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Diversity-Multiplexing Tradeoff in MIMO Relay Channels for a
Broad Class of Fading Distributions
Sergey Loyka, Senior Member, IEEE, and Georgy Levin

Abstract—Diversity multiplexing tradeoff (DMT) in MIMO
relay channels, where the transmitter and receiver are equipped
with multiple antennas and the relay with a single one, is
derived for a broad class of fading distributions, including, as
special cases, non-identical, spatially correlated, and non-zero
mean channels. It is shown that the DMT does not depend on
a particular fading distribution, but rather on its polynomial
behavior near zero. The DMT turns out to be the same for
the simple “amplify-and-forward” mode and more complicated
“decode-and-forward” relaying (with capacity achieving codes),
i.e. the full processing capability at the relay does not help to
improve the DMT.

Index Terms—Multi-antenna (MIMO) system, diversity mul-
tiplexing trade-off.

I. INTRODUCTION

TO overcome difficulties in performance analysis of
MIMO systems, an elegant framework termed “diversity-

multiplexing tradeoff” (DMT) has been proposed in [1] that
allows one to quantify asymptotically the MIMO system
performance in terms of two principle gains it provides,
diversity and multiplexing, available in a fading channel when
SNR → ∞ [2]. While the original DMT formulation of Zheng
and Tse [1] is limited to i.i.d. Rayleigh fading channels, a
generalization to a class of channels satisfying a number of
conditions on the distribution function has been presented in
[3]. It has been shown that full-rank correlation does not affect
the DMT and that it is the same in the Rayleigh and Ricean
channels. Inspired by the DMT framework, a number of space-
time coding techniques that achieve the diversity-multiplexing
tradeoff have been proposed, see e.g. [4].

The emerge of cooperative communication strategies, which
exploit multi-user diversity available in wireless networks, has
inspired the study of diversity-multiplexing tradeoff in relay
channels. While the research in that area was initially concen-
trated on the single-antenna systems [5][6], the emphasis has
recently shifted towards multi-antenna systems [7]-[9]. Since
the MIMO systems present an additional level of difficulty
in terms of performance evaluation, many relay systems, for
which the outage probability/capacity analysis is not available
in a manageable closed form, have been characterized and
compared via their respective DMTs. Most of the studies on
relay channels employ the Rayleigh or Ricean fading model
with independent links [7]-[10]. The only exception is [11],
where the outage probability/capacity has been studied for a
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Fig. 1. Relay channel with a single relay node (R) (single-antenna) and
multiple-antenna source (S) and destination (D).

generic fading distribution, but the analysis was limited to
the low-SNR regime and the links are still required to be
independent.

In the present letter, we allow the fading to be non-identical,
spatially correlated and of generic distribution (which includes
Rayleigh-fading and other popular models as special cases),
and consider amplify-and-forward and decode-and-forward
protocols. The source and the destination terminals are as-
sumed to be equipped with multiple antennas and the relay
node with a single one (e.g. due to complexity constraints).

The contribution of the letter is two-fold:
∙ the DMT of this relay channel is obtained for a broad

class of fading distributions, which behave polynomially near
zero (Theorem 1).
∙ Under this condition, the single-relay channel is shown to

have the same DMT in the amplify-and-forward and decode-
and-forward modes (Theorem 2), i.e. the full processing
capability at the relay does not help to improve the DMT.

II. CHANNEL MODEL

Consider a MIMO relay channel with a single relay node
equipped with a single antenna (see Fig. 1); the source and
the destination terminals are equipped with multiple antennas.
While we consider both the amplify-and-forward and decode-
and-forward protocols, the former will be assumed for sim-
plicity of exposition, unless indicated otherwise, with a fixed
gain relay (this is motivated by the fact that it is simpler to
implement). We assume no direct source-destination link. This
is motivated by three reasons: (i) the direct link is usually
much weaker than the relay one (e.g. no line-of-sight etc.),
and thus can be neglected (this is the case when the relay link
is needed most) [6]; (ii) the results obtained for the no direct
link case can be used as a “building block” to analyze the
direct link case; (iii) the direct link corresponds to the regular
(no relay) systems and thus has been extensively studied and
is well understood by now, the relay link, on the contrary, is
not so well understood so we concentrate our attention on this
case.
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The standard baseband system model of a frequency flat
relay channel in the amplify-and-forward mode is,

y =
√
𝐾𝑟𝐺𝑟𝑑𝐺𝑠𝑟h𝑟𝑑h

+
𝑠𝑟x+

√
𝐾𝑟𝐺𝑟𝑑h𝑟𝑑𝜉𝑟 + 𝝃 (1)

where x and y are the source (transmitter) and destination
(receiver) symbol vectors, h𝑠𝑟 and h𝑟𝑑 are the source-relay
and relay-destination normalized channels (i.e. they include
the multipath fading but not the average path loss), + denotes
Hermitian conjugation, 𝐺𝑠𝑟 and 𝐺𝑟𝑑 are the source-relay and
relay-destination average path loss factors, 𝜉𝑟 ∼ 𝒞𝒩 (0, 𝜎2

𝑟)
and 𝝃 ∼ 𝒞𝒩 (0, 𝜎2

0I) are relay and destination AWGN noise
of variance 𝜎2

𝑟 and 𝜎2
0 respectively, and independent of each

other. Without loss of generality, the relay gain 𝐾𝑟 can be
further absorbed in 𝐺𝑟𝑑 via the substitution 𝐾𝑟𝐺𝑟𝑑 → 𝐺𝑟𝑑.
We do not assume any particular fading distribution, but only
assume that h𝑠𝑟 and h𝑟𝑑 are independent of each other, and
require that the PDFs 𝑓𝑠(𝑥) and 𝑓𝑑(𝑥) of h𝑠𝑟 and h𝑟𝑑 behave
polynomially near zero, which hold for a broad class of fading
distributions including, as special cases, Rayleigh, Ricean,
Nakagami, and Weibull fading, which may be correlated, non-
identical and non-zero mean. Thus, our results hold for a
generic fading channel. Note that 1𝑠𝑡 term in (1) represents
the signal received at the destination; 2𝑛𝑑 and 3𝑟𝑑 terms
represent the relay noise propagated to the destination and
the destination noise.

The sufficient statistics for y is [2],

𝑧 =
h+
𝑟𝑑

∣h𝑟𝑑∣y =
√
𝐺𝑟𝑑𝐺𝑠𝑟 ∣h𝑟𝑑∣h+

𝑠𝑟x+
√
𝐺𝑟𝑑 ∣h𝑟𝑑∣ 𝜉𝑟+ h+

𝑟𝑑

∣h𝑟𝑑∣𝝃
(2)

where ∣h∣2 = h+h, and the instantaneous SNR at the
destination can be expressed as

SNR =
𝐺𝑟𝑑𝐺𝑠𝑑 ∣h𝑟𝑑∣2 h+

𝑠𝑟R𝑥h𝑠𝑟

𝜎2
0 +𝐺𝑟𝑑 ∣h𝑟𝑑∣2 𝜎2

𝑟

≤ 𝛾 =
∣h𝑟𝑑∣2 ∣h𝑠𝑟∣2
1 + 𝛼 ∣h𝑟𝑑∣2

𝛾0,

(3)
where R𝑥 = 𝐸{xx+} is the covariance matrix of the
transmitted signal, 𝛼 = 𝐺𝑟𝑑𝜎

2
𝑟/𝜎

2
0 is the ratio of the average

relay noise propagated to the destination to the destination
noise, and 𝛾0 = 𝐺𝑟𝑑𝐺𝑠𝑟𝜎

2
𝑥/𝜎

2
0 is the average SNR at the

destination, 𝜎2
𝑥 = 𝑡𝑟R𝑥 = 𝐸{x+x} is the total transmitted

power (at the source). The inequality in (3) follows from
h+
𝑠𝑟R𝑥h𝑠𝑟 ≤ ∣h𝑠𝑟∣2 𝜎2

𝑥, and the equality is achieved when
R𝑥 = 𝜎2

𝑥h𝑠𝑟h
+
𝑠𝑟/ ∣h𝑠𝑟∣2, i.e. beamforming from the source to

the relay, x = 𝑠 ⋅ h𝑠𝑟/ ∣h𝑠𝑟∣, where 𝑠 is the scalar transmitted
symbol of the total power 𝜎2

𝑥. This requires channel state
information (CSI) at the source. When no such information
is available, a sensible transmission strategy is isotropic [2],
i.e. R𝑥 = 𝜎2

𝑥I/𝑚, where 𝑚 is the number of source antennas.
In this case, the instantaneous SNR at the destination is 𝛾/𝑚,
i.e. the source CSI brings in an 𝑚-fold SNR gain, but does not
change the statistics of the instantaneous SNR and, therefore,
the outage probability or outage capacity differ by a constant
SNR shift, and the diversity-multiplexing tradeoff is the same
in both cases.

III. DIVERSITY-MULTIPLEXING TRADEOFF

The diversity and multiplexing gains are defined as [1]

𝑑 = − lim
𝛾0→∞ ln𝑃𝑜𝑢𝑡/ ln 𝛾0 (4)

𝑟 = lim
𝛾0→∞𝑅/ ln 𝛾0, (5)

where 𝑃𝑜𝑢𝑡(𝑅) = Pr {𝐶 < 𝑅} is outage probability, 𝑅 is
the target rate, and 𝐶 = ln (1 + 𝛾) is the instantaneous
channel capacity in [nat/s/Hz], i.e. the capacity given a channel
realization.

Definition: Functions 𝑓(𝑥) and 𝑔(𝑥) are asymptotically
equivalent, 𝑓(𝑥) ∼ 𝑔(𝑥), if there exist constants 0 < 𝐴 ≤
𝐵 < ∞ such that 𝐴𝑔(𝑥) ≤ 𝑓(𝑥) ≤ 𝐵𝑔(𝑥) for sufficiently
small 𝑥.

Under this setting, the DMT is given by the following
theorem:

Theorem 1: Consider the relay channel in (1) such that
the PDFs 𝑓𝑠(𝑥) and 𝑓𝑑(𝑥) of ∣h𝑠𝑟 ∣2 and ∣h𝑟𝑑∣2 behave
polynomially near zero, i.e. 𝑓𝑠(𝑥) ∼ 𝑥𝑑𝑠−1, 𝑓𝑑(𝑥) ∼ 𝑥𝑑𝑑−1

as 𝑥 → 0, where 𝑑𝑠, 𝑑𝑑 are the diversity gains (orders) of the
source-relay and relay-destination links at 𝑟 = 0. The DMT
of this channel in the amplify-and-forward mode is

𝑑(𝑟) = min(𝑑𝑠(𝑟), 𝑑𝑑(𝑟)) = min(𝑑𝑠, 𝑑𝑑)(1− 𝑟),
0 ≤ 𝑟 ≤ 1

(6)

where 𝑑𝑠(𝑟) = 𝑑𝑠(1− 𝑟), 𝑑𝑑(𝑟) = 𝑑𝑑(1− 𝑟) are the DMTs of
the source-relay and relay-destination links.

Proof: see Appendix.
Theorem 1 holds for a broad class of fading distributions in

the relay channel, which include, as special cases, Rayleigh,
Rice, Nakagami, and Weibull, and which may be spatially
correlated and non-identically distributed. It is thus a general-
ization of [[7], Theorem 1], where h𝑠𝑟 and h𝑟𝑑 were assumed
to be i.i.d. complex Gaussian. Note also that the noise at the
relay node does not affect the DMT, i.e. the channel in (1)
with 𝜉𝑟 = 0 has the same DMT as in (6).

Theorem 1 demonstrates that the DMT depends on the
number of degrees of freedom available in the channel and
not on particular fading distribution, as long as the definition
of diversity gain in (4) makes sense. Similar result has been
also established for full-rank MIMO channels in [3]. Since
the conditions of Theorem 1 relate to the behavior near zero
of the distributions of ∣h𝑠𝑟 ∣2 and ∣h𝑟𝑑∣2, not the individual
vector entries, it is straightforward to see that a full-rank
correlation does not change the DMT since the polynomial
behavior near zero is not affected. Following the discussion
in section II, the source CSI is equivalent to an 𝑚-fold SNR
gain and, therefore, has no effect on the DMT. The transmit
beamforming in combination with QAM modulation (e.g. see
[2]) is an example of a space-time code that achieves the DMT
of the single-relay channel with the source CSI. When no such
CSI is available, isotropic transmission in combination with
QAM will achieve the DMT.

Let us now consider the DMT of the decode-and-forward
single-relay channel, assuming capacity achieving codes and
complete decoding/encoding at the relay. The following theo-
rem holds:

Theorem 2: Under the conditions of Theorem 1, the
diversity-multiplexing tradeoff of the decode-and-forward
single-relay channel is given by (6).

Proof: see Appendix.
Therefore, the single-relay channel subject to fading from

a broad class of distributions has the same DMT in the
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amplify-and-forward and decode-and-forward modes, i.e. the
full processing capability at the relay (to achieve the capacity)
does not help to improve the DMT.

IV. APPENDIX

Proof of Theorem 1: Let 𝑔𝑠 = ∣h𝑠𝑟∣2, 𝑔𝑑 = ∣h𝑟𝑑∣2
1+𝛼∣h𝑟𝑑∣2 .

From (3) the outage probability is

𝑃𝑜𝑢𝑡 = Pr{𝐶 < 𝑅} = Pr{𝑔𝑠𝑔𝑑 < 𝜀}, (7)

where 𝜀 = (𝑒𝑅 − 1)/𝛾0. For 𝑅 = 𝑟 ln 𝛾0, 0 ≤ 𝑟 < 1, and
𝛾0 → ∞, 𝜀 ∼ 𝛾

−(1−𝑟)
0 , i.e. 𝜀 → 0 as 𝛾0 → ∞. From (7),

𝑃𝑜𝑢𝑡 =

∫ ∞

0

𝑓𝑠(𝑔𝑠)𝐹𝑑(𝜀/𝑔𝑠)𝑑𝑔𝑠 = 𝑃1 + 𝑃2 + 𝑃3, (8)

where 𝐹𝑑(𝑥) is the CDF of 𝑔𝑑, and

𝑃1 =

∫ 𝜀 ln 𝛾0

0

𝑓𝑠(𝑔𝑠)𝐹𝑑(𝜀/𝑔𝑠)𝑑𝑔𝑠, (9)

𝑃2 =

∫ 𝛿

𝜀 ln 𝛾0

𝑓𝑠(𝑔𝑠)𝐹𝑑(𝜀/𝑔𝑠)𝑑𝑔𝑠, (10)

𝑃3 =

∫ ∞

𝛿

𝑓𝑠(𝑔𝑠)𝐹𝑑(𝜀/𝑔𝑠)𝑑𝑔𝑠, (11)

and 𝜀 ln 𝛾0 < 𝛿 << 1, 𝛿 is a sufficiently small constant
(independent of the SNR). In fact, 𝑃1 and 𝑃3 represent the
outage events due to the outage at the source and destination
links, respectively, and 𝑃2 represents the outage events due to
simultaneous deep fades at both links. The upper bound on
𝑃1 is

𝑃1 ≤
∫ 𝜀 ln 𝛾0

0

𝑓𝑠(𝑔𝑠)𝑑𝑔𝑠 = 𝐹𝑠(𝜀 ln 𝛾0), (12)

where 𝐹𝑠(𝑥) is the CDF of 𝑔𝑠. Since 𝑓𝑠(𝑥) ∼ 𝑥𝑑𝑠−1, 𝐹𝑠(𝑥) ∼
𝑥𝑑𝑠 , and from (12),

𝑃1 ≤ 𝐹𝑠(𝜀 ln 𝛾0) ∼ (𝜀 ln 𝛾0)
𝑑𝑠

.
= 𝜀𝑑𝑠 , (13)

where 𝑓1(𝛾0)
.
= 𝑓2(𝛾0) means exponential equality [1],

lim
𝛾0→∞

ln 𝑓1(𝛾0)

ln 𝛾0
= lim

𝛾0→∞
ln 𝑓2(𝛾0)

ln 𝛾0
(14)

If 𝑓1(𝛾0) ∼ 𝑓2(𝛾0) as 𝛾0 → ∞, then 𝑓1(𝛾0)
.
= 𝑓2(𝛾0). Note

that 𝐹𝑑(𝑥) = 𝐹𝑟𝑑

(
𝑥

1−𝛼𝑥

)
for 𝛼𝑥 ≤ 1 and 1 otherwise, where

𝐹𝑟𝑑(𝑥) is the CDF of ∣h𝑟𝑑∣2. Thus, 𝐹𝑑(𝑥) ∼ 𝐹𝑟𝑑(𝑥) ∼ 𝑥𝑑𝑑 for
sufficiently small 𝑥, since 𝐹𝑟𝑑(𝑥) ∼ 𝑥𝑑𝑑 . As 𝛿 is sufficiently
small,

𝑃2 ∼
∫ 𝛿

𝜀 ln 𝛾0

𝑔𝑑𝑠−1
𝑠 (𝜀/𝑔𝑠)

𝑑𝑑𝑑𝑔𝑠 = 𝜀𝑑𝑑

∫ 𝛿

𝜀 ln 𝛾0

𝑔𝑑𝑠−𝑑𝑑−1
𝑠 𝑑𝑔𝑠

(15)

If 𝑑𝑠 ∕= 𝑑𝑑,

𝑃2 ∼ 𝜀𝑑𝑑

𝑑𝑑 − 𝑑𝑠

(
(𝜀 ln 𝛾0)

𝑑𝑠−𝑑𝑑 − 𝛿𝑑𝑠−𝑑𝑑
) .
= 𝜀min(𝑑𝑠,𝑑𝑑) (16)

If 𝑑𝑠 = 𝑑𝑑,

𝑃2 ∼ 𝜀𝑑𝑠 (ln 𝛿 − ln(𝜀 ln 𝛾0))
.
= 𝜀𝑑𝑠 (17)

The upper bound on 𝑃3 is

𝑃3 ≤ ∫∞
𝛿

𝑓𝑠(𝑔𝑠)𝐹𝑑(𝜀/𝛿)𝑑𝑔𝑠 = (1− 𝐹𝑠(𝛿))𝐹𝑑(𝜀/𝛿)
.
= 𝜀𝑑𝑑

(18)
Combining (13), (16), and (18), one obtains

𝑃𝑜𝑢𝑡
.
= 𝜀min(𝑑𝑠,𝑑𝑑) .

= 𝛾
−min(𝑑𝑠,𝑑𝑑)(1−𝑟)
0 (19)

Applying (4), (6) follows.

Proof of Theorem 2: The instantaneous capacity of the
decode-and-forward single-relay channel is

𝐶 = min {𝐶𝑠𝑟 , 𝐶𝑟𝑑} , (20)

where 𝐶𝑠𝑟 = ln(1 +𝐺𝑠𝑟 ∣h𝑠𝑟∣2 𝜎2
𝑥/𝜎

2
𝑟) and 𝐶𝑟𝑑 =

ln(1 +𝐺𝑟𝑑 ∣h𝑟𝑑∣2 𝜎2
𝑅/𝜎

2
0) are the capacities of the source-

relay and relay-destination links, 𝜎2
𝑅 is the relay transmit

power. Thus, the outage probability is

𝑃𝑜𝑢𝑡 = Pr {𝐶 < 𝑅} = 𝑃𝑠𝑟 + 𝑃𝑟𝑑 − 𝑃𝑠𝑟𝑃𝑟𝑑, (21)

where 𝑃𝑠𝑟(𝑟𝑑) = Pr
{
𝐶𝑠𝑟(𝑟𝑑) < 𝑅

}
are the outage probabili-

ties of the source-relay and relay-destination links. Under the
adopted assumptions 𝑃𝑠𝑟 ∼ 𝛾

−𝑑𝑠(1−𝑟)
0 , 𝑃𝑟𝑑 ∼ 𝛾

−𝑑𝑑(1−𝑟)
0 .

Thus, as 𝛾0 → ∞

𝑃𝑜𝑢𝑡 → max {𝑃𝑠𝑟 , 𝑃𝑟𝑑} .
= 𝛾

−min(𝑑𝑠,𝑑𝑑)(1−𝑟)
0 (22)

Applying (4), (6) follows.
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