
1120 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 27, NO. 7, SEPTEMBER 2009

On Node Density – Outage Probability Tradeoff in
Wireless Networks
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Abstract—A statistical model of interference in wireless net-
works is considered, which is based on the traditional propa-
gation channel model and a Poisson model of random spatial
distribution of nodes in 1-D, 2-D and 3-D spaces with both
uniform and non-uniform densities. The power of nearest in-
terferer is used as a major performance indicator, instead of
a traditionally-used total interference power, since at the low
outage region, they have the same statistics so that the former
is an accurate approximation of the latter. This simplifies the
problem significantly and allows one to develop a unified frame-
work for the outage probability analysis, including the impacts
of complete/partial interference cancelation, of different types
of fading and of linear filtering, either alone or in combination
with each other. When a given number of nearest interferers
are completely canceled, the outage probability is shown to scale
down exponentially in this number. Three different models of
partial cancelation are considered and compared via their outage
probabilities. The partial cancelation level required to eliminate
the impact of an interferer is quantified. The effect of a broad
class of fading processes (including all popular fading models) is
included in the analysis in a straightforward way, which can be
positive or negative depending on a particular model and prop-
agation/system parameters. The positive effect of linear filtering
(e.g. by directional antennas) is quantified via a new statistical
selectivity parameter. The analysis results in formulation of a
tradeoff relationship between the network density and the outage
probability, which is a result of the interplay between random
geometry of node locations, the propagation path loss and the
distortion effects at the victim receiver.

Index Terms—Wireless network, interference, outage proba-
bility, fading, capacity, interference cancellation.

I. INTRODUCTION

W IRELESS communication networks have been recently
a subject of extensive studies, both from information-

theoretic and communication perspectives, including devel-
opment of practical transmission strategies and fundamental
limits (capacity) to assess the optimality of these strategies
[1].
Mutual interference among several links (e.g. several users)

operating at the same time places a fundamental limit to the
network performance. The effect of interference in wireless
networks at the physical layer has been studied from several
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perspectives [2]-[7]. A typical statistical model of interfer-
ence in a network includes a model of spatial location of
the nodes, a propagation path loss law (which includes the
average path loss and, possibly, large-scale (shadowing) and
small-scale (multipath) fading) and a threshold-based receiver
performance model. The most popular choice for the model
of the node spatial distribution is a Poisson point process on
a plane [2]-[7]. Based on this model and ignoring the effect
of fading, Sousa [3] has obtained the characteristic function
(CF) of the total interference at the receiver, which can be
transformed into a closed-from probability density function
(PDF) in some special cases, and, based on it, the error rates
for direct sequence (DS) and frequency hopping (FH) systems.
For such a model, the distribution of the distance to nearest
(or k-th nearest) interferer and, thus, of its interference power
can be found in a compact closed form [11]-[13], [18].

While using the LePage series representation, Ilow and
Hatzinakos [4][5] have developed a generic technique to obtain
the CF of total interference from a Poisson point process on
a plane (2-D) and in a volume (3-D), which can be used to
incorporate the effects of Rayleigh and log-normal fading in
a straightforward way. Relying on a homogeneous Poisson
point process on a plane, Weber et al [6] have characterized
the transmission capacity of the network subject to the outage
probability constraint via lower and upper bounds. In a recent
work, Weber et al [7] use the same approach to characterize
the network transmission capacity when the receivers are able
to suppress some powerful interferers, and separately include
the effect of fading (based on the results in [4][5]) and of the
transmission strategy [8].

A common feature of all these studies is the use of
total interference, either alone or in the form of signal-to-
interference-plus-noise ratio, and a common lesson is that it
is very difficult to deal with: while the CF of total interference
can be obtained in a closed form, the PDF or cumulative
distribution function (CDF) are available only in a few special
cases. This limits significantly the amount of insight that can
be obtained using this approach and, thus, one has to rely on
various bounds and approximations, which also complicate the
analysis significantly. One notable exception is [22], where
closed-form expression for the outage probability has been
obtained when the required signal is subject to Rayleigh
fading. This result has been extended to Nakagami-type fading
in [23] and the performance of various transmission strategies
has been analyzed. Unfortunately, this approach does not work
when the required signal is not fading or when fading is
not of Nakagami-type, or when some powerful interferers are
canceled.
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To overcome this difficulty, we adopt a different approach:
instead of relying on the total interference power as a perfor-
mance indicator, we use the power of the nearest (dominant)
interferer and follow the approach originally proposed in
[11]-[13]. As a result, closed-form analytical performance
evaluation becomes straightforward and significant insight
can be obtained using this method, including the scenarios
where nearest interferers are cancelled, either via linear or
nonlinear filtering techniques, and/or when interfering signals
are subject to a broad class of fading processes, including all
popular fading models. Further simplification by considering
the low outage probability region makes the effect of various
system/network parameters explicit and eliminates the need
for numerical analysis of the results.
Using the methods of functions of regular variations, we

show that the total interference is dominated by the nearest
interferer in the region of low outage probability, i.e. the
practically-important region, and, thus, both models give the
same results. This result is also consistent with the correspond-
ing results in [6]-[8], when the ”near-field” region contains
only one interferer. While the results in [6]-[8] hold for
the uniform node density only, we consider the non-uniform
case as well and also show that this conclusion holds under
interference cancelation and fading.
Using this method, we study the power distribution of the

dominant interferer in various scenarios, which is further used
to obtain closed-form expressions for the outage probability
of a given receiver or, equivalently, of the link of a given
user, in the 1-D, 2-D and 3-D Poisson field of interferers, for
both uniform and non-uniform node densities. Comparison to
the corresponding results in [3] obtained in terms of the error
rates indicates that the dominant contribution to the error rate
is due to the outage events caused by the nearest interferer,
which increases with the average node density. While a similar
result in [6] was obtained at the low outage region in the 2-D
scenario, our results hold for any outage probability and for
1, 2 and 3-D cases.
The proposed method is flexible enough to include the case

when a given number of nearest interferers are canceled, either
partially or completely. In the latter case, the outage proba-
bility is shown to scale down exponentially in this number.
Contrary to [7], we do not rely on the simplifying assumption
of canceling all interferers in the disk with the given average
number of interferers; neither we assume that only interferers
more powerful than the required signal are cancelled1 , i.e.
our analysis of interference cancelation is exact. In the case
of partial cancellation, we consider three different techniques
and compare them using closed-form characterization of the
outage probabilities, without any simplifying assumptions. The
level of cancelation required to eliminate the impact of an
interferer is also quantified. Proper resource allocation can
significantly relax this requirement.

1the latter assumption affects significantly the results when the threshold
signal-to-interference (SIR) ratio >1, since the interferers with power below
the signal power can still cause an outage but are not canceled. This explains
the corresponding conclusion in [7] that the interference cancelation is only
effective when the threshold SIR <1. Without such an assumption, this
conclusion does not hold anymore and the interference cancellation is also
effective when the threshold SIR>1 (see (19)). Thus, the results for this
problem are very sensitive to the assumptions made.

The proposed method is also used to include the impact
of fading. Specifically, we demonstrate directly in terms of
the outage probability and without using the characteristic
function that the effect of a broad class of fading distributions,
which includes all popular models2 is a multiplicative constant
shift of the outage probability when compared to the no-fading
case. In the case of Rayleigh fading, this is a moderate constant
(close to 1), and the effect of fading can be either positive
(constant<1) or negative (constant>1), depending on the path
loss exponent and other parameters. In the case of log-normal
fading, the constant can be significantly greater than 1 and the
effect of fading is always negative. The composite Rayleigh-
log-normal fading results in a shift equal to the product of
individual shift constants.
We further show that, for all fading distributions considered

above, the total interference power is still dominated by the
nearest interferer and typical outage events are due to this
interferer exceeding a threshold. Thus, the outage probabilities
defined in terms of the total and nearest interferer’s power are
the same at the low outage region. The combined effect of
fading and complete/partial interference cancellation is also
considered and the main conclusions above are shown to
hold in this case as well. It is shown that fading relaxes the
requirement to the interference cancellation level.
We observe that the outage probability versus a distortion-

free interference-to-noise ratio (INR) of the receiver exhibits
a threshold effect: when the distortion-free INR is below
a critical value, the outage probability is high; when the
distortion-free INR increases above the critical value, the out-
age probability sharply decreases. By quantifying the critical
value, an approximation to the outage probability for the whole
INR range is obtained.
Our analysis results in a formulation of the outage

probability-network density tradeoff: for a given average den-
sity of the nodes, the outage probability is lower bounded or,
equivalently, for a given outage probability, the average density
of the nodes is upper bounded. This tradeoff is a result of the
interplay between a random geometry of node locations, the
propagation path loss and the distortion effects at the victim
receiver.
Using the method developed, we analyze the beneficial

effect of arbitrary linear filtering, e.g. by directional anten-
nas that attenuate some interferers based on their angles of
arrival, on the outage probability and on the tradeoff via a
new statistical selectivity parameter (Q-parameter), which is
somewhat similar to the traditional antenna gain [19] [20], but
also includes the statistical distribution of interferers over the
filtering variables (e.g. angles of arrival). Comparison of linear
filtering to complete/partial cancellation of nearest interferers
shows that the complete cancellation or partial cancellation
with a sufficient cancellation level is most efficient, and that
linear filtering and partial cancellation are similar in their
impact on the outage probability: the latter scales linearly with
the node density. Comparing our results to the corresponding
linear scaling results in [23], we conclude that linear filtering
has only a fixed multiplicative effect on the outage probabil-

2Rayleigh, Rice, Nakagami, log-normal, composite Rayleigh-log-normal
(Suzuki), Weibull etc. [9][10]; an explicit condition for distributions to belong
to this class is given.
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ity under a variety of scenarios, while higher-order scaling
requires nonlinear interference cancelation.
Finally, the outage capacity is evaluated based on the results

above. In particular, it is demonstrated that the effect of
interference on the outage capacity is much more pronounced
at low signal-to-interference ratio (SIR), and the effect of in-
terference cancelation is much more significant at that regime
as well.
The paper is organized as follows. In Section II, we in-

troduce the system and network model. In Section III, the
distribution of the interference-to-noise ratio of the nearest
interferer is given for this model, including the case when
most powerful interferers are cancelled. Based on this, the
node density – outage probability tradeoff is presented in
Section IV, including the case of complete/partial interference
cancellation. The impact of fading is analyzed in Section V,
the impact of linear filtering is analyzed in Section VI, and
the outage capacity is evaluated in Section VII.

II. NETWORK AND SYSTEM MODEL

As an interference model of wireless network at the physical
layer, we consider a number of point-like transmitters (Tx)
and receivers (Rx) that are randomly located over a certain
limited region of space Sm, which can be one (m = 1), two
(m = 2), or three (m = 3)-dimensional (1-D, 2-D or 3-D).
This can model location of the nodes over a highway or a street
canyon (1-D), a residential area (2-D), or a downtown area
with a number of high-rise buildings (3-D). In our analysis,
we consider a single (randomly-chosen) receiver and a number
of transmitters that generate interference to this receiver. We
assume that the spatial distribution of the transmitters (nodes)
has the following properties: (i) for any two non-overlapping
regions of space Sa and Sb, the probability of any number of
transmitters falling into Sa is independent of how many trans-
mitters fall into Sb, i.e. non-overlapping regions of space are
statistically independent; (ii) for infinitesimally small region of
space dS, the probability P(k = 1, dS) of a single transmitter
(k = 1) falling into dS is P(k = 1, dS) = ρdS, where ρ is the
average spatial density of transmitters (which can be a function
of position). The probability of more than one transmitter
falling into dS is negligible, P(k > 1, dS) � P(k = 1, dS)
as dS → 0. Under these assumptions, the probability of
exactly k transmitters falling into the region S is given by
Poisson distribution,

P(k, S) = e−NN
k
/k! (1)

where N =
∫

S ρdS is the average number of transmitters
falling into the region S. If the density is constant, then N =
ρS. Possible scenarios to which the assumptions above apply,
with a certain degree of approximation, are a sensor network
with randomly-located non-cooperating sensors; a network(s)
of mobile phones from the same or different providers (in
the same area); a network of multi-standard wireless devices
sharing the same resources (e.g. common or adjacent bands
of frequencies), ad-hoc and cognitive radio networks.
Consider now a given transmitter-receiver pair. The power

at the Rx antenna output Pr coming from the transmitter is
given by the standard link budget equation [9],

Pr = PtGtGrg (2)

Network-scale

Rx

Tx
small-scale

large-scale

Tx

Tx

Tx

Fig. 1. Illustration of the problem geometry and three associated scales:
small-scale (immediate neighborhood of a Tx; this is the scale of multipath
fading), large-scale (extends beyond immediate neighborhood but is smaller
than the whole network area; this is the scale of shadow fading) and network-
scale (includes the whole network; this is the scale of network fading in
(6)-(8)).

where Pt is the Tx power, Gt, Gr are the Tx and Rx antenna
gains, and g is the propagation path gain (=1/path loss),
g = gaglgs, where ga is the average propagation path gain,
and gl, gs are the contributions of large-scale (shadowing) and
small-scale (multipath) fading, which can be modeled as in-
dependent log-normal and Rayleigh (Rice) random variables,
respectively [9].
The widely-accepted model for ga is ga = aνR−ν , where

ν is the path loss exponent, and aν is constant independent
of R [9]. In the traditional link-budget analysis of a point-
to-point link, it is a deterministic constant. However, in our
network-level model ga becomes a random variable since the
Tx-Rx distance R is random (due to random location of the
nodes) and it is this random variable that represents a new
type of fading, which we term “network-scale fading”, since
it exhibits itself on the scale of the whole area occupied by the
network. Since ga does not depend on the local propagation
environment around the Tx or Rx ends that affect gl, gs but
only on the global configuration of the Tx-Rx propagation path
(including the distance R, of which gl, gs are independent)
[9], the network-scale fading in this model is independent
of the large-scale and small-scale ones, which is ultimately
due to different physical mechanisms generating them3. Fig.
1 illustrates this. The distribution functions of ga in various
scenarios have been given in [12][13].

III. INTERFERENCE TO NOISE RATIO

We consider a fixed-position receiver (e.g. a base station of
a given user) and a number of randomly located interfering

3There is a significant difference between these types of fading from the
ergodicity viewpoint: while small-scale and large-scale fading require the
ergodicity assumption for the statistical results to be relevant, the network-
scale fading does not require it: a single instance of a network (i.e. a set of
randomly located nodes) will generate appropriate empirical distribution of
interference at a given receiver and thus the results of statistical analysis are
applicable in this single instance (provided that the number of nodes is large
enough)
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transmitters (interferers, e.g. mobile units of other users) of
the same power Pt

4. Only the network-scale fading is taken
into account in this section, assuming that gl = gs = 1
(this assumption is relaxed in section V). For simplicity,
we also assume that the Tx and Rx antennas are isotropic
(this assumption is relaxed in section VI), and consider the
interfering signals at the receiver input.
The distribution of transmitters in space is given by (1).

Transmitter i produces the average power Pai = Ptga(Ri) at
the receiver input. We define the interference-to-noise ratio
(INR) da, also known as dynamic range [11]-[13], in the
ensemble of the interfering signals via the most powerful
signal at the Rx input5,

da = Pa1/P0 (3)

where P0 is the noise level and, without loss of generality, we
index the transmitters in the order of decreasing Rx power,
Pa1 ≥ Pa2 ≥ ... ≥ PaN , and N is the number of transmitters.
The most powerful signal is coming from the transmitter
located at the minimum distance r1, Pa1 = Ptga(r1). The
CDF of the minimum distance can be easily found [11]-
[13][18],

F1(r) = 1 − exp
(−N (V )

)
(4)

where N(V ) =
∫

V
ρdV is the average number of transmitters

in the ball V (r) of radius r. The corresponding PDF can be
found by differentiation,

f1(r) = e−N

∫
V ′(r)

ρdV (5)

where V ′(r) is sphere of radius r and the integral in (5) is
over this sphere.
The probability that the INR exceeds value D is

Pr {da > D} = Pr {r1 < r(D)} = F1(r(D)), where the
distance r(D) is such that Pa(r(D)) = P0D, so that the CDF
of da is

Fd(D) = 1 − Pr {da > D} = exp(−N(D)) (6)

where N(D) =
∫

V (r(D))
ρdV is the average number of

transmitters in the ball V (r(D)) of the radius r(D) =
(Ptaν/P0D)1/ν . The corresponding PDF can be obtained by
differentiation,

fd(D) =
r(D)e−N(D)

νD

∫
V ′(r(D))

ρdV (7)

When the average spatial density of transmitters is constant,
ρ = const, (6), (7) simplify to [11]-[13],

Fd(D) = exp

{
−cmρ

(
Ptaν

P0D

)m/ν
}

= exp
{
−Nmax

Dm/ν

}
,

fd(D) =
m

ν

Nmax

Dm/ν+1
exp

{
−Nmax

Dm/ν

}
(8)

where c1 = 2, c2 = π and c3 = 4π/3, Nmax = cmRm
maxρ

is the average number of transmitters in the ball of radius

4following the framework in [11]-[13], this can also be generalized to the
case of unequal Tx powers.
5Theorem 1 shows that, in the small outage region, the total interference

power is dominated by the contribution of the most powerful signal.

Rx

Potential 
interference zone

maxR

DR
active 

interference 
zone

Fig. 2. Interference zones on the network scale. Potential interference zone:
R ≤ Rmax, Pa(R) ≥ P0 = Pa(Rmax), i.e. the interference power exceeds
the Rx noise level; when evaluating the total interference power, only the
interferers in this zone are considered (this corresponds to either the fact
that radio waves at GHz frequencies decay exponentially fast when blocked
by earth curvature or the area populated by interferers being finite). Active
interference zone: R ≤ RD , Pa(R) ≥ Pdf = Pa(RD), i.e. the interference
power exceeds the maximum distortion-free level.

Rmax, which we term ”potential interference zone”, and
Rmax = r(1) = (Ptaν/P0)1/ν is such that Pa(Rmax) = P0,
i.e. a transmitter at the boundary of the potential interference
zone produces signal at the receiver exactly at the noise level;
transmitters located outside of this zone produce weaker sig-
nals, which are neglected in the interference-limited scenario
(see Fig. 2). Note that (8) gives the distribution of the INR as
an explicit function of the system and geometrical parameters,
and ultimately depends on Nmax, m, ν only.
When (k − 1) most powerful signals, which are coming

from (k−1) closest transmitters, do not create any interference
(i.e. due to frequency, time or code separation in the multiple
access scheme, or due to any other form of separation or
filtering), the CDF and PDF of the distance rk to the most
powerful interfering signal of order k can be found in a similar
way. The CDF of the INR da in this case is given by

Fdk(D) = e−N(D)
∑k−1

i=0
N(D)i/i! (9)

In the case of constant average density ρ = const, the CDF
and PDF of the INR simplify to [11]-[13],

Fdk(D) = exp
{
−Nmax

Dm/ν

} k−1∑
i=0

1
i!

(
Nmax

Dm/ν

)i

,

fdk(D) =
m

ν(k − 1)!
N

k

max

D
km
ν +1

exp
{
−Nmax

Dm/ν

}
(10)

IV. OUTAGE PROBABILITY-NODE DENSITY TRADEOFF

Powerful interfering signals can result in significant per-
formance degradation due to linear and nonlinear distortion
effects in the receiver when they exceed certain limit, which
we characterize here via the receiver distortion-free INR, i.e.
the maximum acceptable interference-to-nose ratio, Ddf =
Pmax/P0, where Pmax is the maximum interference power
at the receiver that does not cause significant performance
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degradation. This is equivalent to using the signal to noise plus
interference ratio when the required signal power is fixed, e.g.
no or negligible fading due to strong line of sight component.
If da > Ddf , there is significant performance degradation and
the receiver is considered to be in outage, which corresponds
to one or more transmitters falling into the active interference
zone (i.e. the ball of radius r(Ddf ); the signal power coming
from transmitters at that zone exceeds Pmax, whose probability
is

Pout = Pr {da > Ddf} = 1 − Fd(Ddf ) (11)

For given Pout, one can find the required distortion-free INR
(“outage INR”) Ddf

Ddf = F−1
d (1 − Pout) (12)

We note that, in general, Ddf is a decreasing function of Pout,
i.e. low outage probability calls for high distortion-free INR.
For simplicity of notations, we further drop the subscript and
denote the distortion-free INR by D.
While the definition of outage probability above relies on

the maximum interfering power, the same outage probability
holds in terms of the total interfering power at the low outage
region, as the theorem below demonstrates.
Theorem 1: Consider the outage probability in (11). At

the low outage region, it converges to the outage probability
defined via the total interference power, i.e.

lim
x→∞

Pr{∑i Pai > x}
Pr {Pa1 > x} = 1 (13)

Proof: via the functions of regular variation; see Appendix
1 for details.
Thus, at the low outage region, Pout in (11) serves as an

accurate approximation of the outage probability in terms of
the total interference power,

Pr
{∑

i
Pai > x

}
≈ Pr {Pa1 > x} , for large x, (14)

and all our results also apply to such an outage probability.
A significant advantage of (11) is that a closed-form analysis
becomes straightforward.

A. All interfering signals are active (k = 1)

We consider first the case of k = 1, i.e. all interfering sig-
nals are active. The outage probability can be evaluated using
(6) and (11). From practical perspective, we are interested in
the range of small outage probabilities Pout � 1, i.e. high-
reliability communications. When this is the case, Fd(D) → 1
and using MacLaurean series expansion e−N ≈ 1 − N ,
where N is the average number of transmitters in the active
interference zone, (11) simplifies to

Pout ≈ N =
∫

V (r(D))

ρdV (15)

which further simplifies, in the case of ρ = const, to

Pout ≈ NmaxD
−m/ν (16)

Note that, in this case, the outage probability Pout scales
linearly with the average number Nmax of nodes in the
potential interference zone and also with the node density ρ,
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Fig. 3. The CCDF of da = Pa1/P0 and dtot = Ptot/P0 (also the
outage probability) evaluated from Monte-Carlo (MC) simulations for m = 2,
ν = 2&4, P0 = 10−10, Pt = 1, ρ = 10−5; analytic CCDF of da

(derived from (8)) and its approximation in (16) are also shown. Note that
the approximation becomes very accurate at Pout ≤ 0.1 and that the CCDF
of total and maximum interference power are the same at this region.

and it effectively behaves as if the number of nodes were
fixed (not random) and equal to Nmax. Based on this, we
conclude that the single-order events (i.e. when only one signal
in the ensemble of interfering signals exceeds the threshold
Pmax) are dominant contributor to the outage, which is also
consistent with Theorem 1. This immediately suggests a way
to reduce significantly the outage probability by eliminating
the dominant interferer in the ensemble. Using (16), the
required spurious-free INR of the receiver can be found for
given outage probability, D ≈ (Nmax/Pout)ν/m. Note that
higher values of ν and lower values for m call for higher
distortion-free INR. Intuitively, this can be explained by the
fact that when the transmitter moves from the boundary of
the potential interference zone (i.e. R = Rmax, Pa(R) = P0)
closer to the receiver (R � Rmax), the power grows much
faster when ν is large, so that closely-located transmitters
produce much more interference (compared to those located
close to the boundary) in that case, which, combined with
the uniform spatial density of the transmitters, explains the
observed behavior. The effect of m can be explained in a
similar way.
To validate the accuracy of approximation in (15), and also

the expressions for the INR’s PDF and CDF in the previous
section, extensive Monte-Carlo (MC) simulations have been
undertaken. Fig. 3 shows some of the representative results.
Note good agreement between the analytical results (including
the approximations) and the MC simulations. It can be also
observed that the tails of the distributions decay much slower
for the ν = 4 case, which indicates higher probability of high-
power interference in that case and, consequently, requires
higher distortion-free INR of the receiver, in complete agree-
ment with the predictions of the analysis. Note also that the
outage probability evaluated via the total interference power
coincides with that evaluated via the maximum interferer
power (at the small outage region), in complete agreement
with Theorem 1.

Authorized licensed use limited to: University of Ottawa. Downloaded on September 9, 2009 at 15:32 from IEEE Xplore.  Restrictions apply. 



MORDACHEV and LOYKA: ON NODE DENSITY – OUTAGE PROBABILITY TRADEOFF IN WIRELESS NETWORKS 1125

Consider now a scenario where the actual outage prob-
ability should not exceed a given value ε, Pout ≤ ε, for
the receiver with a given distortion-free INR D. Using (8)
and (11), the average number of transmitters in the active
interference zone (ball of radius r(D)) can be upper bounded
as N ≤ − ln(1− ε). Using the expression for N , one obtains
a basic tradeoff relationship between the network density and
the outage probability,

N =
∫

V (r(D))

ρdV ≤ − ln(1 − ε) ≈ ε (17)

where the approximation holds in the small outage region.
Thus, for given outage probability, the network density is
upper bounded or, equivalently, for given network density, the
outage probability is lower bounded.
In the case of uniform density ρ = const and small outage

probability, ε � 1, this gives an explicit tradeoff relationship
between the maximum distortion-free interference power at
the receiver Pmax, the transmitter power Pt and the average
node density for distortion-free receiver operation,

ρ ≤ c−1
m ε (Pmax/Ptaν)m/ν (18)

or, equivalently, an upper bound on the average density
of nodes in the network. As intuitively expected, higher
ε, Pmax, ν and lower Pt, m allow for higher network density.
The effect of ν is intuitively explained by the fact that higher ν
results in larger path loss or, equivalently, in smaller distance
at the same path loss, so that the transmitters can be located
more densely without significant increase in the interference
level. The effect of the other parameters can be explained in
a similar way.

B. (k − 1) nearest interferers are cancelled
We now assume that (k − 1) nearest interferers are elimi-

nated via some means (e.g. by processing at the receiver or
resource allocation). In this case, (9), (10) apply and (15)
generalizes to

Pout ≈ 1
k!

N
k

=
1
k!

(
Nmax

Dm/ν

)k

(19)

which can be expressed as Pout = 1
k!Pk

out,1 ≤ Pout,1, where
Pout,1 is the outage probability for k = 1 (see (15)). In the
small outage region, Pout,1 � 1 and Pout � Pout,1, i.e.
there is a significant beneficial effect of removing (k − 1)
strongest interferers, which scales exponentially with k. Fig.
4 illustrates this case. Note that the outage probabilities in
terms of maximum and total interference power are close to
each other at the low outage region.
Further comparison to the corresponding result in [7], which

was obtained under the assumption of cancelling all interferers
that exceed the required signal and are in the disk with
the given average number of interferers, shows that this as-
sumption affects significantly the outage probability, resulting
in no exponential scaling and ultimately responsible for the
conclusion in [7] that interference cancellation is effective only
when the threshold SIR < 1. If this assumption is removed,
the interference cancellation is effective for any SIR, as (19)
demonstrates.
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Fig. 4. The outage probability vs. INR for k = 1 (no cancelation), k = 2
(nearest interferer is canceled) and α = 0.1 (partial cancelation) via the total
power (MC) and the approximations in (19), (26); ν = 4, m = 2, Nmax =
100, Rmax = 103. While the full cancelation results in exponential scaling
of Pout with k, partial cancelation results in no exponential scaling but only
fixed improvement of 10 dB. The threshold effect is clear and the critical INR
is D0 ≈ 40dB. The outage probability via the total power agrees well with
the approximations.

From the MacLaurean series expansion of Fdk(D) in (9),
(10) in 1/D, the approximation in (19) becomes accurate when
N < 1, i.e. for the uniform density,

D > N
ν/m

max (20)

It should also be noted that Pout in (19) scales as N
k

max or as
ρk, i.e. it is much more sensitive to the node density in this
case, and the sensitivity increases exponentially with k.
Fig. 3 - 5 reveal a threshold effect: when the distortion-free

INR is below a critical value D0, the outage probability is
high, Pout ≈ 1; for D > D0, Pout sharply decreases and the
approximation in (19) becomes accurate, so that the distortion-
free INR should be higher than D0 to keep Pout low. When k
is not too large, the critical INR corresponds to on average one
interferer being in the active interference zone N(D0) = 1,
since this causes high Pout

6, so that for the uniform density
of interferers,

D0 ≈ N
ν/m

max (21)

i.e. the critical INR is directly related to the average number
of interferers in the potential interference zone. Based on this
threshold effect, we propose a piece-wise linear (on log-log
scale) approximation of Pout for the whole INR range,

Pout ≈
{

1, D < D0

eq. 19, D > D0
(22)

Since the outage events are caused by nodes in the active
interference zone only (and are not affected by ones outside
of it), (16), (19) and (22) also hold when the node density
is uniform within this zone only and any outside of it. In
particular, this requires the density to be uniform only within
a small neighborhood of the receiver when D is large, which
is a more general and realistic case.

6When N = 1, Pout = 1 − e−1 ≈ 0.63 for k = 1, and Pout =
1 − 2e−1 ≈ 0.26 for k = 2, i.e. Pout is high unless k � N .

Authorized licensed use limited to: University of Ottawa. Downloaded on September 9, 2009 at 15:32 from IEEE Xplore.  Restrictions apply. 



1126 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 27, NO. 7, SEPTEMBER 2009

In a similar way, the node density-outage probability trade-
off can be formulated. In the for small outage probability
region ε � 1, it can be expressed as

N =
∫

V (r(D))

ρdV ≤ (k!ε)1/k (23)

Comparing (23) to (17), one can clearly see the beneficial
effect of “removing” (k− 1) most powerful interferers on the
outage probability-network density tradeoff, since (k!ε)1/k �
ε in the small outage regime, so that higher node density is
allowed at the same outage probability.
In the case of uniform density, (23) reduces to

ρ ≤ c−1
m (k!ε)1/k (Pmax/Ptaν)m/ν (24)

which is a generalization of (18) to k > 1. Note that the upper
bound on the node density scales as (k!ε)1/k, i.e. much better
than in (18).

C. Partial cancellation of (k − 1) nearest interferers

Following [7], one can also consider the case of non-
ideal (realistic) interference cancellation, when (k−1) nearest
interferers are attenuated by a factor of 0 ≤ α ≤ 1 (so
that the interference power is αPai, 1 ≤ i ≤ k − 1) where
α = 0 corresponds to the ideal case (complete cancellation)
and α = 1 corresponds to the case of no cancellation at all.
When α is independent of D, it is straightforward to show
that asymptotically (D → ∞) the nearest interferer dominates
the outage probability, which is given by

Pout ≈ αm/νNmaxD
−m/ν , α > 0 (25)

and which is also the same as that of partially cancelling
only the nearest interferer (k = 2), i.e. partial cancelling of
more than one nearest interferer by a fixed level does not
bring any additional advantage asymptotically, and the outage
probability in this case significantly exceeds that of complete
cancellation (compare (25) to (19)). Comparing (25) to (16),
the effect of partial cancellation by a factor of α is to reduce
Pout by a factor of αm/ν compared to the no cancellation
case, i.e. by a factor of α for m = 2 and ν = 2 (free space
propagation) and by a factor of

√
α for m = 2 and ν = 4

(two-ray propagation or ground reflection). Fig. 4 illustrates
this case.
One can also consider another scenario, where (k − 2)

nearest interferers are cancelled completely (for example, by
proper resource allocation, frequency or time) and (k − 1)-
th interferer is cancelled partially (e.g. by processing at the
receiver), k ≥ 3. In such a case, it is straightforward to show
that the (k−1)-th interferer dominates asymptotically and the
outage probability is given by

Pout ≈ α(k−1)m/ν

(k − 1)!

(
Nmax

Dm/ν

)k−1

, α > 0 (26)

i.e. a significant improvement over (25), but still higher than
(19) (complete cancellation). Similarly to (20), the approxi-
mation in (26) becomes tight when

D > N
ν/m

max/αk−1 (27)

For the whole distortion-free INR range, one can use (22) in
combinaion with (26).
Finally, one can also consider the case where α scales

as a function of D and ask a question: “What level of
cancellation is required to eliminate the effect of (k − 1)-th
nearest interferer?” Assuming that (k − 2) nearest interferers
are cancelled completely and comparing the contribution of
the partially-cancelled (k − 1)-th interferer (see (26)) to k-th
interferer (not cancelled at all, see (19)), it is straightforward
to show that the k-th interferer dominates if

α <
1

D1/(k−1)

(
Nmax

k

)ν/m(k−1)

(28)

Thus, perfect cancellation is not a prerequisite and α > 0 can
also do the job, if it properly scales with D.
Similar condition can also be obtained when (k−1) nearest

interferers are partially cancelled by the same factor α,

α <
1

Dk−1

(
N

k−1

max

k!

)ν/m

(29)

which is, however, a significantly tighter requirement than
(28), as intuitively expected. Thus, complete cancellation of
some nearest interferers (e.g. via resource allocation) is of
significant help when only partial (realistic) cancellation at
the receiver is possible.

D. Total Interference Power

If the total interference power is used to define the outage
probability, the results will be the same in the small outage
region, as indicated by the following theorem (equivalent of
Theorem 1).
Theorem 2: Consider the outage probability in (19). At

the low outage region, it converges to the outage probability
defined via the total interference power, i.e.

lim
x→∞

Pr
{∑N

i=k Pai > x
}

Pr {Pak > x} = 1 (30)

and, thus, the following approximation holds,

Pr
{∑N

i=k
Pai > x

}
≈ Pr {Pak > x} , for large x. (31)

Proof: along the same lines as that of Theorem 1.
Fig. 4 validates this Theorem via Monte-Carlo simulations.

We also note that this Theorem also applies when a partial
interference cancellation (as above) is considered and, thus,
the outage probabilities in (25), (26) also hold in terms of the
total interference power.

V. IMPACT OF FADING

In this section, we study the impact of fading directly in
terms of the outage probability, which provides additional
insight into interference-generating mechanisms and their im-
pact. In particular, we demonstrate that the total interference
power is dominated by that of the nearest interferer for a broad
class of fading distributions, including all popular models. This
also holds when some nearest interferers are canceled.
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A. Impact of Rayleigh fading

Let us consider the ordered average powers Pa1 ≥ Pa2 ≥
... ≥ PaN which are further subjected to Rayleigh fading
so that the fading received powers are Psi = gsiPai, where
gsi are the Rayleigh fading factors, assumed to be i.i.d., with
the standard pdf fgs(x) = e−x. The INR is now defined as
ds = Ps1/P0 = dags1, where da = Pa1/P0, i.e. via the
contribution of the nearest interferer7, and its cumulative CDF
(CCDF), i.e. the outage probability, is

Pout = Pr{ds > D} =
∫ ∞

0

fgs(g)F d (D/g) dg, (32)

where F d (x) = 1 − Fd (x) is the CCDF of da . At the low
outage region, i.e. at the distribution tail D → ∞, it can be
approximated as

Pout ≈ Γ(m/ν + 1)NmaxD
−m/ν , (33)

where Γ is the gamma function (see Appendix 2 for proof).
Comparing to (16), we conclude that the effect of Rayleigh
fading is the multiplicative shift by a constant factor Γ(m/ν+
1), and the functional form of the distribution (i.e. regular
variation or heavy tail) is preserved. Since Γ(m/ν + 1) can
be greater or smaller than 1, depending on m/ν (e.g. m =
2, ν = 4 → Γ ≈ 0.89), the effect of Rayleigh fading can be
both positive and negative.
In a similar way, one obtains the outage probability when

(k − 1) nearest interferers are cancelled,

Pout ≈ Γ(km/ν + 1)
k!

(
Nmax

Dm/ν

)k

, (34)

i.e. the beneficial effect of cancelling is slightly offset by
fading (since Γ(km/ν + 1) is an increasing function of k)
but otherwise follows the same tendency as without fading
(see (19)).
Since the INR is the scaled interference power, the later

will follow the same distribution as in (34) (up to a constant)
and, thus, Pr {Psk > x} is a function of regular variation so
that Theorem 2 applies, i.e.
Theorem 3: When the interferers are subject to the average

path loss and Rayleigh fading, the nearest interferer dominates
in terms of the outage probability at the low outage region,
i.e.

lim
x→∞

Pr
{∑N

i=k Psi > x
}

Pr {Psk > x} = 1 (35)

and,

Pr
{∑N

i=k
Psi > x

}
≈ Pr {Psk > x} , for large x (36)

Thus, the results in (33), (34) also apply to the outage
probability defined via the total interference power. This
complements the results in [4] obtained in terms of the
characteristic function with compact, closed-form expressions
for the outage probability and also explicitly demonstrates the
effect of cancelling (k−1) nearest interferers. Fig. 5 illustrates
this case.

7which may sometimes be not the largest one (due to the effect of Rayleigh
fading). However, as we show below, the nearest interferer contribution
dominates the tail of the total interference distribution and thus the outage
probability.
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Fig. 5. The outage probability vs. INR for k = 1 (no cancellation) and k = 2
(nearest interferer is canceled) via nearest and total power under Rayleigh
fading; ν = 4, m = 2, Nmax = 50, Rmax = 103. The exponential scaling
of Pout with k is preserved under fading, as well as the dominance of the
nearest interferer in the small outage region. The threshold effect is clear and
the critical INR is D0 = 34 dB.

The intuition behind Theorem 3 is that the distributions
in (11), (16), (19) are much more heavily-tailed (slowly-
decaying) than the Rayleigh distribution so that outage events
in the combined distribution are mostly caused by nearby
interferers without deep Rayleigh fades and the combined
distribution is a slightly shifted version of the original one
(without fading).

B. Impact of log-normal and combined fading

This can be analysed in a similar way. The main results are
summarized as follows. When the interferers are subject to
the average path loss and log-normal i.i.d. fading, and when
(k−1) nearest interferers are cancelled, the outage probability
is

Pout ≈
Mkm/ν

k!

(
Nmax

Dm/ν

)k

, (37)

where Mkm/ν = exp
(

1
2 (σkm/ν)2

)
is km/ν-th moment of

the log-normal random variable,

Mkm/ν = 1√
2πσ

∫∞
0 xkm/ν−1 exp

(
− (ln x)2

2σ2

)
dx, (38)

and σ is the standard deviation. The case when no interferers
are cancelled corresponds to k = 1. Comparing (37) to (19),
we conclude that the effect of log-normal fading is a shift
by a constant factor > 1, i.e. strictly negative as opposed to
Rayleigh fading where it can be either positive or negative.
The beneficial effect of cancelling (k − 1) nearest interferers
is also offset by fading in this case (since Mkm/ν increases
with k). Since the regular varying (heavy tail) nature of the
distribution is preserved, Theorem 3 also holds in this case,
i.e. the nearest interferer is still dominant.
Likewise, one can consider the combined effect of Rayleigh

and log-normal fading. The outage probability is

Pout ≈
Γ(km/ν + 1)Mkm/ν

k!

(
Nmax

Dm/ν

)k

, (39)
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and Theorem 3 also applies. Note that the effects of Rayleigh
and log-normal fading are multiplicative in terms of the shift
constant, and the heavy tail of the distribution, which is due
to the Poisson spatial distribution of the interferers and the
average path loss, is not affected.

C. The impact of a broad class of fading distributions

The results above are not limited to Rayleigh or log-normal
fading but rather hold for a broad class of distributions whose
tails are dominated by the tail of Pak .
Theorem 4: Let the interferers be subject to the average path

loss and fading, Pi = giPai, where gi is the fading power
gain, i.i.d. for each interferer, and the fading distribution tail
is dominated by that in (19), i.e. ,

lim
x→∞Pr (gi > x)xkm/ν = 0, (40)

then the outage probability is

Pout ≈
Mkm/ν

k!

(
Nmax

Dm/ν

)k

, for large D, (41)

where Mkm/ν is km/ν-th moment of the fading power
gain, Mkm/ν =

∫∞
0

xkm/νfg(x)dx, and fg(x) is the pdf of
g. Furthermore, the nearest interferer dominates the outage
events, i.e. Theorem 3 holds, and, thus, the outage probability
in (39) holds in terms of both the total and nearest interferer’s
power.
Proof: along the same lines as that of Theorem 3 and that

of (33).
It should be noted that Theorem 4 includes almost all

popular fading models, i.e. Rayleigh, Rice, Nakagami, Weibul,
log-normal, or any distribution whose tail decays faster than
polynomially. It is also interesting to note that the fading enters
the outage probability only via the moment Mkm/ν and the
condition of tail dominance, all other details being irrelevant.
The effect of fading is positive for Mkm/ν < 1 and negative
for Mkm/ν > 1.
It follows from (41) that fading has no effect on the

outage probability if km = ν (assuming proper normalization
gi = 1). This has been observed before in [24] for k = 1.
Finally, the effect of fading can also be considered jointly

with partial interference cancellation, and the outage proba-
bilities in (25), (26) are respectively modified to

Pout ≈ αm/νMm/νNmaxD
−m/ν (42)

Pout ≈
α(k−1)m/νM(k−1)m/ν

(k − 1)!

(
Nmax

Dm/ν

)k−1

(43)

i.e. the multiplicative constant shift of the outage probability
is preserved. The required partial cancellation levels in (28)
and (29) are modified to

α <
1

D1/(k−1)

(
Mkm/νNmax

M(k−1)m/ν · k

)ν/m(k−1)

(44)

α <
1

Dk−1

(
Mkm/νN

k−1

max

Mm/ν · k!

)ν/m

(45)

Noting that since Mkm/ν increases with k for Rayleigh,
log-normal and composite fading, its effect on the required
cancellation level is beneficial in both cases (i.e. higher α is
acceptable), and it is more pronounced for the case of partial
cancellation of (k − 1) nearest interferers. This is intuitively
explained by the fact that these fading distributions decay very
fast (exponentially or sub-exponentially) at the large signal
region but only polynomially at the low signal region and,
thus, the fading results more often in a weaker signal than in
a stronger one.

VI. THE IMPACT OF LINEAR FILTERING

In the previous sections, we considered the interfering
signals at the Rx input assuming that the Rx antenna was
isotropic, i.e. no measures to eliminate some of the interfering
signals by linear filtering at the receiver were considered. In
this section, we explore the effect of linear filtering, which
may include filtering by the Rx antenna based on the angle
of arrival, polarization and frequency, and by linear frequency
filters at the receiver (at RF, IF and possibly basedband). Since,
as it follows from the previous section, the average number
of interfering signals N is a key parameter, which determines
the INR of interfering signals (see (6),(9)) and ultimately the
network density-outage probability tradeoff (e.g. (17), (23)),
we consider the impact of linear filtering on this parameter.
For simplicity, we further assume no nearest interference
cancellation and no fading. The impact of these factors can
be incorporated into the analysis in a straightforward way
following the results in sections IV and V. We also assume
for simplicity that the node density is uniform.
Let z = [z1, z2...zl]T be the set of filtering variables (i.e.

frequency, polarization, angle of arrival etc.) and fz(z) be the
PDF of incoming interfering signals over these variables. The
probability of a randomly-chosen input signal (arriving from a
randomly-selected node) falling in the interval dz is fz(z)dz,
and the probability that the filter output power of this signal
exceeds the threshold P0 is

Pr {Pa,out > P0} =

∞∫
P0/K(z)

wa(P )dP = Km/ν(z) (46)

where 0 ≤ K(z) ≤ 1 is the normalized filter power gain (e.g.
antenna pattern), and wa(P ) = m

ν P
m/ν
0 P−1−m/ν , P ≥ P0,

is the PDF of the signal power P . Note that Km/ν represents
the reduction in probability of signal power exceeding the
threshold P0 from the input (where it is equal to one) to
the output of the filter and thus is a filter gain for given
values of filtering variables. The average number of output
signals exceeding the threshold in the interval dz is dNout =
Km/ν(z)fz(z)dzdN in, where dN in is the average number
of input signals exceeding the threshold in the same interval.
Finally, the total average number of output signals exceeding
the threshold P0 is

Nout = N in/Q, Q =

⎛
⎝∫

Δz

Km/ν(z)fz(z)dz

⎞
⎠−1

≥ 1

(47)
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where N in is the average number of input signals, Q is
the average statistical filter gain, which represents its ability
to reduce the average number of visible (i.e. exceeding the
threshold) interfering signals, and Δz is the range of filtering
variables. This gain further transforms into reduction in the
INR (see (6), (9)) or the outage probability,

Pout = 1 − e−Nout ≈ Nout =
N in

Q
=

Nmax

Q · Dm/ν
(48)

and also improves the network density-outage probability
tradeoff (i.e. (23), (24)),

N in =
∫

V (r(D))

ρdV ≤ Qε (49)

ρ ≤ Qc−1
m ε (Pmax/Ptaν)m/ν (50)

i.e. the network density ρ can be increased by a factor of Q at
the same performance compared to the case of no filtering. It
should be noted that Q is similar to an antenna gain (see [19],
[20] for detailed discussion of antenna-related concepts). In
particular, using highly-directional antennas results in high Q
[15]-[17] and thus the network density can be increased by a
large factor Q, as expected intuitively. A detailed analysis of
Q for many popular antenna types can be found in [15]-[17].
Comparing the effect of linear filtering in (48) to that of

complete cancellation of (k − 1) nearest interferers in (19)
and to partial cancellation in (25), it is clear that the complete
cancellation (or partial cancellation when the cancellation level
is sufficient, i.e. as in (29)) is the most superior technique
(scale exponentially with k, resulting in significant decrease
in the outage probability), and that the linear filtering and
partial cancellation are somewhat similar in their effect on the
outage probability (scale polynomially with α and Q).

VII. OUTAGE CAPACITY

In this section, the outage capacity is evaluated based on the
outage probability expressions above and using the method
in [21]. For a given realization of interferers’ location and
assuming Gaussian signalling, the instantaneous link capacity
of a given user can be expressed as C = ln(1 + SINR) in
[nat/s/Hz], where SINR = Ps/(P0 + PI) is the signal to
interference plus noise ratio, and Ps, PI are the signal and
interference power. In the interference-dominated scenario,
P0 + PI ≈ PI so that SINR ≈ γ/d, where γ = Ps/P0,
d = PI/P0 are the SNR and INR. We assume that the SNR
is fixed and the INR follows one of the distributions given
above.
In terms of the capacity, the outage probability is the

probability that the link is not able to support a given rate R,
Pout = Pr{C < R}, and the outage capacity Cε is the largest
rate for which the outage probability does not exceed ε [21],
which can be determined from Pout = Pr{C < Cε} = ε in
combination with (11), (12) as

Cε = ln
(

1 +
γ

Dε

)
(51)

where Dε = F−1
d (1− ε) is the outage INR, i.e. the distortion-

free INR required to support the outage probability ε, and
γ/Dε is the signal-to-interference ratio required to support

the outage capacity Cε. At high and low SIR, this can be
approximated as

Cε ≈ ln γ − ln Dε, γ � Dε (high SIR) (52)

≈ γ

Dε
, γ � Dε (low SIR) (53)

Note that ln γ and γ are the AWGN channel capacity at high
and low SNR, and ln Dε, Dε represent the capacity loss due
to interference, which is additive at high and multiplicative at
low SIR.
To see the effect of interference cancelation on the outage

capacity, we use (19) to obtain Dε ≈ N
ν/m

max/(k!ε)
ν

mk so that

Cε ≈ ln γ − ν

m
ln Nmax − ν

mk
ln(k!ε) (high SIR)

≈ γ
(k!ε)

ν
mk

N
ν/m

max

(low SIR) (54)

Thus, while the outage capacity loss is additive and scales
as ν

mk ln(k!ε) at high SIR, i.e. roughly linear in 1/k, it is
multiplicative and scales as (k!ε)

ν
mk , i.e. exponentially, at low

SIR. From this, we conclude that the effect of interference is
much more dramatic at low SIR. In this respect, the effect of
interference is similar to the effect of fading of the required
signal (see [21] for a discussion of the latter).
Using (51)-(53) in combination with the results in Sections

IV-VI, the impact of other types of interference cancelation,
either alone or in combination with fading, can also be
analyzed.

VIII. CONCLUSION

A model of interference in wireless networks with Poisson
spatial distribution of the nodes is considered, which includes
the average propagation path loss and also different types of
fading. Since the total interference power is dominated by
the nearest interferer, the latter is used to define the outage
probability. This simplifies the analysis significantly, results
in compact, closed-form characterisation of the outage proba-
bility, including the case where some interferers are cancelled,
either completely or partially, and allows to compare different
cancellation strategies and to find the required level of cancel-
lation. The effect of fading is characterized for a broad class
of distributions, including all popular fading models and in
combination with the effect of interference cancellation. The
effect of linear filtering at the receiver (e.g. by directional
antennas) is quantified via a new statistical filter gain, and also
compared to that of complete/partial cancellation of nearest
interferers. These results allow one to express the tradeoff
between the node density and the outage probability in an
explicit, closed form for a number of scenarios.
Our main findings in terms of the node density - outage

probability tradeoff at the low outage region can be summa-
rized as follows:

• for given maximum acceptable outage probability ε,
Pout ≤ ε, the upper bound on the node density scales
as ε without interference cancellation (see (18));

• when (k − 1) strongest interferers are cancelled com-
pletely or near completely (see (28), (29)), the upper
bound scales as ε1/k, i.e. much higher node density can
be tolerated (see (24));
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• when strongest interferers are partially cancelled by the
level independent of the INR, the upper bound still
scales as ε, with a fixed improvement due to interference
cancellation (see (25), (26));

• with linear filtering, the upper bound scales as ε, with a
fixed improvement due to the filtering (see (50));

• when fading is present, the scaling above still holds (with
an additional fixed multiplicative constant, which depends
on fading distribution - see (41)-(43)).

Thus, the main conclusion here is that complete or near-
complete cancellation of nearest interferers is essential to go
from ε to ε1/k scaling.
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X. APPENDIX 1

Proof of the Theorem 1: we need the following lemma
(Lemma 4.4.2 in [14]),
Lemma 1: Let X be a positive random variable with a

regularly varying tail, i.e. there is a number b > 0 such that
∀a > 1,

lim
x→∞

Pr {X > a · x}
Pr {X > x} = a−b (55)

and let the tail of X to dominate the tail of another positive
random variable Y , i.e.

lim
x→∞

Pr {Y > x}
Pr {X > x} = 0 (56)

Then

lim
x→∞

Pr {X + Y > x}
Pr {X > x} = 1. (57)

It is straightforward to verify that the tail of Pa1 dominates
the tail of Pa2 and also the tail of (N − 1)Pa2 for any finite
N ≥ 2 (i.e. that (56) holds with X = Pa1, and Y = Pa2 or
Y = (N − 1)Pa2) and, thus,

lim
x→∞

Pr {Pa1 + Pa2 > x}
Pr {Pa1 > x} =

= lim
x→∞

Pr{Pa1 + (N − 1)Pa2 > x}
Pr {Pa1 > x} = 1 (58)

Combining this with the following bounds,

Pr{Pa1 + Pa2 > x} ≤ (59)

Pr
{∑

i
Pai > x

}
≤ Pr {Pa1 + (N − 1)Pa2 > x}

and noting that N is finite with probability 1 when the
average number of nodes is finite, one obtains (13). While (59)
formally does not hold when N = 0 or 1, there is nothing to
prove in such cases as the maximum and total interference
powers coincide. Q.E.D.
As a side remark, we note that Theorem 1 holds for a

broad class of scenarios where the distribution of interfering
signal powers can be represented via the functions of regular
variations, and not only for the scenario we consider here. In
particular, this includes signals subject to Rayleigh and log-
normal fading.

XI. APPENDIX 2

Proof of (33): Consider the outage probability in (32)

Pout=
∫ ∞

0

fgs(g)F d (D/g) dg (60)

=
∫ Dε

0

fgs(g)F d (D/g) dg︸ ︷︷ ︸
I1

+
∫ ∞

Dε

fgs(g)F d (D/g) dg︸ ︷︷ ︸
I2

where 0 < ε < 1, and note (using (16)) that, when D → ∞,

I1 ≈ Nmax

Dm/ν

∫ Dε

0

gm/νfgs(g)dg

≈ Nmax

Dm/ν

∫ ∞

0

gm/νfgs(g)dg

= Γ(m/ν + 1)
Nmax

Dm/ν
(61)

On the other hand,

I2 =
∫ ∞

Dε

fgs(g)F d (D/g) dg

≤
∫ ∞

Dε

fgs(g)dg = e−Dε � I1 (62)

and, thus, I2 can be neglected and (33) follows. Q.E.D.
Not only this proof gives a compact approximation for the

outage probability, but also tells us why this approximation
holds: since the tail of the fading distribution decays much
faster than that of Pa1 (compare (61) to (62)), the dominant
contribution to outage events is coming from the nearest
interferer that is not in deep fade.
It is clear that the same argument also holds when (k − 1)

nearest interferers are cancelled, when the fading is log-normal
or combined (log-normal+Rayleigh), or when the fading pro-
cess is from the broad class in (40) (the latter three require
for a slight modification of the upper bound in (62), which is
left as an exercise to the reader).

REFERENCES

[1] P. Gupta, P.R. Kumar, The Capacity of Wireless Networks, IEEE Trans.
Inform. Theory, v. 46, N. 2, pp. 388-404, Mar. 2000.

[2] E.S. Sousa, J.A. Silvester, Optimum Transmission Ranges in a Direct-
Sequence Spread-Spectrum Multihop Packet Radio Network, IEEE J
Select. Areas Commun., v. 8, N. 5, pp. 762-771, Jun. 1990.

[3] E.S. Sousa, Performance of a Spread Spectrum Packet Radio Network
Link in a Poisson Field of Interferers, IEEE Trans. Inform. Theory, v.
38, N. 6, pp. 1743-1754, Nov. 1992.

[4] J. Ilow, D. Hatzinakos, Analytic Alpha-Stable Noise Modeling in a
Poisson Field of Interferers or Scatterers, IEEE Trans. Signal Processing,
v. 46, N. 6, pp. 1601-1611, Jun. 1998.

[5] J. Ilow, D. Hatzinakos, A. Venetsanopoulos, Performance of FH SS Radio
Networks with Interference Modeled as a Mixture of Gaussian and Alpha-
Stable Noise, IEEE Trans. Commun. v. 46, N. 4, pp. 509-520, Apr. 1998.

[6] S. P. Weber et al, Transmission Capacity of Wireless Ad Hoc Networks
With Outage Constraints, IEEE Trans. Inform. Theory, v. 51, N. 12, pp.
4091-4102, Dec. 2005.

[7] S. P. Weber et al, Transmission Capacity of Wireless Ad Hoc Networks
With Successive Interference Cancellation, IEEE Trans. Inform. Theory,
v. 53, N. 8, pp. 2799-2814, Aug. 2007.

[8] S. P. Weber et al, The Effect of Fading, Channel Inversion, and Threshold
Scheduling on Ad Hoc Networks, IEEE Trans. Inform. Theory, v. 53, N.
11, pp. 4127-4149, Nov. 2007.

[9] G. L. Stuber, Principles of Mobile Communication (2nd Ed.), Kluwer,
Boston, 2001.

[10] J.D. Parsons, The Mobile Radio Propagation Channel, Wiley, Chichester,
2000.

Authorized licensed use limited to: University of Ottawa. Downloaded on September 9, 2009 at 15:32 from IEEE Xplore.  Restrictions apply. 



MORDACHEV and LOYKA: ON NODE DENSITY – OUTAGE PROBABILITY TRADEOFF IN WIRELESS NETWORKS 1131

[11] V.I.Mordachev, ”Statistical Characteristics of Dynamic Range of Inad-
vertent Disturbances with Space-Scattered Groupings of Their Sources”,
in Proc. of the 9-th Wroclaw Symp. on EMC, June 1988, pp.571-576.

[12] V.I. Mordachev, Typical Models of Electromagnetic Environments for
Spatially-Scattered Radio Transmitters, in Proc. of the 10-th Wroclaw
Symp. on EMC, June 1990, pp.409-414.

[13] V.Mordachev, Mathematical Models for Radiosignals Dynamic Range
Prediction in Space-Scattered Mobile Radiocommunication Networks,
IEEE VTC Fall, Boston, Sept. 24-28, 2000.

[14] G. Samorodnitsky, M.S. Taqqu, Stable Non-Gaussian Random Pro-
cesses, Chapman&Hall/CRC, Boca Raton, 1994.

[15] S.L. Loyka, V.I. Mordachev, Effective Spatial Selectivity of Equally-
Spaced Antenna Arrays in Dispersed Groups of Radioelectronic Systems,
Izvestia Vuzov. Radioelectronica, vol.37, N7, pp.9-14, 1994 (in Russian,
translated into English by Allerton Press Inc. as Radioelectronics and
Communications Systems).

[16] S.L. Loyka, V.I. Mordachev, Calculation Methods of Antenna’s Effective
Selectivity Parameter, Izvestia Vuzov. Radioelectronica vol.37, N 9,
pp.36-41, 1994.

[17] S.L. Loyka, Effective selectivity of linear array antennas with randomly
located elements, Izvestia Vuzov. Radioelectronica, vol.39, N 4, 1996,
pp.50-55.

[18] M. Haenggi, On Distances in Uniformly Random Networks, IEEE Trans.
Inform. Theory, v. 51, N. 10, pp. 3584-3586, Oct. 2005.

[19] R.C. Johnson, Antenna Engineering Handbook, McGraw Hill, New
York, 1993.

[20] C.A. Balanis, Antenna Theory: Analysis and Design, Wiley, New York,
1997.

[21] D.N.C. Tse, P. Viswanath, Fundamentals of Wireless Communications,
Cambridge University Press, 2005.

[22] F. Baccelli, B. Blaszczyszyn, P. Muhlethaler, ”An Aloha protocol for
multihop mobile wireless networks”, IEEE Trans. Inform. Theory, vol.
52, No. 2, pp. 421-436, Feb. 2006.

[23] A. Hunter, J. G. Andrews, S. Weber, ”Capacity scaling of ad hoc
networks with spatial diversity,” IEEE Int’l Symposium on Information
Theory, pp. 1446-1450, Jun. 2007.

[24] M. Haenggi, A Geometric Interpretation of Fading in Wireless Net-
works: Theory and Applications, arXiv:0711.1890v1, Feb. 2008.

Vladimir Mordachev was born in Vitebsk, Belarus.
He received the Ph.D. degree (1984), an academic
rank of Senior Scientist (1985), and the M.S. degree
with honors (1974) in Radio Engineering from the
Minsk Radio Engineering Institute, Minsk, Belarus.
His research interests include spectrum manage-
ment, wireless communications and networks, elec-
tromagnetic compatibility and interference, wireless
network planning, computer-aided analysis and de-
sign, cellular networks system ecology, RF systems
modeling and simulation. He is extensively involved

in consulting to wireless network operators, industry and the local government.
V. Mordachev is a head of the Electromagnetic Compatibility Laboratory at
the Belorussian State University of Informatics and Radioelectronics.

Sergey Loyka (M’96–SM’04) was born in Minsk,
Belarus. He received the Ph.D. degree in Radio En-
gineering from the Belorussian State University of
Informatics and Radioelectronics (BSUIR), Minsk,
Belarus in 1995 and the M.S. degree with honors
from Minsk Radioengineering Institute, Minsk, Be-
larus in 1992. Since 2001 he has been a faculty
member at the School of Information Technology
and Engineering, University of Ottawa, Canada.
Prior to that, he was a research fellow in the Labora-
tory of Communications and Integrated Microelec-

tronics (LACIME) of Ecole de Technologie Superieure, Montreal, Canada; a
senior scientist at the Electromagnetic Compatibility Laboratory of BSUIR,
Belarus; an invited scientist at the Laboratory of Electromagnetism and
Acoustic (LEMA), Swiss Federal Institute of Technology, Lausanne, Switzer-
land. His research areas include wireless communications and networks,
MIMO systems and smart antennas, RF system modeling and simulation,
and electromagnetic compatibility, in which he has published extensively. Dr.
Loyka is a technical program committee member of several IEEE conferences
and a reviewer for numerous IEEE periodicals and conferences. He received
a number of awards from the URSI, the IEEE, the Swiss, Belarus and former
USSR governments, and the Soros Foundation.

Authorized licensed use limited to: University of Ottawa. Downloaded on September 9, 2009 at 15:32 from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


