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Abstract—Outage probability in wireless networks with ran-
dom Poisson location of the nodes is studied, including the
effects of a broad class of fading processes and of various types
of interference cancelation. For all scenarios considered, the
total (aggregate) interference power is shown to be dominated
by that of the nearest interferer (at the low outage region),
which is used as a major performance indicator, instead of a
traditionally-used aggregate interference power. This simplifies
the problem significantly so that explicit closed-form analysis of
the outage probability becomes feasible and the effect of various
system/network parameters becomes also explicit, including the
impacts of complete/partial interference cancelation, of different
types of fading and of linear filtering, either alone or in
combination with each other. When a given number of strongest
interferers are completely canceled, the outage probability scales
down exponentially in this number. Three different models of
partial cancelation are considered and compared via their outage
probabilities, which are obtained in compact closed form. The
partial cancelation level required to eliminate the impact of an
interferer is quantified. The effect of a broad class of fading
processes (including all popular fading models) is included in the
analysis in a straightforward way, which can be positive or neg-
ative depending on a particular model and propagation/system
parameters.

I. INTRODUCTION

The effect of interference in wireless networks at the
physical layer has been studied from several perspectives [1]-
[7]. A typical statistical model of interference in a network
includes a model of spatial location of the nodes, a propagation
path loss law (which includes the average path loss and,
possibly, large-scale (shadowing) and small-scale (multipath)
fading) and a threshold-based receiver performance model.
The most popular choice for the model of the node spatial
distribution is Poisson point process on a plane [1]-[7]. Based
on this model and ignoring the effect of fading, Sousa [2]
has obtained the characteristic function (CF) of the aggregate
(total) interference at the receiver, which can be transformed
into a closed-from probability density function (PDF) in some
special cases, and, based on it, the error rates for direct
sequence (DS) and frequency hopping (FH) systems. For such
a model, the distribution of the distance to nearest (or k-th

nearest) interferer and, thus, of its interference power can be
found in a compact closed form [9]-[11],[13].

While using the LePage series representation, Ilow and
Hatzinakos [3][4] have developed a generic technique to obtain
the CF of aggregate interference from a Poisson point process
on a plane (2-D) and in a volume (3-D), which can be used
to incorporate the effects of Rayleigh and log-normal fading
in a straightforward way. Relying on a homogeneous Poisson
point process on a plane, Weber et al [5] have characterized
the transmission capacity of the network subject to the outage
probability constraint via lower and upper bounds. In a recent
work, Weber et al [6] use the same approach to characterize
the network transmission capacity when the receivers are able
to suppress some powerful interferers, and also include the
effect of fading (based on the results in [3][4]) and of the
transmission strategy [7].

A common feature of all these studies is the use of ag-
gregate interference (either alone or in the form of signal-
to-interference-plus-noise ratio), and a common lesson is that
it is very difficult to deal with: while the CF of aggregate
interference can be obtained in a closed form, the PDF or
cumulative distribution function (CDF) are available only in
a few special cases. This limits significantly the amount of
insight that can be extracted from such a model and, thus, one
has to rely on various bounds and approximations, which also
complicate the analysis significantly.

A different approach has been adopted in [9]-[11]: the power
of the nearest (dominant) interferer is used to evaluate the
performance instead of the total interference power. As a
result, closed-form analytical performance evaluation becomes
straightforward and significant insight can be extracted from
such a model, including the scenarios where most powerful
interferers are cancelled, either via linear or nonlinear fil-
tering techniques. Further simplification by considering the
low outage probability region makes the effect of various
system/network parameters explicit and eliminates the need
for numerical analysis of the results.

In this paper, we rely on the approach developed in [9]-
[11] and, using the methods of functions of regular variations,
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show that the aggregate (total) interference is dominated by
the nearest interferer in the region of low outage probability
(i.e. the practically-important region; see Theorem 1, 2 and
3) and, thus, both models give the same results, including the
scenarios with partial/complete interference cancellation and
when fading (form a broad class of distributions) is present.

We consider 3 different techniques of partial cancellation
and compare them using compact, closed-form characteriza-
tion of the outage probabilities and, unlike [6], without any
simplifying assumptions. The level of cancelation required
to eliminate the impact of an interferer is also quantified.
Proper resource allocation is shown to significantly relax this
requirement.

The proposed method is further used to include the impact
of fading. Specifically, we demonstrate (directly in terms of the
outage probability, without using the characteristic function)
that the effect of a broad class of fading distributions, which
includes all popular models (Rayleigh, Rice, Nakagami, log-
normal, composite Rayleigh-log-normal (Suzuki), Weibull etc.
[8]; an explicit condition for distributions to belong to this
class is given) is a multiplicative constant shift of the outage
probability when compared to the no-fading case. In the case
of Rayleigh fading, this is a moderate constant (close to 1),
and the effect of fading can be either positive (constant<1) or
negative (constant>1), depending on the path loss exponent
and other parameters. In the case of log-normal fading, the
constant can be significantly greater than 1 and the effect of
fading is always negative. The composite Rayleigh-log-normal
fading results in a shift equal to the product of individual shift
constants.

We further show that, for all fading distributions considered
above, the total interference power is still dominated by the
nearest interferer and the typical outage events (total interfer-
ence power exceeding a threshold) are due to such an interferer
being not in a deep fade. Thus, the outage probabilities defined
in terms of the total and nearest interferer’s power are the
same at low outage region. The combined effect of fading and
complete/partial interference cancellation is also considered
and the main conclusions above are shown to hold in this
case as well. It is shown that fading relaxes the requirement
to the interference cancellation level.

Comparison of linear filtering to complete/partial cancella-
tion of nearest interferers shows that the complete cancellation
(or partial cancellation with the sufficient cancellation level) is
most efficient, and that linear filtering and partial cancellation
are similar in their impact on the outage probability.

As a by-product of our analysis, some known results (e.g.
the effect of fading) originally obtained via elaborate analysis
are derived in a straightforward and simple way.

II. NETWORK AND SYSTEM MODEL

As an interference model of wireless network at the physical
layer, we consider a number of point-like transmitters (Tx)
and receivers (Rx) that are randomly located over a certain
limited region of space Sm, which can be one (m = 1),

two (m = 2), or three (m = 3)-dimensional (1-D, 2-
D or 3-D). This can model location of the nodes over a
highway or a street canyon (1-D), a residential area (2-D),
or a downtown area with a number of high-rise buildings (3-
D). In our analysis, we consider a single (randomly-chosen)
receiver and a number of transmitters that generate interference
to this receiver, and which follow the Poisson distribution: the
probability of exactly k transmitters falling into the region S
is given by,

P(k, S) = e−NN
k
/k! (1)

where N =
∫

S
ρdS is the average number of transmitters

falling into the region S, and ρ is the average node density. If
the density is constant, then N = ρS. The numbers of nodes
in two disconnected areas are statistically independent.

Possible scenarios to which the assumptions above apply,
with a certain degree of approximation, are a sensor network
with randomly-located non-cooperating sensors; a network(s)
of mobile phones from the same or different providers (in
the same area); a network of multi-standard wireless devices
sharing the same resources (e.g. common or adjacent bands of
frequencies) or an ad-hoc network.

Consider now a given transmitter-receiver pair. The power at
the Rx antenna output Pr coming from the transmitter is given
by the standard link budget equation [8]: Pr = PtGtGrg,
where Pt is the Tx power, Gt, Gr are the Tx and Rx antenna
gains, and g is the propagation path gain (=1/path loss),
g = gaglgs, where ga is the average propagation path gain,
and gl, gs are the contributions of large-scale (shadowing)
and small-scale (multipath) fading, which can be modeled as
independent log-normal and Rayleigh (Rice) random variables,
respectively [8]. The widely-accepted model for ga, which is
used here, is ga = aνR−ν , where ν is the path loss exponent,
and aν is a constant independent of the Tx-Rx distance R [8].

III. INTERFERENCE TO NOISE RATIO

In this section, we briefly review the relevant results from
[9]-[11]. Let us consider a fixed-position receiver (e.g. a base
station of a given user) and a number of randomly located
interfering transmitters (interferers, e.g. mobile units of other
users) of the same power Pt. In this section, we ignoring the
effect of fading (i.e. gl = gs = 1; the fading is taken into
account in section V), and assume, for simplicity, that the
antennas are isotropic (the effect of directional antennas was
considered in [11]), and consider the interfering signals at the
receiver input.

The statistics of transmitters’ location is given by (1).
Transmitter i produces the average power Pai = Ptga(Ri) at
the receiver input, and we consider only the signals exceeding
the Rx noise level P0, Pai ≥ P0. We define the interference-to-
noise ratio (INR) da (also known as dynamic range [9]-[11]) in
the ensemble of the interfering signals via the most powerful
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(at the Rx input) signal1,

da = Pa1/P0 (2)

where, without loss of generality, we index the transmitters
in the order of decreasing Rx power, Pa1 ≥ Pa2 ≥ ... ≥
PaN . The most powerful signal is coming from the transmitter
located at the minimum distance r1, Pa1 = Ptga(r1).

The probability that the INR exceeds value D is
Pr {da > D} = Pr {r1 < r(D)}, where the distance r(D) is
such that Pa(r(D)) = P0D, so that the CDF of da is [9]-[11]

Fd(D) = 1− Pr {da > D} = exp(−N(D)) (3)

where N(D) =
∫

V (r(D))
ρdV is the average number of

transmitters in the ball V (r(D)) of the radius r(D) =
(Ptaν/P0D)1/ν .

When the average spatial density of transmitters is constant,
ρ = const, (3) simplifies to Fd(D) = exp

{−Nmax/Dm/ν
}

[9]-[11], where c1 = 2, c2 = π and c3 = 4π/3, Nmax =
cmRm

maxρ is the average number of transmitters in the ball of
radius Rmax, which we term “potential interference zone”,
and Rmax is such that Pa(Rmax) = P0, i.e. a transmitter
at the boundary of the potential interference zone produces
signal at the receiver exactly at the noise level; transmitters
located outside of this zone produce weaker signals, which
are neglected in the analysis. Note that Fd(D) above gives
the distribution of the INR as a simple explicit function of the
system and geometrical parameters, and ultimately depends on
Nmax,m, ν only.

When (k−1) most powerful signals, which are coming from
(k−1) closest transmitters, do not create any interference (i.e.
due to frequency, time or code separation in the multiple access
scheme, or due to any other form of separation or filtering),
the CDF and PDF of the distance rk to the most powerful
interfering signal of order k can be found in a similar way.
The CDF of the INR da in this case is given by

Fdk(D) = e−N(D)
∑k−1

i=0
N(D)i/i! (4)

In the case of constant average density ρ = const, the CDF
and PDF of the INR simplify to [11]

Fdk(D) = exp
{
−Nmax

Dm/ν

} k−1∑

i=0

1
i!

(
Nmax

Dm/ν

)i

. (5)

IV. OUTAGE PROBABILITY-NODE DENSITY TRADEOFF

Powerful interfering signals can result in significant per-
formance degradation due to linear and nonlinear distortion
effects in the receiver when they exceed certain limit, which
we characterize here via the receiver distortion-free dynamic
range, i.e. the maximum acceptable interference-to-nose ratio,
Ddf = Pmax/P0, where Pmax is the maximum interfer-
ence power at the receiver that does not cause significant
performance degradation. If da > Ddf , there is significant

1In the next sections, we shown that that, in the small outage region, the
total interference power (i.e. coming from all transmitters) is dominated by
the contribution of the nearest interferer

performance degradation and the receiver is considered to be in
outage, which corresponds to one or more transmitters falling
into the active interference zone (i.e. the ball of radius r(Ddf );
the signal power coming from transmitters at that zone exceeds
Pmax), whose probability is

Pout = Pr {da > Ddf} = 1− Fd(Ddf ) (6)

For given Pout, one can find the required distortion-free
dynamic range (“outage dynamic range”) Ddf

Ddf = F−1
d (1−Pout) (7)

We note that, in general, Ddf is a decreasing function of
Pout, i.e. low outage probability calls for high distortion-free
dynamic range. For simplicity of notations, we further drop
the subscript and denote the distortion-free dynamic range by
D.

While the definition of outage probability above relies on
the maximum interfering power, the same outage probability
holds in terms of the total interfering power at the low outage
region, as the theorem below demonstrates.

Theorem 1: Consider the outage probability in (6). At the
low outage region, it converges to the outage probability
defined via the total interference power, i.e.

lim
x→∞

Pr {∑i Pai > x}
Pr {Pa1 > x} = 1 (8)

Proof: via the functions of regular variation and using
Lemma 4.4.2 in [12].

Thus, at the low outage region, Pout in (6) serves as an
accurate approximation of the outage probability in terms of
the total interference power,

Pr
{∑

i
Pai > x

}
≈ Pr {Pa1 > x} , for large x, (9)

and all our results also apply to such an outage probability.
A significant advantage of (6) is that a closed-form analysis
becomes straightforward.

A. (k − 1) nearest interferers are cancelled

This case has been considered in [11] in terms of the nearest
interferer power, which is summarized below (the case of no
interference cancellation corresponds to k = 1). We also show,
in Theorem 2 below, that the corresponding results hold in
terms of the total interference power as well.

Assume that (k − 1) nearest interferers are eliminated via
some means (e.g. by processing at the receiver or resource al-
location). In this case, (4), (5) apply and the outage probability,
at low outage region (Pout,1 ¿ 1), is

Pout ≈ 1
k!

N
k

=
1
k!

(
Nmax

Dm/ν

)k

(10)

which can be expressed as Pout = 1
k!Pk

out,1 ≤ Pout,1, where
Pout,1 is the outage probability for k = 1 (no interference
cancellation). In the small outage region, Pout,1 ¿ 1 and
Pout ¿ Pout,1, i.e. there is a significant beneficial effect of
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removing (k− 1) strongest interferers, which scales exponen-
tially with k.

In a similar way, the node density-outage probability trade-
off can be formulated. In the small outage probability region
Pout ¿ 1, it can be expressed as

N =
∫

V (r(D))

ρdV ≤ (k!Pout)
1/k (11)

From (11), one can clearly see the beneficial effect of “re-
moving” (k − 1) most powerful interferers on the outage
probability-network density tradeoff: since (k!Pout)

1/k À
Pout in the small outage regime, significantly higher node
density is allowed, at the same outage probability, for higher
k.

In the case of uniform density, (11) reduces to

ρ ≤ c−1
m (k!Pout)

1/k (Pmax/Ptaν)m/ν (12)

Note that the upper bound on the node density scales as
(k!Pout)

1/k.
These results also hold, in the small outage region, in terms

of the total interference power (used to define the outage
probability):

Theorem 2: Consider the outage probability in (10). At
the low outage region, it converges to the outage probability
defined via the total interference power, i.e.

lim
x→∞

Pr
{∑N

i=k Pai > x
}

Pr {Pak > x} = 1 (13)

and, thus, the following approximation holds,

Pr
{∑N

i=k
Pai > x

}
≈ Pr {Pak > x} , for large x. (14)

Proof: along the same lines as that of Theorem 1.

B. Partial cancellation of (k − 1) nearest interferers

In this section, we generalize the results in [11] to the case
of non-ideal (realistic) interference cancellation, when (k−1)
nearest interferers are attenuated by a factor of 0 ≤ α ≤ 1
(so that the interference power is αPai, 1 ≤ i ≤ k− 1) where
α = 0 corresponds to the ideal case (complete cancellation)
and α = 1 corresponds to the case of no cancellation at all.
When α is independent of D, it is straightforward to show
that asymptotically (D →∞) the nearest interferer dominates
the outage probability, which is given by

Pout ≈ αm/νNmaxD
−m/ν , α > 0 (15)

and which is also the same as that of cancelling only the
nearest interferer (k = 2), i.e. partial cancelling of more than
1 nearest interferer by a fixed level does not bring any addi-
tional advantage asymptotically, and the outage probability in
this case significantly exceeds that of complete cancellation
(compare (15) to (10)). Comparing (15) to (10) with k = 1,
the effect of partial cancellation by a factor of α is to reduce
Pout by a factor of αm/ν compared to the no cancellation
case, i.e. by a factor of α for m = 2 and ν = 2 (free space

propagation) and by a factor of
√

α for m = 2 and ν = 4
(two-ray propagation or ground reflection).

One can also consider another scenario, where (k − 2)
nearest interferers are cancelled completely (for example, by
proper resource allocation, frequency or time) and (k − 1)-
th interferer is cancelled partially (e.g. by processing at the
receiver), k ≥ 3. In such a case, it is straightforward to show
that the (k−1)-th interferer dominates asymptotically and the
outage probability is given by

Pout ≈ α(k−1)m/ν

(k − 1)!

(
Nmax

Dm/ν

)k−1

, α > 0 (16)

i.e. a significant improvement over (15), but still higher than
(10) (complete cancellation).

Finally, one can also consider the case where α scales
as a function of D and ask a question: “What level of
cancellation is required to eliminate the effect of (k − 1)-th
nearest interferer?” Assuming that (k − 2) nearest interferers
are cancelled completely and comparing the contribution of
the partially-cancelled (k − 1)-th interferer (see (16)) to k-th
interferer (not cancelled at all, see (10)), it is straightforward
to show that the k-th interferer dominates if

α <
1

D1/(k−1)

(
Nmax

k

)ν/m(k−1)

(17)

Thus, perfect cancellation is not a prerequisite and α > 0 can
also do the job, if it properly scales with D.

Similar condition can also be obtained when (k−1) nearest
interferers are partially cancelled by the same factor α,

α <
1

Dk−1

(
N

k−1

max

k!

)ν/m

(18)

which is, however, a significantly tighter requirement than
(17), as intuitively expected. Thus, complete cancellation of
some nearest interferers (e.g. via resource allocation) is of
significant help when only partial (realistic) cancellation at
the receiver is possible.

V. IMPACT OF FADING

While the effect of fading on the total interference power
under the Poisson spatial distribution of interferers has been
analysed in [4][5] (using the LePage series representation) in
terms of the characteristic function only, our analysis here is
explicit in terms of the outage probability and thus provides
additional insight into interference-generating mechanisms and
their impact. In particular, we demonstrate that the total inter-
ference power is dominated by that of the nearest interferer
for a broad class of fading distributions (including all popular
models), which allows us to derive compact closed-form
expressions for the outage probability and also to generalize
the results in [11] to the case of fading channel (from a broad
class of distributions).
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A. Impact of Rayleigh fading

Let us consider the ordered average powers Pa1 ≥ Pa2 ≥
... ≥ PaN which are further subjected to Rayleigh fading so
that the fading received powers are Psi = gsiPai, where gsi

are the Rayleigh fading factors, assumed to be i.i.d., with the
standard pdf fgs(x) = e−x. The dynamic range is now defined
as ds = Ps1/P0 = dags1, where da = Pa1/P0, i.e. via the
contribution of the nearest interferer2, and its cumulative CDF
(CCDF), i.e. the outage probability, is

Pout = Pr {ds > D} =
∫ ∞

0

fgs(g)F d (D/g) dg, (19)

where F d (x) = 1 − Fd (x) is the CCDF of da . At the low
outage region, i.e. at the distribution tail D → ∞, it can be
approximated, after some manipulations, as

Pout ≈ Γ(m/ν + 1)NmaxD
−m/ν , (20)

where Γ is the gamma function. Comparing to (10) with
k = 1, we conclude that the effect of Rayleigh fading is the
multiplicative shift by a constant factor Γ(m/ν + 1), and the
functional form of the distribution (i.e. regular variation or
heavy tail) is preserved. Since Γ(m/ν + 1) can be greater or
smaller than 1, depending on m/ν (e.g. m = 2, ν = 4 → Γ ≈
0.89), the effect of Rayleigh fading can be both positive and
negative.

In a similar way, one obtains the outage probability when
(k − 1) nearest interferers are cancelled,

Pout ≈ Γ(km/ν + 1)
k!

(
Nmax

Dm/ν

)k

, (21)

i.e. the beneficial effect of cancelling is slightly offset by
fading (since Γ(km/ν + 1) is an increasing function of k)
but otherwise follows the same tendency as without fading
(see (10)).

Since the INR is the scaled interference power, the later will
follow the same distribution as in (21) (up to a constant) and,
thus, Pr {Psk > x} is a function of regular variation so that
Theorem 2 applies, i.e.

Theorem 3: When the interferers are subject to the average
path loss and Rayleigh fading, the nearest interferer dominates
in terms of the outage probability at the low outage region,
i.e.

lim
x→∞

Pr
{∑N

i=k Psi > x
}

Pr {Psk > x} = 1 (22)

Pr
{∑N

i=k
Psi > x

}
≈ Pr {Psk > x} , for large x (23)

Thus, the results in (20), (21) also apply to the outage
probability defined via the total interference power. This
complements the results in [3] obtained in terms of the
characteristic function with compact, closed-form expressions

2which may sometimes be not the largest one (due to the effect of Rayleigh
fading). However, as we show below, the nearest interferer contribution
dominates the tail of the total interference distribution and thus the outage
probability.

for the outage probability and also explicitly demonstrates the
effect of cancelling (k − 1) nearest interferers.

The intuition behind Theorem 3 is that the distribution in
(6) is much more heavily-tailed (slowly-decaying) than the
Rayleigh distribution so that outage events in the combined
distribution are mostly caused by nearby interferers without
deep Rayleigh fades and the combined distribution is a slightly
shifted version of the original one (without fading).

B. Impact of log-normal and combined fading

This can be analysed in a similar way. The main results are
summarized as follows. When the interferers are subject to
the average path loss and log-normal i.i.d. fading, and when
(k−1) nearest interferers are cancelled, the outage probability
is

Pout ≈
Mkm/ν

k!

(
Nmax

Dm/ν

)k

, (24)

where Mkm/ν = exp
(

1
2 (σkm/ν)2

)
is km/ν-th moment of

the log-normal random variable,

Mkm/ν = 1√
2πσ

∫∞
0

xkm/ν−1 exp
(
− (ln x)2

2σ2

)
dx, (25)

and σ is the standard deviation. The case when no interferers
are cancelled corresponds to k = 1. Comparing (24) to (10),
we conclude that the effect of log-normal fading is a shift
by a constant factor > 1, i.e. strictly negative as opposed to
Rayleigh fading where it can be either positive or negative.
The beneficial effect of cancelling (k − 1) nearest interferers
is also offset by fading in this case (since Mkm/ν increases
with k). Since the regular varying (heavy tail) nature of the
distribution is preserved, Theorem 3 also holds in this case,
i.e. the nearest interferer is still dominant.

Likewise, one can consider the combined effect of Rayleigh
and log-normal fading. The outage probability is

Pout ≈
Γ(km/ν + 1)Mkm/ν

k!

(
Nmax

Dm/ν

)k

, (26)

and Theorem 3 also applies. Note that the effects of Rayleigh
and log-normal fading are multiplicative in terms of the shift
constant, and the heavy tail of the distribution, which is due
to the Poisson spatial distribution of the interferers and the
average path loss, is not affected.

C. The impact of a broad class of fading distributions

The results above are not limited to Rayleigh or log-normal
fading but rather hold for a broad class of distributions whose
tails are dominated by the tail of Pak.

Theorem 4: Let the interferers be subject to the average path
loss and fading, Pi = giPai, where gi is the fading power
gain, i.i.d. for each interferer, and the fading distribution tail
is dominated by that in (10), i.e. ,

lim
x→∞

Pr (gi > x)xkm/ν = 0, (27)

then the outage probability is

Pout ≈
Mkm/ν

k!

(
Nmax

Dm/ν

)k

, for large D, (28)

196



where Mkm/ν is km/ν-th moment of the fading power
gain, Mkm/ν =

∫∞
0

xkm/νfg(x)dx, and fg(x) is the pdf of
g. Furthermore, the nearest interferer dominates the outage
events, i.e. Theorem 3 holds, and, thus, the outage in (28)
holds in terms of both the total and nearest interferer’s power.

Proof: along the same lines as that of Theorem 3 and that
of (20).

It should be noted that Theorem 4 includes almost all
popular fading models, i.e. Rayleigh, Rice, Nakagami, Weibul,
log-normal, or any distribution whose tail decays faster than
polynomially. It is also interesting to note that the fading enters
the outage probability only via the moment Mkm/ν and the
condition of tail dominance, all other details being irrelevant.
The effect of fading is positive for Mkm/ν < 1 and negative
for Mkm/ν > 1.

Finally, the effect of fading can also be considered jointly
with partial interference cancellation, and the outage probabil-
ities in (15), (16) are respectively modified to

Pout ≈ αm/νMm/νNmaxD
−m/ν (29)

Pout ≈
α(k−1)m/νM(k−1)m/ν

(k − 1)!

(
Nmax

Dm/ν

)k−1

(30)

i.e. the multiplicative constant shift of the outage probability
is preserved. The required partial cancellation levels in (17)
and (18) are modified to

α <
1

D1/(k−1)

(
Mkm/νNmax

M(k−1)m/ν · k

)ν/m(k−1)

(31)

α <
1

Dk−1

(
Mkm/νN

k−1

max

Mm/ν · k!

)ν/m

(32)

Noting that Mkm/ν increases with k for Rayleigh, log-normal
and composite fading, its effect on the required cancellation
level is beneficial in both cases (i.e. higher α is acceptable),
and it is more pronounced for the case of partial cancellation
of (k − 1) nearest interferers. This is intuitively explained
by the fact that these fading distributions decay very fast
(exponentially or sub-exponentially) at the large signal region
but only polynomially at the low signal region and, thus, the
fading results more often in a weaker signal than in a stronger
one.

VI. CONCLUSION

A model of interference in wireless networks with Poisson
spatial distribution of the nodes is considered. The nearest
interferer power, which dominates the total one, is used to
define the outage probability. This simplifies the analysis
significantly, results in compact, closed-form characterisation
of the outage probability, including the case where some
interferers are cancelled, either completely or partially, and
allows to compare different cancellation strategies and to find
the required level of cancellation. The effect of fading is
characterized for a broad class of distributions, including all
popular fading models and in combination with the effect of

interference cancellation. Our main findings in terms of the
node density - outage probability tradeoff at the low outage
region can be summarized as follows:
• when (k−1) strongest interferers are cancelled completely

or near completely (see (17), (18)), the upper bound scales as
P1/k

out , i.e. much higher node density can be tolerated for larger
k (see (12));
• when strongest interferers are partially cancelled by the

level independent of the INR, the upper bound still scales as
Pout, with a fixed improvement due to interference cancella-
tion (see (15), (16));
• with linear filtering, the upper bound scales as Pout, with

a fixed improvement due to the filtering (see [11] for details);
• when fading is present, the scaling above still holds (with

an additional fixed multiplicative constant, which depends on
fading distribution - see (28)-(30)).

Thus, the main conclusion here is that complete or near
complete cancellation of strongest interferers is essential to
go from Pout to P1/k

out scaling.
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