ D/Dmax

0

f(g,D)dg︸ ︷︷ ︸
J1

+

∫ (D/D1)
ε

D/Dmax

f(g,D)dg︸ ︷︷ ︸
J2

+

∫ ∞

(D/D1)ε
f(g,D)dg︸ ︷︷ ︸
J3

(64)
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