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Abstract 

 
Statistical properties of electromagnetic 

environment in wireless networks affecting its intra-
network electromagnetic compatibility and safety are 
studied. The analysis is based on the standard 
propagation channel model, a Poisson model of random 
spatial distribution of transmitters, and a threshold-
based model of the victim receptor behaviour (radio 
receiver or human body). The distribution of dominant 
interference level is derived and analysed under various 
network and system configurations. The aggregate 
interference is dominated by the nearest transmitter 
one. The distribution of the unordered single-node 
interference is independent of the transmitters’ power 
and their spatial density and is the same for 
homogeneous and non-homogeneous networks. The 
outage probability is used as a measure of not only the 
wireless link quality-of-service, but also of 
environmental risks induced by electromagnetic 
radiation. The maximum acceptable interference levels 
for reliable link performance and for low environmental 
risks are surprisingly similar. 
 
1. Introduction 
 

Electromagnetic compatibility (EMC) and safety 
(EMS) of wireless communication networks have been 
recently a subject of extensive studies. Mutual 
interference among several links (e.g. several users) 
operating at the same time places a fundamental limit to 
the network performance and also determines the level 
of electromagnetic environmental risks to the 
population. The effect of interference in wireless 
networks at the physical layer has been studied from 
several perspectives [1]-[5]. A typical statistical model 
of interference in a network includes a model of spatial 
location of the nodes, a propagation path loss law 
(which includes the average path loss and, possibly, 
large-scale (shadowing) and small-scale (multipath) 

fading) and a threshold-based receiver performance 
model. The most popular choice for the model of the 
node spatial distribution is Poisson point process on a 
plane [1]-[5]. Based on this model and ignoring the 
effect of fading, Sousa [2] has obtained the 
characteristic function (CF) of the aggregate (total) 
interference at the receiver, which can be transformed 
into a closed-from probability density function (PDF) in 
some special cases, and, based on it, the error rates for 
direct sequence and frequency hopping systems. While 
using the LePage series representation, Ilow and 
Hatzinakos [3] have developed a generic technique to 
obtain the CF of aggregate interference from a Poisson 
point process on a plane (2-D) and in a volume (3-D), 
which can be used to incorporate the effects of Rayleigh 
and log-normal fading in a straightforward way. 
Relying on a homogeneous Poisson point process on a 
plane, Weber et al [4] have characterized the 
transmission capacity of the network subject to the 
outage probability constraint via lower and upper 
bounds. In a recent work, Weber et al [5] use the same 
approach to characterize the network transmission 
capacity when the receivers are able to suppress some 
powerful interferers. 

A common feature of all these works is the use of 
aggregate interference (either alone or in the form of 
signal-to-interference-plus-noise ratio), and a common 
lesson is that it is very difficult to deal with: while the 
CF of aggregate interference can be obtained in a closed 
form, the PDF or CDF are available only in a few 
special cases. This limits significantly the amount of 
insight that can be extracted from such a model, 
especially if no approximations or bounds are used. 

To overcome this difficulty, we adopt a different 
approach: instead of relying on the aggregate 
interference power as a performance indicator, we use 
the power of the dominating interfering signal [7]-[11]. 
While this is clearly an approximation, closed-form 
performance evaluation becomes feasible and 
significant insight can be extracted from such a model. 



   

Furthermore, since the aggregate interference is 
dominated by the most powerful interferer in the region 
of low outage probability (i.e. the practically-important 
region), both models give roughly the same results (see 
[11] for details). This observation is also consistent with 
the corresponding results in [4][5], when the “near-
field” region contains only one interferer. Thus, in the 
framework of [4][5], our results represent the (tight) 
lower bound on the outage probability. 

Using this model, we study the power distribution of 
the ensemble of interferences and the dominant 
interferer in various scenarios, which is further used to 
obtain compact closed-form expressions for the outage 
probability of a given receptor (or, equivalently, of the 
link of a given user) in the 1-D, 2-D and 3-D Poisson 
field of interferers, for both uniform and non-uniform 
average node densities and for various values of the 
average path loss exponent. Comparison to the 
corresponding results in [2] (obtained in terms of the 
error rates) indicates that the dominant contribution to 
the error rate is due to the outage events caused by the 
closest (i.e. dominant) interferer, which increases with 
the average node density. The proposed method is 
flexible enough to include the case when a given 
number of strongest interferers are suppressed. The 
outage probability is shown to scale down exponentially 
in this number. Contrary to [5], we do not rely in this 
case on the simplifying assumption of canceling all 
interferers in the disk with the given average number of 
interferers; neither we assume that only interferers more 
powerful than the required signal are cancelled (the last 
assumption affects significantly the result), i.e. our 
analysis of interference cancellation is exact. The 
proposed method can also be used to include the effect 
of fading. We argue that Rayleigh fading has a 
negligible effect on the distribution of dominant 
interferer’s power and the effect of log-normal fading 
(shadowing) is to shift the distribution by a constant 
non-negligible factor [11]. 

Our analysis culminates in the formulation of the 
outage probability-network density tradeoff: for a given 
average density of the nodes, the outage probability is 
lower bounded or, equivalently, for a given outage 
probability, the average density of the nodes is upper 
bounded. This tradeoff is a result of the interplay 
between a random geometry of node locations, the 
propagation path loss and the distortion effects at the 
victim receiver. Our analysis is based on the framework 
originally developed in [7]-[11].  

We argue that the outage probability, which is 
traditionally used as a measure of quality-of-service in 
wireless systems and networks, also measures the 
environmental risks to the population induced by 
electromagnetic radiation of wireless devices.  

The paper is organized as follows. In Section 2, we 

introduce the system and network model. In Section 3, 
the distribution of interference levels and of the 
dynamic range (dominant interference-to-noise ratio) is 
given for this model. Based on this, the node density – 
outage probability tradeoff is presented in Section 4. 
The maximum acceptable interference levels for high 
quality-of-service wireless network performance and for 
low electromagnetic environmental risks to the 
population are shown to be surprisingly similar in 
Section 5. 
 
2. Network and System Model 
 

As an interference model of wireless network at the 
physical layer, we consider a number of point-like 
transmitters (Tx) and receptors (Rx) that are randomly 
located over a certain limited region of space mS , 
which can be one ( 1m = ), two ( 2m = ),or three 
( 3m = ) -dimensional (1-D, 2-D or 3-D). This can 
model location of the nodes over a highway or a street 
canyon (1-D), a residential area (2-D), or a downtown 
area with a number of high-rise buildings (3-D). In our 
analysis, we consider a single (randomly-chosen) 
receiver (or some other receptor which is susceptible to 
electromagnetic fields generated by transmitters) and a 
number of transmitters that generate interference to this 
receiver. We assume that the spatial distribution of the 
transmitters (nodes) has the following properties: (i) for 
any two non-overlapping regions of space aS  and bS , 
the probability of any number of transmitters falling 
into aS  is independent of how many transmitters fall 
into bS , i.e. non-overlapping regions of space are 
statistically independent; (ii) for infinitesimally small 
region of space dS , the probability ( 1, )k dS=P of a 
single transmitter ( 1k = ) falling into dS  is 

( 1, )k dS dS= = ρP , where ρ  is the average spatial 
density of transmitters (which can be a function of 
position). The probability of more than one transmitter 
falling into dS  is negligible, 

( 1, ) ( 1, )k dS k dS> << =P P  as 0dS→ . Under these 
assumptions, the probability of exactly k  transmitters 
falling into the region S  is given by Poisson 
distribution, 

( , ) / !N kk S e N k−=P , 
S

N dS= ρ∫  (1) 

where N  is the average number of transmitters falling 
into the region S . If the density is constant, then 
N S= ρ . Possible scenarios to which the assumptions 
above apply, with a certain degree of approximation, are 
a sensor network with randomly-located non-
cooperating sensors; a network(s) of mobile phones 
from the same or different providers (in the same area); 
a network of multi-standard wireless devices sharing the 
same resources (e.g. common or adjacent bands of 
frequencies) or an ad-hoc network. 



   

Consider now a given transmitter-receptor 
(transmitter-receiver) pair. The power at the Rx antenna 
output rP  coming from the transmitter is given by the 
standard link budget equation [6], 

r t t rP PG G g=   (2) 

where tP  is the Tx power, ,t rG G  are the Tx and Rx 
antenna gains, and g  is the propagation path gain 
(=1/path loss), a l sg g g g= , where ag  is the average 
propagation path gain, and ,l sg g  are the contributions 
of large-scale (shadowing) and small-scale (multipath) 
fading, which can be modeled as independent log-
normal and Rayleigh (Rice) random variables, 
respectively [6].  

The widely-accepted model for ag  is ag a R−ν
ν= , 

where ν  is the path loss exponent, and aν  is constant 
independent of R  [6]. In the traditional link-budget 
analysis of a point-to-point link, it is a deterministic 
constant. However, in our network-level model ag  
becomes a random variable since the Tx-Rx distance R  
is random (due to random location of the nodes) and it 
is this random variable that represents a new type of 
fading, which we term “network-scale fading”, since it 
exhibits itself on the scale of the whole area occupied by 
the network. Since ag  does not depend on the local 
propagation environment around the Tx or Rx ends that 
affect ,l sg g  but only on the global configuration of the 
Tx-Rx propagation path (including the distance R , of 
which ,l sg g  are independent) [6], the network-scale 
fading in this model is independent of the large-scale 
and small-scale ones, which is ultimately due to 
different physical mechanisms generating them. The 
distribution functions of ag  in various scenarios have 
been given in [8]-[10].  

 
3. PDF of Interference Levels and the 

Interference to Noise Ratio 
 

We consider a fixed-position receptor and a number 
of randomly located interfering transmitters (interferers, 
e.g. mobile units of other users) of the same power 

tP (following the framework in [7]-[10], this can also be 
generalized to the case of unequal Tx powers). Only the 
network-scale fading is taken into account in this 
section, assuming that 1l sg g= =  (this assumption is 
relaxed in section 4). For simplicity, we also assume 
that the Tx and Rx antennas are isotropic (this 
assumption is relaxed below), and consider the 
interfering signals at the receiver input. 

The statistics of transmitters’ location is given by 
(1). Transmitter i produces the average power 

( )ai t a iP P g R=  at the receiver input, and we consider 
only the signals exceeding the Rx noise level 0P , 

0aiP P≥ . We define the interference-to-noise ratio 
(INR) ad  in the ensemble of the interfering signals via 

the most powerful (at the Rx input) signal (It can be 
shown that, in the small outage region, the total 
interference power (i.e. coming from all transmitters) is 
dominated by the contribution of the most powerful 
signal, i.e. the single events dominate the outage 
probability [11]), 

1 0/a ad P P=   (3) 

where, without loss of generality, we index the 
transmitters in the order of decreasing Rx power, 

1 2 ...a a aNP P P≥ ≥ ≥ . The most powerful signal is 
coming from the transmitter located at the minimum 
distance 1r , 1 1( )a t aP P g r= . The cumulative distribution 
function (CDF) of the minimum distance can be easily 
found [7]-[9], 

( )( )1( ) 1 expF r N V= − − , ( )
V

N V dV= ρ∫ , (4) 

where ( )N V  is the average number of transmitters in 
the ball ( )V r  of radius r . The corresponding PDF can 
be found by differentiation, 

1 ( )
( ) N

V r
f r e dV−

′
= ρ∫   (5) 

where ( )V r′  is sphere of radius r  and the integral in (5) 
is over this sphere.  

The probability that the INR exceeds value D  is 
{ } { }1 1Pr Pr ( ) ( ( ))ad D r r D F r D> = < = , where ( )r D  is 

such that 0( ( ))aP r D P D= , so that the CDF of ad  is 

{ }( ) 1 Pr exp( ( ))d aF D d D N D= − > = −  (6) 

where ( )N D  is the average number of transmitters in 
the ball ( )( )V r D  of the radius 1/

0( ) ( / )tr D Pa P D ν
ν= . 

The corresponding PDF can be obtained by 
differentiation, 

( )

( ( ))

( )
( )

N D

d V r D

r D e
f D dV

D

−

′
= ρ

ν ∫  (7) 

When the average spatial density of transmitters is 
constant, constρ = , (6), (7) simplify to [7]-[10], 

{ }
/

/
max

0

( ) exp exp
m

mt
d m

Pa
F D c N D

P D

ν
− νν

   = − ρ = −  
   

, 

{ }/ 1 /
max max( ) expm m

d
m

f D N D N D− ν− − ν= −
ν

  (8) 

where 1 2c = , 2c = π  and 3 4 / 3c = π , max max
m

mN c R= ρ  
is the average number of transmitters in the ball of 
radius maxR , which we term “potential interference 
zone”,  and maxR  is such that max 0( )aP R P= , i.e. a 
transmitter at the boundary of the potential interference 
zone produces signal at the receiver exactly at the noise 
level; transmitters located outside of this zone produce 
weaker signals, which are neglected in the analysis. 
Note that (8) gives the distribution of the INR as a 
simple explicit function of the system and geometrical 
parameters, and ultimately depends on max, ,N m ν  only. 



   

When ( 1)k −  most powerful signals, which are 
coming from ( 1)k −  closest transmitters, do not create 
any interference (i.e. due to frequency, time or code 
separation in the multiple access scheme, or due to any 
other form of separation or filtering), the CDF and PDF 
of the distance kr  to the most powerful interfering 
signal of order k  can be found in a similar way. The 
CDF of the INR ad  in this case is given by 

1( )
0

( ) ( ) / !
kN D i

dk i
F D e N D i

−−
== ∑  (9) 

In the case of constant average density constρ = , the 
CDF and PDF of the INR simplify to [7]-[10], 

{ }
1

/ max
max /

0

1
( ) exp

!

ik
m

dk m
i

N
F D N D

i D

−
− ν

ν
=

 = −  
 

∑ , 

{ }1max /
max( ) exp

( 1)!

k km
m

dk
m N

f D D N D
k

− − − νν= −
ν −

 (10) 

which are also explicit functions of max, ,N m ν . 
On the other hand, the PDF of interference power Pa 

coming from a single, randomly-selected node located 
in the potential interference zone is, for constρ = , [7]-
[10]: 

( ) ( )

/
0

0/
,

m

a a am
a

mP
f P P P

P

ν

+ν ν= ≥
ν

  (11) 

Using this, (10) can be derived as well by analysing the 
max/min ratio for an ensemble of interfering signals, 
each having the PDF in (11). Note that this PDF does 
not have 1st and 2nd moments for some important values 
of m  and ν  (because of its “long” tail), e.g. 

2, 2m = ν =  (planar distribution and free-space 
propagation). Another interesting property of (11) is 
that it is independent of the Tx power and node density 
and depends on only three basic parameters ( 0, ,m Pν ), 
so that nodes with different powers and densities as well 
as their combinations (e.g. a non-homogeneous 
network) will induce the same distribution. The same 
applies to the case of random Tx power (including 
fading channels). Unfortunately, this conclusion does 
not extend to (10) (see [11] for a detailed analysis of the 
impact of fading in this case). 
 
4. Outage Probability-Node Density 

Tradeoff 
 

Powerful interfering signals can result in significant 
performance degradation due to linear and nonlinear 
distortion effects in the receiver when they exceed 
certain limit, which we characterize here via the 
receiver distortion-free dynamic range (i.e. the 
maximum acceptable interference-to-nose ratio) 

max 0/dfD P P= , where maxP  is the maximum interfering 
signal power at the receiver that does not cause 
significant performance degradation. If a dfd D> , there 

is significant performance degradation and the receiver 
is considered to be in outage, which corresponds to one 
or more transmitters falling into the active interference 
zone (i.e. the ball of radius ( )dfr D ; the signal power 
coming from transmitters at that zone exceeds maxP ), 
whose probability is 

{ }Pr 1 ( )out a df d dfd D F D= > = −P  (12) 

For given outP , one can find the required distortion-free 
dynamic range (“outage dynamic range”) dfD  

1(1 )df d outD F −= −P   (13) 

We note that, in general, dfD  is a decreasing function 
of outP , i.e. low outage probability calls for high 
distortion-free dynamic range. For simplicity of 
notations, we further drop the subscript and denote the 
spurious-free dynamic range by D . 

All interfering signals are active (k=1): We consider 
first the case of 1k = , i.e. all interfering signals are 
active. The outage probability can be evaluated using 
(6) and (12). From practical perspective, we are 
interested in the range of small outage probabilities 

1out <<P , i.e. high-reliability and communications. 
When this is the case, ( ) 1dF D →  and using 
MacLaurean series expansion 1Ne N− ≈ − , (12) 
simplifies to 

( )( )out V r D
N dV≈ = ρ∫P   (14) 

which further simplifies, in the case of constρ = , to 
/

max
m

out N D− ν≈P   (15) 

Note that, in this case, the outage probability outP  
scales linearly with the average number maxN  of nodes 
in the potential interference zone, and it effectively 
behaves as if the number of nodes were fixed (not 
random) and equal to maxN . Based on this, we 
conclude that the single-order events (i.e. when only one 
signal in the ensemble of interfering signals exceeds the 
threshold maxP ) are dominant contributor to the outage. 
This immediately suggests a way to reduce significantly 
the outage probability by eliminating (e.g. by filtering) 
the dominant interferer in the ensemble. Using (15), the 
required spurious-free dynamic range of the receiver 
can be found for given outage probability, 

/
max( / ) m

outD N ν≈ �P . Note that higher values of ν  and 
lower values for m  call for higher dynamic range. 
Intuitively, this can be explained by the fact that when 
the transmitter moves from the boundary of the 
potential interference zone (i.e. maxR R= , 0( )aP R P= ) 
closer to the receiver ( maxR R<< ), the power grows 
much faster when ν  is larger, so that closely-located 
transmitters produce much more interference (compared 
to those located close to the boundary) when ν  is large, 
which, combined with the uniform spatial density of the 
transmitters, explains the observed behavior. The effect 



   

of m can be explained in a similar way. 
To validate the accuracy of approximation in (14), 

and also the expressions for the dynamic range PDF and 
CDF in the previous section, extensive Monte-Carlo 
(MC) simulations have been undertaken. Fig. 1 shows 
some of the representative results. Note good agreement 
between the analytical results (including the 
approximations) and the MC simulations. It can be also 
observed that the tails of the distributions decay much 
slower for the 4ν =  case, which indicates higher 
probability of high-power interference in that case and, 
consequently, requires higher spurious-free dynamic 
range of the receiver, in complete agreement with the 
predictions of the analysis. Note also that the outage 
probability evaluated via the total interference power 
coincides with that evaluated via the maximum 
interferer power, at the small outage region (this result 
has been rigorously proved in [11]). 

Consider now a scenario where the actual outage 
probability has not to exceed a given value outP  for the 
receiver with a given distortion-free dynamic range D . 
Using (8) and (12), the average number of transmitters 
in the active interference zone (ball of radius ( )r D ) can 
be upper bounded as ln(1 )outN ≤ − −P . Using the 
expression for N , one obtains a basic tradeoff 
relationship between the network density and the outage 
probability, 

( )( )
ln(1 )outV r D

N dV= ρ ≤ − −∫ P  (16) 

i.e. for given outage probability, the network density is 
upper bounded or, equivalently, for given network 
density, the outage probability is lower bounded.  

In the case of uniform density constρ =  and small 
outage probability, 1out <<P , this gives an explicit 
tradeoff relationship between the maximum distortion-
free interference power at the receiver maxP , the 
transmitter power tP  and the average node density for 
distortion-free receiver operation, 

( ) /1
max /

m
m out tc P Pa

ν−
νρ ≤ P   (17) 

or, equivalently,  an upper bound on the average density 
of nodes in the network. As intuitively expected, higher 

max, ,out P νP  and lower ,tP m allow for higher network 
density. The effect of ν  is intuitively explained by the 
fact that higher ν  results in larger path loss or, 
equivalently, in smaller distance at the same path loss, 
so that the transmitters can be located more densely 
without increasing interference level. The effect of the 
other parameters can be explained in a similar way. 

( )1k −  strongest interfering signals are inactive: 
We now assume that ( 1)k −  strongest interfering 
signals are eliminated via some means (e.g. by filtering 
or resource allocation). In this case, (9), (10) apply and 
(14) generalizes to 

( )/1 1
max! !

kk m
out k k

N N D− ν≈ =P  (18) 

which can be expressed as 1
,1 ,1!

k
out out outk

= ≤P P P , where 

,1outP  is the outage probability for 1k =  (see (14)). In 
the small outage region, ,1 1out <<P  and ,1out out<<P P , 
i.e. there is a significant beneficial effect of removing 
( 1)k −  strongest interferers, which scales exponentially 
with k. Further comparison to the corresponding result 
in [5] shows that the assumption there of cancelling all 
interferers, which exceed the required signal and are in 
the disk with the given average number of interferers, 
affects significantly the result (no exponential scaling). 
It should also be noted that, contrary to the 1k =  case, 

outP  in (18) is super-linear in maxN : doubling maxN  
increases outP  by the factor 2 2k > , i.e. outP  is more 
sensitive to maxN  in this case. 
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In a similar way, the node density-outage probability 
tradeoff can be formulated. In the for small outage 
probability region 1out <<P , it can be expressed as 

( ) ( )1/

( )
!

k
outV r D

N dV k= ρ ≤∫ P   (19) 

Comparing (19) to (16), one can clearly see the 
beneficial effect of “removing” ( 1)k −  most powerful 
interferers on the outage probability-network density 
tradeoff, since ( )1/

!
k

out outk >>P P  in the small outage 
regime, so that higher node density is allowed at the 
same outage probability. 

In the case of uniform density, (19) reduces to 

( ) ( )1/ /1
max! /

k m
m out tc k P Pa

ν−
νρ ≤ P  (20) 

which is a generalization of (17) to 1k ≥ . 
Impact of Rayleigh and log-normal fading: 

Following the same approach as in [3], it can be shown 
that the impact of Rayleigh and log-normal fading on 



   

the distributions above is a shift by a constant factor. In 
the case of Rayleigh fading, the constant is close to 1 
and, thus, can be neglected so that the distributions are 
roughly not affected. In the case of log-normal fading, 
the constant is not negligible. The intuition behind this 
result is that the distributions in (12), (15), (18) are 
much more heavily-tailed (slowly-decaying) than the 
Rayleigh distribution so that outage events in the 
combined distribution are mostly caused by nearby 
interferers without deep Rayleigh fades and the 
combined distribution is roughly the same as the 
original one (without fading). On the other hand, the 
log-normal distribution is also heavily-tailed, so it 
cannot be neglected (see [11] for a detailed analysis of 
the fading effects). 
 
5. Outage Probability: Measure of Induced 

Electromagnetic Environmental Risks 
 
As it was mentioned before, environmental risks 

induced by EME in wireless networks are determined 
by the level of dominant interference at the receptor 
allocation. The threshold values ПE1-ПE4 of these levels 
in terms of the power flux density (PFD) of an 
electromagnetic field and used as an electromagnetic 
safety criteria, are given below [10]. 

Table 1 
PFD, 
µW/cm2 Description 

0,1  
(ПE1) 

Preliminary preventive Maximum 
Permissible Level (MPL) for «total 
common electromagnetic irradiations from 
all high-frequency equipment with very 
low pulsing modulation» (recommended). 
Equal or close to the MPL accepted in 
some countries/regions. 

1,0  
(ПE2) 

Highest level of intensity of an 
electromagnetic background that is save for 
the population. Accepted earlier in the 
USSR up to 1984 as the MPL for the 
population 

2,0  
(ПE3) 

The MPL accepted in Moscow and Paris 
for places of round-the-clock stay of 
people 

10,0 
(ПE4) 

The MPL for the population, accepted in 
Russia, Belarus and also in a number of the 
European and Asian countries 

The level Пb [W/m2] of the receiver 
desensitization/blocking, determined at the antenna 
location, exceeds the receiver sensitivity Пmin [W/m2] by 
the blocking dynamic range Ddfb: 

mindfbb D ΠΠ = .   (20) 

A comparison between the level of radio receiver 
desensitization/blocking and the levels in the 
electromagnetic safety criteria, for typical values of 

receiver sensitivity Пmin and the receiver dynamic range 
Ddfb , are given in Table 2. 
 

Table 2. 
Пb, µW/cm2 Пmin,  

W/m2 Ddfb=70dB Ddfb=80dB Ddfb=90dB 
10-12 10-3 10-2 ПE1 
10-11 10-2 ПE1 ПE2,  ≈ПE3 
10-10 ПE1 ПE2,  ≈ПE3 ПE4 

Clearly, the levels of out-of-band interference causing 
desensitization for highly-linear receivers (high Ddfb ) 
roughly equal to the MPL levels required from the 
ecological point of view, which is an indication of close 
similarity of EMC and EMS problems in wireless 
communications. 
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