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Abstract—An information-theoretic analysis of a multi-keyhole
channel, which includes a number of statistically independent key-
holes with possibly different correlation matrices, is given. When
the number of keyholes or/and the number of Tx/Rx antennas is
large, there is an equivalent Rayleigh-fading channel such that
the outage capacities of both channels are asymptotically equal.
In the case of a large number of antennas and for a broad class
of fading distributions, the instantaneous capacity is shown to be
asymptotically Gaussian in distribution, and compact, closed-form
expressions for the mean and variance are given. Motivated by
the asymptotic analysis, a simple, full-ordering scalar measure
of spatial correlation and power imbalance in MIMO channels
is introduced, which quantifies the negative impact of these two
factors on the outage capacity in a simple and well-tractable way.
It does not require the eigenvalue decomposition, and has the
full-ordering property. The size-asymptotic results are used to
prove Telatar’s conjecture for semi-correlated multi-keyhole and
Rayleigh channels. Since the keyhole channel model approximates
well the relay channel in the amplify-and-forward mode in certain
scenarios, these results also apply to the latter.

Index Terms—Asymptotic analysis, keyhole, measure of correla-
tion and power imbalance, MIMO channel, outage capacity, relay
channel.

I. INTRODUCTION

O UTAGE capacity is one of the major characteristics of
fading channels, as it provides an ultimate upper limit

on the error-free information rate with a given probability of
outage [1], [2]. The outage capacity of spatially independent as
well as correlated Rayleigh, Rice and Nakagami MIMO chan-
nels has been extensively studied, and a number of analytical
and empirical results have been obtained [1]–[9]. There are,
however, propagation environments that result in substantially
different channels. Chizhik et al. [10], [11] have introduced
a keyhole channel as a worst-case MIMO propagation envi-
ronment. This channel can be represented as a cascade of two
Rayleigh-fading channels separated by a keyhole whose dimen-
sions are much smaller than the wavelength. The presence of the
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keyhole degenerates the channel, i.e., its rank is one regardless
of the number of Tx and Rx antennas. Consequently, the tech-
niques exploiting the multiplexing gain of MIMO channels to
increase the data rate (e.g., BLAST) become inefficient. In con-
trast, the methods taking advantage of the spatial diversity, such
as Alamouti scheme [12], are beneficial and substantially reduce
the error rate. The interest in the keyhole channels has recently
increased since they appear in some practically important propa-
gation scenarios. A keyhole scenario where the propagation path
between Tx and Rx ends is due to the 1-D edge diffraction is
given in [11]. The outdoor model in [13] suggests the existence
of the keyhole channel in a rich scattering environment, where
the scattering rings around the Tx and Rx antennas are small
comparing to the distance between the Tx and Rx ends. Using
empirically validated channel model, [14] shows that the mean
capacity of a free space propagation channel follows closely
the corresponding capacity of the keyhole channel, when the
distance between the Tx and Rx ends is large. In [15], the in-
door measurement taken along hallways exhibited a decrease in
the channel capacity with distance, which is explained by the
keyhole effect. The first convincing experimental evidences of
the keyhole channel has been demonstrated in laboratory en-
vironment in [16], [17], where it was shown that the keyhole
model describes wireless channels when the wave propagates
via waveguides. The waveguide channel with a single propa-
gating mode, which can model certain indoor scenarios [18], is
also an example of a keyhole channel.

There are a number of studies that provide information the-
oretic analysis of the keyhole channels. The mean and outage
capacities of spatially uncorrelated and correlated keyhole chan-
nels have been studied in [21]–[23]. The diversity order of un-
correlated keyhole channels is investigated in [24], [25]. The
performance analysis of space time block codes over uncorre-
lated keyhole Nakagami-m fading channels has been carried out
in [26].

However, keyhole channels are not often encountered in prac-
tice, since the assumption of a single propagation eigenmode is
only a rough approximation of real propagation environments.
It has been shown in [16] that the keyhole effect is difficult
to observe, since, in many scenarios, the contribution of other
eigenmodes cannot be neglected. To include these scenarios and
expand the application range of the keyhole channel model, a
multi-keyhole channel, which includes a number of statistically
independent keyholes, was introduced in [19]–[21].

The multi-keyhole channel is closely related to the
double-scattering model in [13], since the keyholes and
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scatterers perform essentially the same function of re-radiating
the transmitted signal. The significant difference between these
two models is due to the fact that they represent different
geometric configurations and assume different fading statistics.

• The double-scattering model in [13] assumes that subchan-
nels corresponding to different scatterers (equivalently,
keyholes) are described by the same correlation matrix,
and are also correlated with each other. Since the eigen-
vectors of a correlation matrix correspond to the steering
vectors at the directions of energy transmission/reception
[27], this implies that the scatterers are located close to
each other, which is also consistent with the fact that
different subchannels are correlated with each other. Thus,
the double-scattering model represents dense scattering
environment.

• The multi-keyhole model considered here assumes that
subchannels associated with different keyholes are de-
scribed by different correlation matrices (including the
special case when they are equal) and that they are in-
dependent of each other, which corresponds to a sparse
scattering environment (when the keyholes are far away
from each other).

• Contrary to [13], no specific assumptions about the channel
fading distribution (e.g., Rayleigh fading) are made for the
multi-keyhole model (only Theorem 1 requires such an as-
sumption; other results hold for a broad class of fading
distributions).

Thus, these two models are essentially complementary to
each other.

A detailed information-theoretic analysis of the multi-key-
hole channel model is not available yet1. While Gesbert
et al. [13] introduced the double-scattering model, its channel
capacity was evaluated via simulations only, without under-
lying information-theoretic analysis. The outage capacity of
multi-keyhole or double-scattering channels has not been found
and the impact of correlation, number of keyholes/scatterers
and other parameters has not been studied. No comparative
analysis between the multi-keyhole/double-scattering and
canonic channels, such as Rayleigh-fading, has yet been made.
This paper fills these gaps by providing new results on the
outage capacity of multi-keyhole channels correlated at both
ends. While the exact outage capacity of MIMO channels is
rarely amenable to a closed-form analysis, we obtain compact
closed-form approximations via the asymptotic analysis with
respect to the number of antennas/keyholes, which results
in a number of important insights and applications. This
asymptotic approach has already been successfully applied to
Rayleigh-fading [30]–[32] and single-keyhole MIMO channels
[21], and has been found to predict reasonably well the per-
formance when the number of antennas is moderate, and it is
extended here to multi-keyhole channels. In particular, we show
that the instantaneous capacity2 of multi-keyhole channels is
asymptotically Gaussian, under mild assumptions and for a
broad class of fading distributions and correlation models. This

1After this paper had been submitted, capacity and outage analysis of beam-
forming in multi-keyhole and double-scattering channels have been presented
in [58]–[60].

2i.e., the capacity of a given channel realization.

along with other asymptotic results in the literature (e.g., in
[33], [38]3) suggests that the Gaussian distribution has a high
degree of universality for outage capacity analysis of MIMO
channels in general.

Based on the asymptotic analysis of a single-keyhole channel,
a scalar measure that characterizes the impact of correlation
on the outage capacity has been introduced in [19]–[21]. This
measure has also been shown to characterize the impact of cor-
relation on the mean capacity and diversity gain in Rayleigh-
fading and double-scattering channels [34], [35], [45]. In this
paper, a similar measure is shown to characterize the effects of
correlation and also power imbalance on the outage capacity
of multi-keyhole channels for a broad class of fading distri-
butions. The introduced measure is shown to be always finite
(even asymptotically, when the number of antennas/keyholes
increases to infinity), it does not require eigenvalue decompo-
sition (i.e., simple to evaluate), unlike the measures based on
the majorization theory [37], it has full ordering property (any
two channels can be compared, without exceptions), it clearly
separates the effect of correlation and power imbalance (none
of the known measures do), and it is compatible with the corre-
sponding measure based on the majorization theory [37].

The size-asymptotic approach opens a possibility to attack
a number of problems, which are associated with significant
mathematical complexity when the number of antennas is fi-
nite. While Telatar’s conjecture [1] has been proven only for
MISO and SIMO Rayleigh-fading channels [36] and remains
an open problem in general, we provide a compact proof of
the conjecture asymptotically for semi-correlated multi-keyhole
(for a broad class of fading distributions) and Rayleigh-fading
channels.

It should be noted that the keyhole channel can also serve as
a model of the relay channel in the amplify-and-forward mode
(see [28] for related models and results on relay channels).
Specifically, in many practically-important cases the relay
noise can be neglected (see [61] for details), and therefore,
the relay channel in these cases is well approximated by a
keyhole one, where the keyhole represents a relay node rather
than a propagation mechanism. This opens up a possibility to
apply the keyhole channel results to relay channels as well. In
particular, we note that the throughput gain from transmission
scheduling in a multiuser environment with “amplify-and-for-
ward” relays and the feedback rate required to support that
throughput can be estimated using the approach developed in
[30] for asymptotically large Rayleigh-fading channels, and the
estimates are valid for a broad class of fading distributions, not
only Rayleigh one.

The main results of the paper are summarized as follows.
• The instantaneous capacity of a multi-keyhole channel is

either upper bounded (finite number of keyholes) by or
converges in distribution (number of keyholes increases to

3Although [33, Theorem 2.76] refers to a wide range of MIMO channels in-
cluding a Rayleigh one, it cannot be applied to keyhole and multi-keyhole chan-
nels since these channels are not spatially independent, and, furthermore, they
cannot be generated by a linear combination of independent components, e.g.,
as in [38].
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infinity) to that of an equivalent Rayleigh-fading channel
(Theorem 2, Corollaries 2.1–2.3).

• Likewise, the instantaneous capacity of a multi-keyhole
channel is either upper bounded (finite number of an-
tennas) by or equals in probability (number of Tx or Rx
antennas increases to infinity) to that of an Rayleigh-fading
channel (Theorems 1, 3).

• While the instantaneous capacity of full-rank and rank-
deficient multi-keyhole channels is asymptotically (large
number of antennas) Gaussian, they have different means/
variances and the effect of correlation is different (Theo-
rems 3, 4).

• An additional motivation for the Kronecker correlation
model (see [29] for details on this model) is provided by
considering the Rayleigh-fading channel as a multi-key-
hole one with a large number of keyholes.

• Measures of correlation and power imbalance that clearly
separate these two effects and represent adequately the
outage capacity of multi-keyhole channels are introduced
and investigated (Sections IV, V).

• Telatar’s conjecture [1] is proved for semi-correlated
multi-keyhole channels (for a broad class of fading distri-
butions) and also generalized to semi-correlated Rayleigh
channels, and the set of active antennas is identified (The-
orem 6, Corollary 6.1).

The paper is organized as follows. The system model is in-
troduced in Section II. The outage probability and capacity of
multi-keyhole channels is analyzed in Section III. Section IV
studies the measure of channel correlation and power imbal-
ance. The impact of correlation and power imbalance on outage
capacity is discussed in Section V. Telatar’s conjecture is con-
sidered in Sections VI. Section VII concludes the paper. Proofs
are given in the Appendix.

II. MULTI-KEYHOLE CHANNEL MODEL

The following discrete-time, baseband model of a MIMO
channel with Tx and Rx antennas is used

(1)

where and are transmit and receive vectors respectively,
is the channel matrix whose elements

, represent the complex channel gains from -th
transmit to -th receive antennas, and is the AWGN noise
vector. Unless otherwise indicated, we adopt the following
assumptions:

i) the channel state information (CSI) is available at the Rx
end only,

ii) , where means identically
distributed, is identity matrix, and is the total
transmitted power, which does not depends on (this
achieves the ergodic capacity of the i.i.d. Rayleigh fading
channel [1], the outage capacity under certain conditions
(see e.g., [36], [49], Theorem 6 and Corollary 6.1 in the
present paper) and is a reasonable transmission strategy
with no Tx CSI in general [62], [66]),

iii) the total average received power is constant regardless
of (this corresponds to a densely-populated antenna
array [39] of fixed apperture),

iv) , where is the noise variance in each
receiver,

v) the channel is frequency flat and quasi-static (slow block
fading).

Following [2], the instantaneous capacity of such a MIMO
channel in natural units is given by

(2)

where denotes a determinant, is the Hermitian transpose
of , and is the total SNR at the Rx end. is
normalized so that , where

is the Frobenius norm.
Consider a spatially correlated multi-keyhole MIMO channel

(see Fig. 1). The channel matrix is given by the following
linear combination [21]:

(3)

where is a number of keyholes, is the complex gain of
-th keyhole, and are random and vectors

representing the complex gains from the transmit antennas to the
-th keyhole and from the -th keyhole to the receive antennas

respectively; , and
is a diagonal matrix. Assume that:

i) the keyholes are statistically independent, i.e.,

ii) and are normalized, so that for every

which implies, under , that

(4)

Since the average power at the Rx end is proportional to
[39], normalization (4) implies that does not depend on the
number of keyholes, i.e., the total “cross section” of the channel
is assumed to be constant. Note that, contrary to [13], [22], no
specific assumptions (e.g., Rayleigh fading) about the distribu-
tion of are made at this stage.

While the multi-keyhole model above has a structure similar
to that of the double-scattering model in [13], there are a number
of essential differences, as discussed in the Introduction. Note
that the two models are identical when the subchannels of dif-
ferent keyholes are independent ( is independent of

) and when these subchannels have the same correlation
matrix, so that our results apply to the double-scattering model
as well in that case.
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Fig. 1. Multi-keyhole MIMO channel model: each end has its own set of multi-
path components and is separated from the other end by a screen with a number
of keyholes of small size (smaller than half a wavelength).

III. CAPACITY AND OUTAGE PROBABILITY

OF MULTI-KEYHOLE CHANNELS

In this section, we study the capacity distribution of the multi-
keyhole channel and its relationship to the canonical Rayleigh-
fading channel. The instantaneous capacity of the multi-keyhole
channel is [21]

(5)

where and .
The outage probability is defined as the probability that the

channel is not able to support target rate , i.e.,
, and the corresponding outage capacity is defined as the

largest possible rate such that the outage probability does not
exceed the target value [62]

(6)

When is monotonically increasing in ,
where denotes the functional inverse of , so that

. Following Root and Varaya’s compound channel
capacity theorem [63], is achievable by a single universal
code of a rate arbitrary close to on any channel that is not
in the outage set (see also [64], [65] for a modern approach).
Likewise, such a code also achieves the block error rate equal
to the channel outage probability (for a given target rate). An
alternative interpretation of (6) is via an adaptive-rate system:
the transmitter knows the instantaneous channel capacity and
sets the transmission rate arbitrary close to it, which achieves
simultaneously the instantaneous capacity , the outage prob-
ability (for given target rate ) or the outage capacity

(for target outage probability ).
The following theorem indicates the relationship between the

multi-keyhole and the canonic Rayleigh-fading channels.

Theorem 1: (i) Consider a multi-keyhole channel with
independent keyholes, such that and are mutually in-
dependent complex circular symmetric Gaussian vectors with
corresponding correlation matrices

, and

Then, as , there exists an equivalent Rayleigh-fading
channel, such that the instantaneous capacities of both channels
are equal in probability, i.e.,

(7)

where denotes convergence in probability, represent the
equivalent Rayleigh-fading channel, and is the diag-
onal power allocation matrix in the equivalent channel. It fol-
lows that the corresponding outage probabilities/capacities are
also equal:

(8)

where is the target rate (or the outage capacity for a given
outage probability).

(ii) Due to the symmetry in (5), this also holds true when Tx
and Rx ends are exchanged as .

Proof: See the Appendix.

The following arguments give intuition behind Theorem 1.
For large , the Tx subchannel (see Fig. 1) is asymptotically
nonfading AWGN due to the large diversity order , so
that the end-to-end channel becomes Rayleigh-fading with
Tx antennas (i.e., keyholes), each with the power gain .
Similarly, when is large, the end-to-end channel is asymp-
totically Rayleigh-fading with Rx antennas, each with the
power gain . Theorem 1 generalizes the corresponding
result in [21] obtained for .

As an example, consider the capacity distributions of
multi-keyhole channels with two independent key-

holes and the equivalent 2 2
Rayleigh-fading channel shown in Fig. 2. The Kronecker model
[29] is used to simulate the correlation in the Rayleigh-fading
channel. The correlation matrices for both the multi-keyhole
and Rayleigh-fading channels are modeled using the exponen-
tial correlation model [40] with the adjacent antenna correlation

at both ends4. From Fig. 2, the outage capacity increases
with the number of Tx antennas and asymptotically approaches
the capacity of the equivalent 2 2 Rayleigh-fading channel (a
bold solid line). In the considered range of outage probabilities,
the difference between the two becomes practically negligible
for .

Note that given the same outage probability and , the
outage capacity of the equivalent Rayleigh-fading channels is
always higher than that of the multi-keyhole one. The Rayleigh
channel capacity is achieved only asymptotically as .

In the following discussion, we distinguish between two dif-
ferent types of multi-keyhole channels:

i) a full-rank multi-keyhole (FRMK) channel, where
;

ii) a rank-deficient multi-keyhole (RDMK) channel, where
.

It is straightforward to show that similarly to the
Rayleigh-fading channel, the multiplexing gain [41] of the
FRMK channel is limited by . In contrast, that

4Unless otherwise is indicated, the Kronecker and exponential correlation
models are applied throughout the paper in examples.



LEVIN AND LOYKA: FROM MULTI-KEYHOLES TO MEASURE OF CORRELATION AND POWER IMBALANCE IN MIMO CHANNELS 3519

Fig. 2. Outage probability/capacity of multi-keyhole correlated Rayleigh-
fading channels.

of the RDMK channel is limited by . Below we show that
given the same , FRMK and RDMK channels have different
outage probabilities/capacities, and the impact of correlation is
via different mechanisms.

A. Full-Rank Multi-Keyhole Channel

Below we show that the FRMK channel is asymptotically
Rayleigh-fading as . While this result is intuitively
expected5, it holds under some nontrivial conditions given by
the following theorem.

Theorem 2: Consider a full-rank multi-keyhole channel with
the matrix given by (3) under the following assumptions:

a) and are circular symmetric random vectors such
that and ;

b) the correlation matrix

does not depend on and is nonsingular6, where de-
notes transposition, denotes the Kronecker product, and

creates a column vector by stacking the elements
of column-wise,

c) the following holds under normalization (4):

(9)

where are sorted in a
nonincreasing order.

Then:
i) is asymptotically circular symmetric complex

Gaussian in distribution.
ii) Let , where is the

cumulative distribution function (CDF) of
for given and is a Gaussian CDF with zero mean

5The multipath becomes richer with � and so the channel distribution is
closer to the Rayleigh one.

6Note that under normalization (4), � is the “average correlation matrix”,
averaged over � � � � � �� . Thus, the assumption above is equivalent to con-
sidering a set of matrices � � � , where the “average matrix” does not
depend on the set size.

and the correlation matrix . Then, as
, i.e., converges to uniformly, with at least

the same rate as .
Proof: see Appendix.

Note that following Theorem 2, the multi-keyhole channel is
asymptotically Rayleigh-fading, even though the subchannels
are not necessarily Rayleigh and/or uncorrelated.

While (9) is a sufficient condition for Theorem 2 to hold, it
provides only limited insight. Below we consider two equivalent
conditions to obtain more insight.

Corollary 2.1: Condition (9) holds if and only if at least one
of the conditions below is satisfied

(10)

Proof: see Appendix.

In view of the normalization (4), Corollary 2.1 says that (9)
holds if the power contribution of all keyholes is more or less the
same, and that none of the keyholes contributes a significant part
of the total power. Condition (9) does not hold when the number
of nonzero keyholes is finite: , and 0
otherwise, so that . Hence, a necessary
condition for (9) to hold is that the number of nonzero keyholes
increases to infinity with .

The following corollary gives simple sufficient conditions for
to be nonsingular.

Corollary 2.2: The correlation matrix

is nonsingular as if either one of the following condi-
tions is satisfied:

i) all are full-rank, or;
ii) there is a set (either finite or infinite) of indices of

singular matrices , and

i.e., the power contribution of the keyholes with nonsin-
gular does not vanish as .

Proof: See Appendix.

As an example, consider a multi-keyhole channel with
identical keyholes, i.e., and

, and assume that they are nonsingular. Clearly,
(9) holds in this case, and under the normalization (4),

is nonsingular and does not depend on . Therefore
from Theorem 2(i), such a multi-keyhole channel converges in
distribution to a Rayleigh-fading one as . Moreover,
from Theorem 2(ii), the convergence is at least as .

Since the channel capacity is a continuous function of (see
(2)), the next corollary follows immediately from Theorem 2.
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Fig. 3. Outage probability/capacity of 2� 2 full-rank correlated Rayleigh-
fading and multi-keyhole channels.

Corollary 2.3: Under the conditions of Theorem 2, the in-
stantaneous capacity of an FRMK channel converges in distri-
bution to that of the equivalent Rayleigh-fading channel.

Proof: by Slutsky Theorem [42, Theorem 6a].
Fig. 3 compares the capacity distribution of the 2 2 multi-

keyhole channel with to that of the equiva-
lent 2 2 Rayleigh-fading one. Correlation in both channels is
simulated using the exponential model with correlation param-
eter at both ends. Clearly, the outage capacity of the
multi-keyhole channel increases with and approaches that of
the equivalent Rayleigh-fading channel.

Since the Tx and Rx ends are separated in the multi-key-
hole channels (by the screen with keyholes, see Fig. 1), consid-
ering a Rayleigh-fading channel as a limiting case of the FRMK
one provides a motivation for the popular Kronecker correlation
model (see [29] for details on this model) as follows. Consider
a multi-keyhole channel with and , . It
is straightforward to show, using (3) and (4), that

(11)

From (3), can be represented in this case as

(12)

where have i.i.d. Gaussian circular symmetric entries
of unit variance. Since, under the conditions of Theorem 2,

as , where is an i.i.d. Gaussian
circular symmetric matrix with unit-variance entries, the fol-
lowing holds

(13)

where denoted convergence in distribution as ,
and the right side of (13) is the Kronecker model for Rayleigh-
fading channels. This clearly demonstrates that the Kronecker
structure of the correlation is due to the separability of correla-
tion-forming mechanisms into Tx and Rx parts.

The following theorem states that, under certain conditions,
the capacity distribution of an FRMK channel is asymptotically
Gaussian as . It is based on Theorem 2, and uses the

fact that the capacity distribution of the Rayleigh-fading channel
is asymptotically Gaussian [32].

Theorem 3: (i) Let be the FRMK channel in (3), such that
and are circular symmetric random vectors (not neces-

sarily complex Gaussian),
, , and , are positive defi-

nite and normalized, so that and .
If at the rate such that

(14)

(15)

where is the spectral norm (largest eigenvalue) of .
Then the capacity distribution of such a multi-keyhole

channel is asymptotically Gaussian with the following mean
and variance :

(16)

(17)

At low per-eigenmode SNR, , where are the
eigenvalues of and are approximated by

(18)

(19)

where . The low SNR con-
dition holds if , which is the case in “asymp-
totically uncorrelated” channels ( .

(ii) Due to the symmetry in (5), this also hold true when Tx
and Rx ends are exchanged.

Proof: See the Appendix.
Following the discussion in Section IV, the asymptotic mean

capacity of the FRMK channel in (18) is independent of correla-
tion and power imbalance (as measured by . In contrast,
the variance in (19) increases with it. However, under condition
(15) of Theorem 3, (i.e., the channel has to be “asymp-
totically uncorrelated” for the theorem to hold) and, therefore,

, so that the instantaneous capacity converges to the
mean, , which is also know as “channel hardening” [30].

Following Theorem 3, the outage probability
, where the target rate

is expressed as a fraction of the mean capacity and is the
multiplexing gain [41], [56], can be compactly expressed as

(20)

where is the Q-function,
and the approximation holds at low SNR regime. We remark
that, unlike [41], (20) gives an explicit closed-form relationship

7This implies that � has to increase to infinity much faster than � . For ex-
ample, it is straightforward to show that when � � �, and �� � � ��

�
� ,

(14) is equivalent to � �� � � as � �� � �.
8This condition is elaborated in detail in [44].



LEVIN AND LOYKA: FROM MULTI-KEYHOLES TO MEASURE OF CORRELATION AND POWER IMBALANCE IN MIMO CHANNELS 3521

between and and also accounts for the effects of corre-
lation and power imbalance in the channel. Note that does
not depend on the SNR in the low SNR regime (since the rate ,
the mean capacity and the standard deviation are all propor-
tional to the SNR) and increases with channel correlation and
power imbalance in the region (see Section IV for
further discussion of correlation and power imbalance).

B. Rank-Deficient Multi-Keyhole Channel

Let us now consider a multi-keyhole channel where
.

Theorem 4: Assume the following conditions hold
a) , where

and are zero mean complex random vectors with
independent entries (not necessarily Gaussian or identi-
cally distributed);

b) and for all and some ,
where

is the central moment of of order , and is the -th
entry of

c)

Then the instantaneous capacity (5) of the RDMK channel
is asymptotically Gaussian as with the following
mean and the variance :

(21)

(22)

where , and the -th
element of the sums in (21), (22) represents the contribution
of -th keyhole to the mean and variance of the instantaneous
capacity.

Proof: Using [[21, Theorems 4, 7], Comment 5 in [44], and
Von-Neumann trace inequality [57].

Note that in (21) is not affected by the channel correlation,
and in (22) increases with . Under condition (c),

, i.e., , so that similarly to the FRMK
channel, the instantaneous capacity converges to the mean,

.
A number of approximations of (21) and (22) are in order:
Low SNR regime ( :

(23)

High SNR regime ( :

(24)

Using these approximations, the outage probability of the
RDMK channel in the low SNR regime is

(25)

i.e., it is also independent of the SNR and increases with channel
correlation and power imbalance in the region .

The fact that the asymptotic outage probability and also ca-
pacity of FRMK and RDMK channels are the functions of
and (see (16)–(25)) motivates the following proposition.

Proposition 1: Asymptotically, the channel correlation af-
fects the outage capacity through the Frobenius norm of the cor-
relation matrices, i.e., even though some and (at either
end) are different, they affect the capacity in the same way if

.
Proposition 1 suggests a simple and well-tractable measure

of correlation, whose properties are studied in the next section.

IV. SCALAR MEASURES OF CORRELATION

AND POWER IMBALANCE

Consider a correlation matrix at either Tx or Rx end. Let
, a set of all normalized correlation matrices,

. It is straightforward to show that is
bounded

(26)

where the lower bound is achieved when the channel is uncorre-
lated with the same power at each Tx(Rx) antenna, i.e., ,
and the upper bound is achieved when the channel is fully cor-
related, i.e., has a single nonzero eigenvalue. There are two
major effects that can increase : (i) nonuniform power
distribution across the antennas (also termed power imbalance),
and (ii) nonzero correlation. To analyze these effects separately,
we split into a sum of two matrices as follows:

(27)

where and is the diag-
onal matrix whose main diagonal is that of . and account
for the power imbalance and the correlation respectively. Since
for any and , it is straightfor-
ward to show that the decomposition (27) is norm-orthogonal,
i.e.,

(28)
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and is bounded by

(29)

where the lower bound is achieved when all antennas have the
same power (no power imbalance), i.e., is a zero matrix, or
equivalently , and the upper bound is achieved
when there is only one active antenna, i.e., there is only one
nonzero diagonal entry in . Using (26) and (28), it is straight-
forward to show that

(30)

where the lower bound is achieved when the channel is uncorre-
lated, , and the upper bound is achieved when the channel
is fully correlated. The following definitions are motivated by
the discussion above and Proposition 1.

Definition 1: A MIMO channel with correlation matrix
is said to be equally or more correlated than that with
, if

(31)

where and correspond to and via (27).

Definition 2: A MIMO channel with correlation matrix
has higher power imbalance than that with if

(32)

where and correspond to and via (27).
From (29) and (30), the measures of correlation and power

imbalance are bounded as
when . Note also that due to the properties of the Frobe-
nius norm [43], the measure is invariant under unitary transfor-
mation of . Since the eigenvalue decomposition
is a particular case of a unitary transformation, the impact of cor-
relation on the asymptotic channel capacity is the same whether
the correlation matrix is or . Since the latter also describes
channels with no correlation and nonuniform power distribu-
tion, the effects of correlation and power imbalance are indistin-
guishable in the eigenspace of correlation matrices. On the con-
trary, the decomposition in (27) clearly separates these effects.

To get some insight, consider a simple geometrical interpreta-
tion of Definitions 1 and 2 shown in Fig. 4. From (28),
and create an orthonormal basis in a vector space, and
the measure of correlation and power imbalance is a mapping of

onto a circle sector in that basis. The channel correlation ma-
trix is represented by a two dimensional vector (see Fig. 4)
such that

(33)

Following Proposition 1, the asymptotic outage capacity is af-
fected by the length of , but not by its angle. Consider two chan-
nels with correlation matrices represented by the vectors and

Fig. 4. Geometrical interpretation of power imbalance and correlation effects.

, such that (see Fig. 4). Following Defini-
tions 1 and 2, the channel with is more correlated than that
with . In turn, the channel with has more power imbalance
across antennas. Nonetheless, the asymptotic outage capacity of
both channels is the same, i.e., the power imbalance and correla-
tion between antennas have the same impact on the asymptotic
capacity distribution of MIMO channels, if .

We note that the measure also characterizes the im-
pact of correlation on the mean capacity and diversity gain in
Rayleigh-fading channels, as shown in [34], [35], [45]. The re-
sults above show that it also applies to the outage capacity of
a broad class of multi-keyhole channels, and also characterizes
the effect of power imbalance. We thus conclude that this mea-
sure has a high degree of universality in the characterization of
channel performance.

Unlike the measures based on majorization theory [37],
has full ordering property (any two channels can be

compared, without exceptions). Moreover, there is a direct
relationship between this measure and that in [37] as indicated
by the following theorem.

Theorem 5: Let be a subset in of all correlation ma-
trices which can be majorized9. Then, for any

if and only if .10

Proof: See the Appendix.

Consider, as an example, the exponential correlation matrix
[40], which has been successfully used to model correlation in
several problems [40], [46]. In this model, the elements of
are given by

(34)

where is a correlation parameter (the correlation between two
adjacent antennas), and is the complex conjugate of . From
(27), and , i.e., this model does not

9A correlation matrix� is said to majorize (more correlated than)� and
denoted by � � � , if � � � for all � � � � � ��,
where � and � are the eigenvalues of � and � respectively sorted in
the descending order [37].

10The same result was independently obtained in [45].
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capture the effect of power imbalance, but the correlation only.
From [21],

(35)

where is the value such that . Hence,
for large , the measure of correlation in this case increases
monotonically with , which supports Definition 1. Moreover,

monotonically decreases with and eventually con-
verges to zero as , i.e., even though the correlation be-
tween adjacent antennas may be high, an increase in the number
of antennas reduces the measure of correlation due to smaller
correlation between distant antennas. Note that this property of
the channel to be “asymptotically uncorrelated” is a condition
for Theorems 1, 3, and 4 to hold.

Another model with similar asymptotic behavior is the
quadratic exponential correlation model. This is a physically
based model which represents the scenario with a Gaussian
profile of multipath angle-of-arrival [47]. As in the exponen-
tial correlation model, the measure of correlation and power
imbalance in this case increases monotonically with , which
supports Definition 1, and monotonically converges to zero as

(see [21] for more details). It is straightforward to
show that both exponential or quadratic exponential correlation
models satisfy the relevant conditions of Theorems 3 and 4.
However, the latter are not satisfied when is given by the
uniform correlation model [48], where the correlation between
any pair of antennas is the same.

V. IMPACT OF CORRELATION AND POWER IMBALANCE

ON THE OUTAGE CAPACITY

Using Definitions 1 and 2 above, we note that the mean ca-
pacity of RDMK channels and FRMK ones in the low SNR
regime [see (21) and (18)] is independent of the correlation and
power imbalance. The variance, in turn, increases with it (see
(22) and (19)). The conditions for the asymptotic instantaneous
capacity to be Gaussian essentially require the channel to be
“asymptotically uncorrelated”, i.e., .

Using (20), the outage capacity can be expressed as,

(36)

where is the inverse of the Q-function. Note that 2 term
is positive, i.e., , if , and negative, i.e., ,
otherwise. Only the 1st case is of practical importance, which is
considered in the following proposition.

Proposition 2: Under the conditions of Theorems 3 and 4 the
outage capacities of FRMK and RDMK channels at low SNR
regime are

(37)

(38)

respectively.
Proof: (37) is obtained using (18) and (19). (38) follows

from (23).

Clearly, the outage capacity decreases, in both cases, with the
measure of correlation and power imbalance at both ends. Note
that the impacts of the target outage probability , the SNR and
the correlation/power imbalance are clearly separated in (37),
(38), e.g., the outage capacity is proportional to the average SNR
and the capacity loss is proportional to .

While the above analysis is based on the asymptotic assump-
tion , numerical simulations show that Theorems
3 and 4 adequately characterize the impact of correlation on
the outage capacity of multi-keyhole channels with a moderate
number of antennas as well.

VI. APPLICATIONS

In this section, we address some problems whose solution for
a finite number of antennas is associated with significant math-
ematical complexity. We show that in the asymptotic regime,
these problems are well-tractable, and obtain compact closed-
form solutions.

A. Telatar’s Conjecture

Conjecture 1 (Telatar [1]): Consider the outage probability
of a MIMO block fading channel with full CSI at Rx end but no
CSI at the Tx end

(39)

where is the normalized Tx covariance
matrix, and denotes positive semidefinite matrix .
For an i.i.d. Rayleigh-fading channel the outage probability is
achieved when

(40)

where the number of active antennas depends on the rate:
higher the rate (i.e., higher the outage probability), smaller the

.

Telatar’s conjecture has been proven for multiple-input-
single-output MISO Rayleigh-fading channels in [36], [49].
The theorem below affirms the conjecture for semi-correlated
multi-keyhole channels with large number of antennas.

Theorem 6: Consider a semi-correlated multi-keyhole
channel, uncorrelated at the Tx end ( . Under the
conditions of Theorems 3 and 4, the optimal Tx covariance
matrix , which minimizes the outage probability at
the region , is as in (40) with .

Proof: (i) Let be a positive semi-definite matrix. It fol-
lows from (1)–(3) that the outage capacity of the multi-keyhole
channel with equals to that with

, i.e., can be treated as either the channel Tx corre-
lation matrix or the Tx signal covariance matrix.

(ii) As , the outage probability in the Tx-cor-
related multi-keyhole channel increases with at the
region (see Theorems 3 and 4 for FRMK and
RDMK channels respectively). Combining (i) and (ii), we con-
clude that the outage probability in the semi-correlated multi-
keyhole channel ( increases with , so that
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the outage probability achieves the minimum when
is minimal. From (26), this is achieved when .

Following the same argument, also maximizes
the mean capacity and the diversity order of semi-correlated
Rayleigh-fading channels (uncorrelated at the Tx end), since
both characteristics decrease with [34], [35], [45].
The following corollary shows that this also holds for the
outage capacity of a Rayleigh-fading channel.

Corollary 6.1: Consider a semi-correlated Rayleigh-fading
channel (uncorrelated at the Tx end, . Under the
conditions of Theorem 3, the optimal Tx covariance matrix,
which minimizes the outage probability and, thus, maximizes
the outage capacity, at the region , is as in (40) with

.
Proof: by Theorem 6 and using the fact that the Rayleigh-

fading channel is a special case of the multi-keyhole one when
(see Theorem 2).

Corollary 6.1 is in fact a generalization of Telatar’s conjec-
ture for the semi-correlated Rayleigh channels (recall that the
original conjecture applies to i.i.d. channels only). The intuition
behind it is that the multi-keyhole channel and thus the corre-
sponding Rayleigh channel are separated into independent Tx
and Rx parts so that correlation at the Rx end cannot affect the
optimal covariance matrix at the Tx end.

B. Throughput Gain and Feedback Rate in Multi-User
Channels

Let us consider a communications environment with multiple
users and a single base station. Assume that there is no direct
link between each user and the base station, but only via
parallel “amplify and forward” relay nodes (i.e., via dual-hop
paths, as in Fig. 1). In many practically-important cases the relay
noise can be neglected (see [61] for details), and therefore, the
relay channel in these cases is well approximated by the multi-
keyhole model in (3).

There is a number of transmission scheduling algorithms that
allow increased data throughput in multi-user channels. An ef-
ficient method to estimate throughput gain due to a scheduling
and the corresponding feedback rate has been proposed in [30],
assuming that instantaneous capacity of a user-base station link
is a Gaussian random variable. Following Theorems 3 and 4, the
method in [30] applies also to multi-user multi-keyhole/relay
channels, when the number of antennas is large enough to apply
the Gaussian approximation of the instantaneous capacity with
reasonable accuracy. In particular, the throughput gain and the
feedback rate are obtained in a straightforward way by substi-
tuting the asymptotic moments in (16), (17), (21), and (22) in
[30, eq. (33) and (49)], respectively (see [51] for more details).

VII. CONCLUSION

A profound reason to study multi-keyhole channels is not
only due to the fact that they model a number of practically-im-
portant propagation scenarios, including relay channels in the
amplify-and-forward mode, but also because they are of consid-
erable interest from the information-theoretic point of view as a

transition model that spans a wide spectrum of MIMO channels,
from the rank-one single-keyhole to full-rank Rayleigh-fading.
Investigation of multi-keyhole channels provides an insight into
rank-deficient and full-rank (not necessarily Rayleigh-fading)
channels, and gives new insight into correlation-forming mech-
anisms. In particular, considering a Rayleigh-fading channel as
a multi-keyhole one with a large number of keyholes provides
an additional motivation for the popular Kronecker model. The
outage capacity analysis of the multi-keyhole channels with a
large number of antennas shows that the spatial correlation as
well as antenna power imbalance can dramatically increase the
outage probability (which cannot be captured using the popular
diversity-multiplexing framework). Asymptotically (in number
of antennas), the impact of correlation and power imbalance on
the outage capacity is characterized by the Frobenius norm of
the correlation matrices at both ends, which motivates a simple
and well tractable scalar measure of correlation and power im-
balance in MIMO channels. Finally, the asymptotic analysis
shows that the Gaussian approximation of the capacity distribu-
tion has a high degree of universality and applies to a wide class
of MIMO channels, far beyond the canonic Rayleigh-fading
one. This asymptotic property allows one to obtain compact so-
lutions for a number of problems, including those in the multi-
user communications, for a broad class of fading channels.

APPENDIX

A. Proof of Theorem 1

We start with the following lemmas:

Lemma 1: Let be a generalized random vari-
able characterized by correlation matrix [50].
If and are finite, then as

is Gaussian in distribution with the mean
and variance .

Proof: see the proof of Lemma B in [[21, Appendix B].

Lemma 2: Let be an random matrix with
mutually independent columns , such that

, is a Gaussian circularly symmetric vector with
correlation matrix . If and

as , then and therefore
as , where is an identity matrix,

denotes convergence in quadratic mean, i.e.,

and denotes convergence in probability, i.e.,

Proof: Since are mutually independent, as-
sume, without loss of generality, that is normalized such that

. From Chebyshev inequality, for any

(41)
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where

(42)

Since is a generalized random
variable characterized by . Thus, using Lemma 1

(43)

Substituting (43) in (42), one obtains

(44)

Using Cauchy-Schwartz’s inequality

Therefore, if , then as
. Using (44)

(45)

or equivalently using (41) for any

(46)

(i) Under the conditions of Lemma 2, for and

(47)

Since (5) is a continuous function of , from Slutsky Theorem
[[42, Theorem 6(a)], as

(48)

where the right side is the instantaneous capacity of an
equivalent Rayleigh-fading channel with channel matrix and
power allocation matrix .

(ii) By the same argument as for (i), as

(49)

From Slutsky Theorem [[42, Theorem 6’(a)], as

(50)

where the right side is the instantaneous capacity of an
equivalent Rayleigh-fading channel with the channel matrix
, and power allocation matrix . The equality of outage

probabilities follows from the convergence in probability [42].

B. Proof of Theorem 2

We start with the following theorem and corollary.

Theorem 7 (Bentkus [52]): Let , where
are mutually independent random vectors taking

values in such that , and
is invertible. Then, as is asymptotically Gaussian in
distribution with zero mean and covariance matrix if

(51)

Moreover, let , where is the
CDF of and is a Gaussian CDF with the same mean and
variance as of , then with the same rate as

A generalization of Theorem 7 for a complex case is given by
the following corollary.

Corollary 7.1: Let , where are mu-
tually independent circularly symmetric random vectors taking
values in such that , and is
invertible. Then Theorem 7 holds.

Proof: A proof is standard, based on mapping,
and follows immediately from the properties of circular sym-
metric random vectors, see [[1, Lemma 1].

(i) Let be a matrix of a multi-keyhole channel defined in
(3). It is straightforward to show that

(52)

where . Since and are mutually
independent, are mutually independent circular symmetric
random vectors. Thus, following Theorem 7 and Corollary 7.1,

is asymptotically circular symmetric Gaussian as
if

(53)

where

(54)
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Consider the following upper bounds:

(55)

where the inequalities are due to Lyapunov [[53, Theorem
3.4.1], Cauchy-Schwartz inequalities, and (57), and the
equality follows from . Under the
adopted assumptions, and

are finite. Thus, (53) holds if

(56)

From Theorem 7 and Corollary 7.1, is asymptotically
circular symmetric Gaussian as .

(ii) Let , where is the
CDF of and is a Gaussian CDF with the same
mean and variance as those of . From Theorem 7 and
Corollary 7.1, with the same rate as

Then from (55) and under the assumption that does not de-
pend on

converges to zero with at least the same rate as .

C. Proof of Corollary 2.1

To prove the necessity of the first condition, let

Then

i.e., (9) is not satisfied. The sufficiency is trivial due to

The second condition follows from the following inequalities:

(57)

D. Proof of Corollary 2.2

If is nonsingular, then , where
is the -th eigenvalue of matrix . Without loss in gen-

erality assume that

It is straightforward to show that

(58)

(i) If for every , i.e., all
are nonsingular, then .

(ii) Let be a subset (either finite of infinite) of all singular
. Thus, if , from (58)

(59)

E. Proof of Theorem 3

We start with the following theorem and lemmas.

Theorem 8 (Martin and Ottersten [32]): Let be in-
stantaneous capacity (2) of a correlated Rayleigh-fading
MIMO channel with Kronecker correlation structure, i.e.,

, where is an i.i.d. Gaussian
circular symmetric matrix, and and are normalized such
that and . (i) If

(60)

is asymptotically Gaussian in distribution as with
the mean and the variance as follows:

(61)
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(62)

where are the eigenvalues of , and is the
total SNR at the Rx end.

(ii) Due to the symmetry in (5), the Theorem holds when Tx
and Rx ends are exchanged.

As a side remark, we have the following additional result
when both .

Lemma 3: Let be an matrix as in Theorem 8.
(i) if

then as both , where denotes
convergence in quadratic mean, i.e.,

from which .
(ii) If

then as both , from which
.

Proof: (i) First note that . Thus

(63)

Consider the trace in (63)

(64)

where is the -th column of , and is an -th element
of . Since are Gaussian cir-
cular symmetric, their fourth-order cumulant is zero [54], i.e.,

(65)

Following the Kronecker correlation model (13),
, where and are

-th and -th elements of and respectively. Thus

(66)

Substituting (66) in (63), one obtains

(67)

i.e., if , then

(68)

(ii) A proof is the same as above due to the symmetry of the
problem.

(i) The proof is based on three claims: 1) under condition (14),
a FRMK channel is asymptotically Rayleigh-fading in distribu-
tion; 2) under condition (15), the capacity distribution of the
FRMK channel is asymptotically Gaussian with the mean and
variance (61), (62), respectively; and 3) at low SNR regime, the
moments of the asymptotic Gaussian distribution are given by
(18) and (19).

Claim 1: Consider the last inequality in (55) under the as-
sumption that and

, and are positive definite
and normalized, so that and

(69)

where is a finite number, such that

Thus, if for any

Theorem 2 applies, i.e., the FRMK channel is asymptotically
Rayleigh-fading in distribution.



3528 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 6, JUNE 2011

Claim 2: Following Theorem 8, the capacity distribution of
the above FRMK channels is asymptotically Gaussian under
condition (15) of Theorem 3 as . Consequently, the
mean and the variance of the asymptotic capacity are given by
(61) and (62), respectively.

Claim 3: Consider , where are the
eigenvalues of and . Using the Maclaurin
series of the right-hand side of (61), one obtains

(70)

which, under the normalization , yields
. This proves (18). Applying the same approach on the right

-hand side of (62), one obtains

(71)

i.e.

(72)

which proves (19).
(ii) A proof of part (ii) is the same due to the symmetry of the

problem.

F. Proof of Theorem 5

Let be a scalar function defined on . is called
Schur-convex if for any such that

[37]. From [55, Theorem 3.A.4], is Schur-
convex iff

(73)

where are the eigenvalues of . Let
, then

(74)

i.e., is Schur-convex. Therefore, iff
.
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