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A novel statistical model of interference in wireless networks is proposed. The model is based on
the  traditional  propagation  channel  model,  which  includes  the  average  path  loss  as  well  as  the
large-scale and small-scale fading. In addition to these two traditional types of fading, a new con-
cept of network-scale fading is introduced, which is due to a random spatial distribution of trans-
mitters and receivers of the network over a large region of space occupied by the whole network.
This new type of fading complements the small-scale (e.g. Rayleigh) and large-scale (e.g. log-
normal) ones, is on the scale exceeding that of the other two and is independent of them. Its prob-
ability density function is derived for typical network configurations and propagation channel con-
ditions. Network-level analysis of interference effects is given, which includes estimation of the
average number of interferers, of the dynamic range of the interferers potentially capable of gener-
ating linear and non-linear distortion effects in the victim receiver, and of the outage probability.
In many cases, the combined interference power at the receiver is shown to be dominated by the
contribution of the strongest interferer. This analysis culminates in formulation of a tradeoff rela-
tionship between the network density and the outage probability. The positive role of linear filter-
ing (e.g. in the antenna or in frequency filters of the receiver) in reducing the number and dynamic
range of interfering signals, and/or in reducing the outage probability is quantified via a new statis-
tical selectivity parameter (Q-parameter). The linear filtering allows increasing the network den-
sity by a factor of Q at the same outage probability.
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I. Introduction
Wireless communication networks have been recently a subject of extensive studies, both

from information-theoretic and communication perspectives, including development of practical
transmission strategies and fundamental limits (e.g. the network capacity scaling with the number of
users)  to  assess  the  optimality  of  these  strategies  [1–6].  Multi-hop  transmission  has  emerged  as  a
promising mode of operation of ad-hoc wireless networks [2, 7–9], which has been shown to be order-
optimal in certain scenarios [3–6].

From practical perspective, a performance of wireless networks (i.e. total throughput, error
rates or outage probabilities, etc.) is limited, in one form or another, by mutual interference among
several wireless links (e.g. several users) operating at the same time, so that some form of separation is
required (i.e. in frequency, spatial location, etc.) [1, 2, 4, 7, 10, 11]. While some form of interference
control (i.e. as in a multiple access scheme, by assigning different frequencies, time slots, codes, etc.)
allows to decrease its effect on the network performance, it remains to be a bottleneck limiting the per-
formance [10, 11]. Indeed, the ability of a receiver to eliminate interference created by unintended sig-
nals at its input (i.e. at the RF level, before IF and baseband processing) coming from all but the re-
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quired user is limited due to a number of reasons, including imperfections of the hardware and the al-
gorithms used [11, 12, 16]. For example, attenuation of out-of-band interferers is limited due to the
limited performance of frequency filters and other functional blocks of the receiver; when interference
power exceeds a certain threshold (e.g. 1 dB compression point, 3rd order intercept point (IP3), etc.), it
also creates nonlinear distortions with the in-band frequency components (even if the interferers are
out of band) at the RF level, which cannot be easily eliminated by IF or baseband processing [12].
Thus, careful analysis of interference effects is required during the network design stage to make sure
that the receivers do not suffer from excessive distortions so that the link performance is at acceptable
level, especially in the case of dense networks when a typical receiver is affected by a large number of
interferers. Various types of the wireless channel fading should also be taken into account in such an
analysis.

In this paper, we adopt this practical viewpoint and explore the effect of interference at the
physical layer on the network performance. Specifically, we propose a statistical model of interference
in a wireless network based on a model of random spatial distribution of the network transmitters, the
standard propagation channel models, and the threshold-based model of the receiver performance
(i.e. if the interference level does not exceed the threshold, the performance is satisfactory, if it does —
the receiver as well as the link are considered to be in outage1).

The wireless propagation channel is known to have a significant effect on the link perform-
ance. In a typical analysis, the propagation path loss (or, equivalently, the received signal power) is
separated into 3 independent factors, one deterministic and two random (fading): 1) the average path
loss, 2) the large-scale fading (due to shadowing), and 3) the small-scale fading (due to multipath).
The effects of these three factors on the link performance, including the interference effects, have been
extensively studied [10, 11, 13–15]. In this paper, we demonstrate that, in the context of spatially-
distributed wireless network with randomly-located nodes (i.e. transmitters and receivers), the first
component, traditionally considered as deterministic (constant), also becomes random, due to random
location of the nodes. This motivates us to introduce a concept of network-scale fading, which repre-
sents variations in the average
received power coming from dif-
ferent randomly-located (but pos-
sibly fixed) transmitters. Clearly,
this  type of  fading takes place on
the network scale (see Fig. 1) and
is complementary to the large-
scale fading (i.e. shadowing) and
small-scale fading (i.e. multipath),
which take place on smaller
scales.

We derive the distribution
function (of the average received
power or the average channel
gain) associated with the network-
scale fading and, based on it, de-
termine the outage probability of
a given receiver (or, equivalently,
of the link of a given user) when a
number of randomly-located
interferers (i.e. other users) are
present. The total interference

1 While the traditional models of the receiver performance are based on the signal-to-interference plus noise ratio
or on the signal-to-noise and interference-to-noise ratios [10, 11], our model is based on the interference power
(or, equivalently, on the interference-to-noise ratio). The two are equivalent for the fixed required signal power.
This is the case, for example, if the link has to perform satisfactory for a class of scenarios so that the design is
based on the worst-case scenario, when the required signal power is at the minimum level (which corresponds,
for example, to the required transmitter located at the cell boundary).

Fig. 1. Illustration of the problem geometry and three associated
scales: small-scale (immediate neighborhood of a Tx; this is the scale
of multipath fading), large-scale (extends beyond immediate
neighborhood but is smaller than the whole network area; this is the
scale of shadow fading) and network-scale (includes the whole net-
work; this is the scale of network fading in (11)–(15)).
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power at the receiver input is shown to be dominated, in many cases, by the contribution of the strong-
est interferer so that its elimination (filtering out) can bring a significant gain. The case when a few
most powerful interferers are eliminated in some way (e.g. by smart antennas, adaptive filtering etc.) is
also considered. This analysis culminates in the formulation of the outage probability-network density
tradeoff: for a given average density of the nodes, the outage probability is lower bounded or, equiva-
lently, for a given outage probability, the average density of the nodes is upper bounded. This tradeoff
is a result of the interplay between a random geometry of node locations, the propagation path loss and
the distortion effects at the victim receiver. We also examine the positive effect of linear filtering at
the receive end (by antennas, frequency filters, or any other type of linear processing) on this tradeoff
via a new statistical filter gain. The analysis is based on the framework developed in [19–23].

The following are the main contributions of the paper: the concept of the network-scale fading
and its distribution functions, the distribution of the interferers dynamic range (i.e. the maximum inter-
ference-to-noise ratio), the network density-outage probability tradeoff, and the impact of linear filter-
ing on these performance measures via the statistical filter gain (Q-parameter).

The paper is organized as follows. Section II presents the system and network model, and ba-
sic assumptions. In Section III, we introduce the concept of network-scale fading and derive the distri-
bution of received power and of the channel gain subject to this fading, for a single transmitter – re-
ceiver link. Section IV deals with the case of multiple, randomly-located interfering transmitters (us-
ers) affecting a victim receiver. The distribution of the dynamic range of interfering signals is derived.
Based on this, Section V presets the outage probability — network density tradeoff. In Section VI,
a positive effect of linear filtering on the outage probability — network density tradeoff is explored.
Finally, Section VII concludes the paper.

II. Network and System Model

As an interference model of wireless network at the physical layer, we consider a number of
point-like transmitters (Tx) and receivers (Rx) that are randomly located over a certain limited region
of space mS , which can be one ( 1=m ), two ( 2=m ),or three ( 3=m ) -dimensional (1-D, 2-D or 3-D).
This can model location of the nodes over a highway or a street canyon (1-D), a residential area (2-D),
or a downtown area with a number of high-rise buildings (3-D). In our analysis, we consider a single
receiver  and a  number of  transmitters  that  generate  interference to this  receiver.  We assume that  the
spatial distribution of the transmitters has the following properties:

For any two non-overlapping regions of space aS  and bS , the probability of any number of
Txs falling into aS  is independent of how many Txs fall into bS , i.e. non-overlapping regions of
space are statistically independent.

For infinitesimally small region of space dS , the probability ( 1, )k dS=P of a single transmit-
ter ( 1=k ) falling into dS  is ( 1, )k dS dS= = rP , where r  is the average spatial density of transmitters
(which can be a function of position). The probability of more than one transmitter falling into dS  is
negligible, ( 1, ) ( 1, )k dS k dS> << =P P  as 0®dS .

Under these assumptions, the probability of exactly k  transmitters falling into the region S  is
given by Poisson distribution [17, 18],

( , )
!

k
NNk S e

k
-=P (1)

where = ròSN dS  is the average number of transmitters falling into the region S .  If  the  density  is

constant, then = rN S .
Possible scenarios to which the assumptions above apply, with a certain degree of approxima-

tion, are a sensor network with randomly-located non-cooperating sensors; a network(s) of mobile
phones from the same or different providers (in the same area); a network of multi-standard wireless
devices sharing the same resources (e.g. common or adjacent bands of frequencies).
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Consider now a given transmitter-receiver pair. The power at the Rx antenna output rP  com-
ing from the transmitter is given by the standard link budget equation [10, 11],

r t t rP PG G g= (2)

where tP  is the Tx power, ,t rG G  are the Tx and Rx antenna gains, and g  is the propagation path gain
(=1/path loss),

a l sg g g g= (3)

where ag  is the average propagation path gain, and ,l sg g  are the contributions of large-scale (shad-
owing) and small-scale (multipath) fading. The widely-accepted model for ag  is [10, 11]

( )0 0 /ag g R R a Rn -n
n= = (4)

where n  is the path loss exponent, 0R  is the reference distance, 0g  is  the average path gain at  this
distance, and 0 0a g R n

n = . Typical values of n  are  as  follows:  for  free  space, 2n = ; for two-ray
propagation model (with line-of-sight and ground reflection at low elevation angle), 4n = ; for typical
urban macrocellular environment, 3...4n = ; for microcellular environment, 2...8n =  [11]. Extensive
measurement campaigns have been undertaken to characterize n  more accurately in various environ-
ments [10].

When the Tx and Rx antennas are isotropic, 1= =t rG G , and the power at the Rx input is

1t r

t
is r l sG G

c P
P P g g

R
n

= = n
= = (5)

where nc  absorbs the effects of 0 0, ,g Rn  that are independent of , , ,t l sR P g g . Thus, (2) and (5) can be
used to evaluate the signal power at the Rx input coming from each transmitter.

III. Distribution of Average Path Loss and Average Power at the Receiver

In this section, we consider a single randomly-located interfering transmitter and a fixed posi-
tion victim receiver. The statistics of the isotropic Rx power isP  coming from this transmitter depends
on the distribution of a l sg g g g=  and thus on the joint distribution of , ,a l sg g g . The last two factors
can be modeled as independent log-normal and Rayleigh (Rice) distribution, respectively [10, 11].
Contrary to the traditional approach to the analysis of point-to-point systems, ag  in our network-level
model is also a random variable, since the Tx-Rx distance R  in (4) is random (due to random location
of the transmitter) and it is this random variable that represents the network-scale fading. Since ag  in
(4) does not depend on the local propagation environment around the Tx or Rx ends that affect ,l sg g
but only on the global configuration of the Tx-Rx propagation path (including the distance R , of
which ,l sg g  are independent) [10, 11], ag  in this model is independent of ,l sg g , which is ultimately
due to different physical mechanisms responsible for , ,a l sg g g . Thus, the join probability density
function (PDF) of , ,a l sg g g  is

( , , ) ( ) ( ) ( )a l s a a l l s sf g g g f g f g f g= (6)

where ( ), ( ), ( )a a l l s sf g f g f g  are  the  PDFs  of , ,a l sg g g ,  respectively.  The  PDF of g  can be found
from

( ) ( ) ( )g a a l l s a l
a l

xf x f g f g f dg dg
g g

æ ö
= ç ÷

è ø
òò (7)
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The effects of small-scale and large-scale fading on the link performance, including the inter-
ference effects, have been extensively analyzed in the past [10, 11, 13–15]. Thus, we concentrate on
the network-scale fading and its effects by assuming 1l sg g= =  (equivalently, we consider the path
gain averaged over large and small-scale fading), and leave the study of combined effects of all three
types of fading for future research.

Using (4), it is straightforward to find ( )a af g  for given PDF ( )Rf R  of the Tx-Rx distance,

1( ) ( ) /a a R af g f R dg dR -= (8)

To find the PDF ( )Rf R  of  the Tx-Rx distance,  we consider  a  fixed-position receiver  (e.g.  a
base station) and a randomly-positioned transmitter (e.g. a mobile unit). Using the PDF of the Tx posi-
tion ( )tf x  in the Cartesian reference frame, where x  is the Tx position vector, [ , , ]Tx y z=x  if 3m = ,

[ , ]Tx y=x  if 2m = , and x=x  if 1m = , one obtains the corresponding PDF in the spherical reference
frame,

2( , , )( , , ) ( ) ( ) cos
( , , )t t t
x y zf r f f r d d dr
r

¶
q j = = × q q j

¶ q j
x x , 3m = (9)

( , )( , ) ( ) ( )
( , )t t t
x yf r f f rdrd
r

¶
j = = × j

¶ j
x x , 2m =

where 0r ³  is  the  radius, 0 2£ j £ p  is  the  azimuth, / 2 / 2-p £ q £ p  is the elevation angle;
( , , ) / ( , , )x y z r¶ ¶ q j  and ( , ) / ( , )x y r¶ ¶ j  are the Jacobians of the transformation; cos cosx r= q j ,

cos siny r= q j , sinz r= q  for 3m = , and cosx r= j , siny r= j  for 2m = .  Assuming that  the re-
ceiver is positioned at =x 0  (the origin), the PDF of the Tx-Rx distance can be obtained by integrat-
ing ( , , )tf r q j  and ( , )tf r j  over ( , )q j  and j , respectively, and can be expressed as

1( ) ( )m
R mf R R f R-= (10)

where
2 / 2

3
0 / 2

( ) ( ) costf R f d d
p p

-p

= q q jò ò x ,
2

2
0

( ) ( )tf R f d
p

= jò x ,

1( ) ( ) ( )t tf R f R f R= + -

and the integrals are over R=x .
We consider below the PDF in (10) over a limited range

of R , min maxR R R£ £ , where the minimum distance minR  is
due to the geometrical, design or regulatory constrains (e.g. a
minimum possible distance between a base station and a mobile
unit), and the maximum distance maxR  is  such  that  the  signal
power at the Rx input coming from the transmitter located at
that distance, which corresponds to the minimum path gain

min max( )ag g R= , is equal to the noise power 0P  at the receiver,

0 mintP P g= ® 1/
max 0( / )tR a P P n

n= .  All  received  signals  of
lower power, i.e. the signals that are below the Rx noise level2,
are ignored in our analysis. Thus, only the transmitters located
in the potential interference zone (see Fig. 2) are taken into ac-
count. Finally, the PDF ( )af x  of ag  is

2 Minimum detectable signal level [12] can also be considered instead of the noise level.

maxR

DR

Fig. 2. Interference zones on the network
scale. Potential interference zone: R£Rmax,
Pa(R)³P0=Pa(Rmax) (the signal power ex-
ceeds the Rx noise level); active interfer-
ence zone: R£RD, Pa(R)³Pdf=Ra(RD) (the
signal power exceeds the maximum dis-
tortion-free power)
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1/

1 /
(( / ) )

( )
m

m
a m

a f a x
f x

x

n
n n

+ n
=

n
(11)

Corresponding CDF can be obtained by integration.
In the case of the uniform spatial PDF of transmitter location, ( ) consttf =x , (11) takes a sim-

ple form,

1 /( ) m
a m

b
f x

x
n
+ n

= , ( ) 1/ /
min max

m m
m

mb g g
-- n - n

n = -
n

, min maxg x g£ £ (12)

( ) ( )1/ / / /
min max min( ) m m m m

aF x g g g x
-- n - n - n - n= - - ,

where min max 0( ) /a tg g R P P= = , max min min( ) 1ag g R a Rn
n= = £ 3, and ( )aF x  is  the  CDF  of ag . In

many cases of practical interest, maxg  significantly exceeds ming , min maxg g<<  (e.g.
10 15

min 10 ...10g - -»  and 3
max 10 ...1g -» ). In such a case, the upper bound can be eliminated without

significant loss in accuracy4 and (12) simplifies to

/
min

1 /( )
m

a m
mg

f x
x

n

+ n
=
n

,
/

min( ) 1
m

a
g

F x
x

n
æ ö= - ç ÷
è ø

, minx g³ (13)

In a similar way, one can find the distribution of the average isotropic power a t aP P g= at the
receiver. In fact, (12), (13) apply with the substitution a aP g® , 1(0) min(max)P g® ,

1(0) min(max)/ ,
1( ) ( ) ( )

ta a ag x P x g P g
t

w x f g f g
P = ® ®= = (14)

( ) ( )1/ / / /
0 1 0( ) ( / ) m m m m

a a tW x F x P P P P x
-- n - n - n - n= = - -

where ( )aw x  and ( )aW x  are the PDF and CDF of aP , respectively, and 1 maxtP P g=  is the maximum
power. In the case when the Tx and Rx antenna patters do not affect the statistics considered above,
the same applies to the Rx power with non-isotropic antennas r t t r aP PG G g= . When 1 0/ 1P P >> , (14)
simplifies to

/
0

1 /( )
m

a m
mP

w x
x

n

+ n
=
n

,
/

0( ) 1
m

a
P

W x
x

n
æ ö= - ç ÷
è ø

, 0x P³ (15)

which is an equivalent of (13). The probability that the interference power exceeds level 0x P³ , which
is the complementary cumulative distribution function (CCDF) of aP , can be simply expressed as

{ } ( ) /
0Pr 1 ( ) / m

a aP x W x P x n> =- = , 0x P³ (16)

Fig. 3 shows this probability evaluated via Monte-Carlo simulations and via (16). Note good
agreement between the two, which also validates the approximation in (15), (16). Comparison of the

2n =  and 4n =  cases  shows  that,  for  given  threshold  level 0/aP P  (e.g. 40 dB), this probability is
significantly larger for the latter ( 210-  vs. 410-  for the former).

3 The last constraint is due to the fact that the Rx power cannot exceed the Tx power.
4 This is similar to the log-normal and Rayleigh (Rice) distributions, which have no upper bound and thus can
formally violate the law r tP P£ , but this does not affect significantly the accuracy of the analysis.
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Alternatively, for given outage
probability (e.g. 310- ), the threshold level

0/aP P  (i.e. "outage interference power")
for the 4n =  case significantly exceeds
that of the 2n =  case (60 dB vs.  30 dB).
This is explained by the fact that, when
the transmitter moves closer to the re-
ceiver, the signal power grows much
faster for the 4n =  case (two-ray propa-
gation), which, combined with the uni-
form PDF of the transmitter location,
gives the observed result.

It should also be pointed out that
(15), (16) holds also under more general
assumptions as long as 1 0/ 1P P >>  holds
[19, 21, 22]: (i) for transmitters with dif-
ferent powers tiP  (note that (15), (16) are
independent of tP ), (ii) for the uniform

spatial distribution of transmitters on the spherical earth and the receiver elevated over the earth (i.e. a
base station antenna), and (iii) when linear filtering (over angles of arrival, frequency, polarization
etc.) is used.

Based on (12) and (14), one can find the mean value of aP ,

( )
( ) ( )

( )

1

0

1 / / 1
0 1 1

/
1

0
11

1

1
,

/ 1 1( )

ln ,
1

m m

P m

a a
P

P D D
m

m DP xw x dx
P

D m
D

- n n-

- n

-

ì -
ï ¹ n
ïï n - -= = í
ï

= nï
-ïî

ò (17)

where 1 1 0/D P P= . In the important case of 1 1 0/ 1D P P= >> , (17) simplifies to

( )

1 /
0 1

0 1

0

,
/ 1
ln ,

,
1 /

m

a

P D
m

m
P P D m

P
m

m

- nì
< nï

n -ïï» = ní
ï
ï > n
ï - nî

(18)

To gain some insight,  let  us  consider  two special  cases:  (i) 2m = n =  (flat earth distribution
and free-space (i.e. dominant line-of-sight) propagation), and (ii) 2, 4m = n =  (i.e. two-ray (ground
reflection) propagation and flat-earth distribution),

( )0 1lnaP P D» , 2m = n = ; 0 1aP P D» , / 2mn = (19)

In both cases, aP  is a slowly increasing function of 1D , and 1aP P<< , i.e. the mean value aP
cannot be used to estimate adequately the harmful effect of high-power interferers ( aP>> ), which ap-
pear with non-vanishing probability and may cause severe linear and nonlinear (e.g. intermodulation,
harmonics, noise conversion etc.) distortions in the receiver, even if the interferers are out-of-band.

To overcome this difficulty, we introduce and analyze in the next section the dynamic range of
interferers, which adequately represents the possibility of interference effects in the receiver due to
high-power ( aP>> ) interferers.
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Fig. 3. The CCDF of Pa/P0 evaluated from Monte-Carlo (MC)
simulations (105 trials) and from (15) for m=2, n=2&4
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IV. Dynamic Range of Interfering Signals

In this section, we consider a fixed-position receiver (e.g. a base station of a given user) and a
number of randomly located interfering transmitters (interferers, e.g. mobile units of other users) of the
same power tP . As in the previous section, we consider only the network-scale fading, assuming

1l sg g= =  (i.e. we consider the Rx signal power averaged over large- and small-scale fading). We
assume that the Rx antenna is isotropic and consider the signals at the Rx input. The impact of linear
filtering (e.g. by antennas, frequency filters of the receiver, etc.) is considered in section VI.

The statistics of transmitters’ location is given by (1). Transmitter i produces the average
power ( )ai t a iP P L R=  at the receiver input, and we consider only the signals exceeding the Rx noise
level 0aiP P³ . The dynamic range in the ensemble of the interfering signals is defined via the most
powerful (at the Rx input) signal,

1 0/a ad P P= (20)

where, without loss of generality, we index the transmitters in the order of decreasing Rx power,
1 2 ...a a aNP P P³ ³ ³ . Equivalently, ad  is the largest interference-to-noise ratio (INR). The most power-

ful signal is coming from the transmitter located at the minimum distance 1r , 1 1( )a t aP P g r= . The sta-
tistics of the minimum distance can be found from the observation that the sphere 1( )V r of radius 1r
contains no transmitters and the spherical shell 1 1( , )V r r rD + D of radii 1 1,r r r+ D  contains exactly one
transmitter, as 0rD ®  [19, 20, 22]. The probability of this event is

( )
1(1, ) (0, ) ( ) ( )N V

rp V p V N V e f r r-D = D = D (21)

where 1 1( ) ( ( )) ( ( ))
V

N V dV N V r r N V r
D

D = r = + D -ò  and ( )
V

N V dV= rò  are the average number of

transmitters in VD  and V , respectively, and 1( )f r  is the PDF of 1r . Using (21), one obtains

1 ( )
( )

N
N N

V r

de dNf r e e dV
dr dr

-
- -

¢
= - = = rò (22)

where ( ( ))N N V r=  is the average number of transmitters in the ball ( )V r , ( )V r¢  is sphere of radius
r  and the integral in (22) is over this sphere. The cumulative distribution function (CDF) of 1r  is

1( ) 1 NF r e-= - (23)

The probability that the dynamic range exceeds value D  is
{ } { }1 1Pr Pr ( ) ( ( ))ad D r r D F r D> = < = , where ( )r D  is such that 0( ( ))aP r D P D= , so that the CDF of

ad  is

{ } ( ){ }
1

( ) 0
( ) 1 Pr exp ,  ( )N t

d a V r D

P a
F D d D e dV r D

P D
n- næ ö

= - > = =- r = ç ÷
è ø

ò (24)

where N  is  the  average  number  of  transmitters  in  the  ball ( )( )V r D  of radius ( )r D . The
corresponding PDF can be obtained by differentiation,

( ( ))

( )( )
N

d V r D

r D ef D dV
D

-

¢
= r

n ò (25)

When the average spatial density of transmitters is constant, constr = , (24), (25) simplify to

{ }
/

/
max

0
( ) exp exp

m
mt

d m
Pa

F D c N D
P D

n
- nn

ì üæ öï ï= - r = -í ýç ÷
è øï ïî þ

, { }/ 1 /
max max( ) expm m

d
mf D N D N D- n- - n= -
n

 (26)
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where max max
m

mN c R= r  is the average number of transmitters in the potential interference zone (see
Fig. 2), 1 2c = , 2c = p  and 3 4 /3c = p .

When ( 1)k -  most powerful signals, which are coming from ( 1)k -  closest transmitters, do
not create any interference (i.e. due to frequency, time or code separation in the multiple access
scheme, or due to any other form of separation or filtering), the CDF and PDF of the distance kr  to the
most powerful interfering signal of order k  is [19, 22]
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where
( )V r

N dV= rò  is, as above, the average number of signals in ( )V r . The CDF of the dynamic

range ad  is given by (27) evaluated at
1/

0
( ) tPar r D

P D

n
næ ö

= = ç ÷
è ø

,

1/1

00
( )

!

ik
N t

dk k
i

P aNF D e F
i P D

n-
- n

=

æ öæ öç ÷= = ç ÷ç ÷è øè ø
å (28)

where ( )( )( )N N V r D=  is the average number of signals in ( )( )V r D . In the case of constant aver-

age density constr = , the CDF and PDF of ad  simplify to
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The mean minimum distance 1r  can be evaluated from (29) as follows [19, 20, 22]

( )
1 1/

( 1/ )

( ) m
m

k mr
k c
G +

=
G r

(30)

where G  is the gamma function.

V. Outage Probability-Network Density Tradeoff

Powerful interfering signals can result in significant performance degradation due to linear
and nonlinear distortion effects in the receiver when they exceed certain limit (e.g. maximum tolerable
INR,  1dB  compression  point,  3rd order intercept point etc.), which we characterize here via the re-
ceiver distortion-free dynamic range max 0/dfD P P= , where maxP  is the maximum interfering signal
power at the receiver that does not cause significant performance degradation [12]. If a dfd D> , there
is significant performance degradation and the receiver is considered to be in outage5, which corre-
sponds to one or more transmitters falling into the active interference zone (see Fig. 2), whose prob-
ability is

{ }Pr 1 ( )out a df d dfd D F D= > = -P (31)

For given outP , one can find the required distortion-free dynamic range ("outage dynamic
range") dfD

5 In our analysis, outage is linked to the interfering signal power exceeding a certain threshold, rather than to the
required signal power dropping below a certain threshold, which is typically the case in the literature.
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1 (1 )df d outD F -= - P (32)

We note that, in general, dfD  is a decreasing function of outP , i.e. low outage probability calls
for high distortion-free dynamic range. For simplicity of notations, we further drop the subscript and
denote the spurious-free dynamic range by D .

A. All interfering signals are active (k=1)
We consider first the case of 1k = , i.e. all interfering signals are active. The outage probabil-

ity can be evaluated using (24) and (31). From practical perspective, we are interested in the range of
small outage probabilities 1out <<P , i.e. high-reliability communications. When this is the case,

( ) 1dF D ®  and using MacLaurean series expansion 1Ne N- » - , (31) simplifes to

( )( )out V r D
N dV» = ròP (33)

which further simplifies, in the case of constr = , to

/
max

m
out N D- n»P (34)

Note that, in this case, the outage probability outP  scales linearly with the average number

maxN  of nodes in the potential interference zone, and it effectively behaves as if the number of nodes
were fixed (not random) and equal to maxN . In the case of max 1N = , (34) reduces to (16) (i.e. to the
case of a single interfering transmitter). Based on these two observations, we conclude that the single-
order events (i.e. when only one signal in the ensemble exceeds the threshold) are dominant contribu-
tor to the outage. This immediately suggests a way to reduce significantly the outage probability by
eliminating (e.g. by filtering) the dominant interferer in the ensemble. Using (34), the required spuri-
ous-free dynamic range of the receiver can be found for given outage probability,

( ) /
max /

m
outD N

n
» / P (35)

Note that higher values of n  and lower values for m  call for higher dynamic range. Intui-
tively, this can be explained by the fact that when the transmitter moves from the boundary of the po-
tential interference zone (i.e. maxR R= , 0( )aP R P= )  closer  to  the  receiver  ( maxR R<< ), the power
grows much faster when n  is larger (see (5)), so that closely-located transmitters produce much more
interference when n  is large, which, combined with the uniform spatial density of the transmitters,
explains the observed behavior. The effect of m can be explained in a similar way (i.e. in lower dimen-
sions the transmitters are located, on average, closer to the receiver – see (30)) .

To validate the accuracy of approximations in (33)-(35), and also the expressions for the dy-
namic range PDF and CDF in the previous section, extensive Monte-Carlo (MC) simulations have
been undertaken. Fig. 4–5 show some of the representative results. Note good agreement between the
analytical results (including the approximations) and the MC simulations. It can be also observed that
the tails of the distributions decay much slower for the 4n =  case, which indicates higher probability
of high-power interference in that case and, consequently, requires higher spurious-free dynamic range
of the receiver, in complete agreement with the predictions of the analysis. For example, if 310out

-=P
(i.e. design specification), then, from Fig. 5, the required spurious-free dynamic range of the receiver
is 50D dB»  and 90D dB»  for the 2n =  and 4n =  cases, respectively. Comparing Fig. 5 to Fig. 3,
one concludes that higher spurious-free dynamic range is required to sustain the same outage probabil-
ity  when  a  number  of  transmitters  are  present,  compared  to  the  case  of  a  single  randomly-located
transmitter (the difference is 20 dB and 30 dB for the 2n =  and 4n =  cases, respectively). Alterna-
tively, a number of interfering transmitters results in higher outage probability compared to the single
transmitter case, which is in complete agreement with (34) and is also consistent with intuition.
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Fig. 4. The PDF of da=Pa1/P0 and dtot=Ptot/P0 evaluated from Monte-Carlo (MC) simulations
(105 trials) for m=2, n=2&4, P0=10–10, Pt=1, r=10–5 and analytic PDF of da (see (26))
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Fig. 5. The CCDF of da=Pa1/P0 and dtot=Ptot/P0 (i.e. the outage probability) evaluated from
Monte-Carlo (MC) simulations (105 trials) for m=2, n=2&4, P0=10–10, Pt=1, r=10–5; analytic
CCDF of da (derived from (26)) and its approximation in (34) are also shown

Consider now a scenario where the actual outage probability has not to exceed a given value
outP  for the receiver with a given distortion-free dynamic range D . Using (26) and (31), the average

number of transmitters in the active interference zone (ball of radius ( )r D ) can be upper bounded as
ln(1 )outN £ - - P . Using the expression for N , one obtains a basic tradeoff relationship between the

network density and the outage probability,

( )( )
ln(1 )outV r D

N dV= r £ - -ò P (36)

i.e. for given outage probability, the network density is upper bounded or, equivalently, for given net-
work density, the outage probability is lower bounded.

In the case of uniform density constr =  and small outage probability, 1out <<P , this gives an
explicit tradeoff relationship between the maximum distortion-free interference power at the receiver

maxP , the transmitter power tP  and the average transmitter density for distortion-free receiver opera-
tion,

( ) /1
max / m

m out tc P P a n-
nr £ P (37)
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or, equivalently, an upper bound on the average density of transmitters in the network.
As intuitively expected, higher max, ,out P nP  and lower ,tP m  allow for higher network density.

The effect of n  is intuitively explained by the fact that higher n  results in larger path loss or, equiva-
lently, in smaller distance at the same path loss, so that the transmitters can be located more densely
without increasing interference level. The effect of the other parameters can be explained in a similar
way.

B. (k–1) strongest interfering signals are inactive
We now assume that ( 1)k -  strongest interfering signals are eliminated via some means (e.g.

by filtering or resource allocation). In this case, (28), (29) apply and (33)-(35) generalize to

( )/1 1 max! !

kk m
out k kN N D- n» =P (38)

( )( ) /1/
max / !

mk
outD N k

n
» / P (39)

Contrary to the 1k =  case, outP  here is super-linear in maxN : doubling maxN  increases outP
by the factor 2 2k > , i.e. outP  is more sensitive to maxN . Comparing (38), (39) to (34), (35) one can
clearly see the beneficial effect of removing ( 1)k -  strongest signals on the outage probability or the

required distortion-free dynamic range (note that 1N <<  and ( )1/! k
out outk >>P P  when 1out <<P , for

2k ³ ).  Fig.  6  validates  this  result  via  MC  simulations  for 2k =  (the strongest interferer is elimi-
nated). As an example, at 310out

-=P , the required distortion-free dynamic range is 35D dB»  and
55D dB»  for  the 2n =  and 4n =  cases,  respectively,  which are significantly smaller  than those of

the 1k =  case.
When the actual outage probability has not to exceed the value outP , the average number of

transmitters in the active interference zone (the ball of radius ( )dfr D ) is upper bounded from the fol-
lowing,

1

0
1

!

ik
N

out
i

Ne
i

-
-

=
- £å P (40)

which together with
( )( )V r D

N dV= rò  constitutes the outage probability-network density tradeoff6.

Unfortunately, due to the transcendental nature of (40), no closed-form bound on N  can be obtained
in the general case. However, for small outage probability region 1 1out N<< ® <<P  and (40) simpli-
fies to,

( )
( )1/

( )
! k

outV r D
N dV k= r £ò P (41)

Comparing (41) to (36), one can clearly see the beneficial effect of "removing" ( 1)k -  most

powerful interferers on the outage probability-network density tradeoff, as ( )1/! k
out outk >>P P  in  the

small outage regime.
In the case of uniform density, (41) reduces to

( ) ( )1/ /1
max! /k m

m out tc k P P a n-
nr £ P (42)

which is a generalization of (37) to 1k ³ .

6 Note that
1
0(1 / !)kN i

ie N i--
=

- å  is a monotonically increasing function of N  so that the tradeoff point in (40)

is unique, and higher outP  results in higher admissible N .
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Fig. 6. The CCDF of da=Pa1/P0 and dtot=Ptot/P0 with the most powerful signal cancelled (k=2),
evaluated from MC simulations (105 trials) and from the analysis, for m=2, n=2&4, P0=10–10,
Pt=1, r=10–5. Significant improvement over the k=1 case is clear

C. Maximum vs. total interference power
In our analysis, we employed the maximum interference power (or, equivalently, the dynamic

range) to define an outage event. It may be argued that the total interference power is a more relevant
performance measure, which is extensively used in the current literature (e.g. [1, 2, 11, 13]). In this
section, we will show that the total interference power (coming from all interfering transmitter)
is dominated by the maximum one (i.e. coming from the closest interfering transmitter) at the region
of small outage probability.

As above, consider a network consisting on average of maxN  interfering transmitters, with
each transmitter contributing on average the power aP  at the receiver. By the law of large numbers,

the total power totP  (coming from all transmitters) is about maxtot atotP P N P» = , i.e. is close to the

total power coming from "average" transmitters, which gets more accurate as maxN  increases, but
there is always non-zero probability that totP  exceeds totP . If this is the case, one of the possible rea-
sons  is  that  there  is  a  dominant  transmitter  that  contributes  more  than  the  average  transmitters.  For
given outage probability outP , the power 1aP  of the dominant transmitter can be estimated from (35),

( ) /
max1 0 0 0 /

m
a a outP P d P D P N

n
= ³ » / P . This transmitter will provide dominant contribution to totP  if

0 totP D P³ , which can be expressed, using (18), as
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Clearly, when the outage probability is below a certain threshold, the total power is dominated
by the maximum one (i.e. coming from the closest transmitter), so that 1aP  serves as a good estimate
of totP  in the small outage region given by (43). Fig. 5-6 compare the CCDF of 1aP  and totP  (i.e. the
outage probability) evaluated by Monte-Carlo simulations. Both are quite close in the small outage
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region, especially for the 2, 4m = n =  case. This conclusion is also in agreement with the correspond-
ing observation in [24]. It also suggests an optimum form of interference control: a significant advan-
tage can be gained by eliminating only the single most powerful interferer (compare Fig. 5 to Fig. 6).

Thus, our analysis above also applies when the performance metric depends on the total rather
than maximum interference power, in the small outage region.

VI. The Impact of Linear Filtering
In the previous sections, we considered the interfering signals at the Rx input assuming that

the Rx antenna was isotropic, i.e. no measures to eliminate some of the interfering signals e.g by linear
filtering at  the Rx antenna,  its  frequency filters  etc.  were considered.  In this  section,  we explore the
effect of linear filtering, which may include filtering by the Rx antenna based on the angle of arrival,
polarization  and  frequency,  and  by  linear  frequency  filters  at  the  receiver  (at  RF,  IF  and  possibly
basedband). Since, as it follows from the previous section, the average number of interfering signals
N  is a key parameter, which determines the dynamic range of interfering signals (see (24),(28)) and
ultimately the network density-outage probability tradeoff (e.g. (36), (40)), we consider the impact of
linear filtering on this parameter.

Let 1 2[ , ... ]T
lz z z=z  be the set of filtering variables (i.e. frequency, polarization, angle of arri-

val etc.) and ( )zf z  be the PDF of incoming signals over these variables. The probability of a ran-
domly-chosen input signal falling in the interval dz  is ( )zf dz z , and the probability that the filter out-
put power of this signal exceeds the threshold 0P  is

{ }
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/
, 0

/ ( )

Pr ( ) ( )m
a out a

P K

P P w P dP K
¥

n> = =ò
z

z (44)

where 0 ( ) 1K£ £z  is the normalized filter power gain, and (15) is used for the PDF ( )aw P . Note that
/mK n  represents the reduction in probability of signal power exceeding the threshold from the input

(where it is equal to one) to the output of the filter and thus is a filter gain for given filtering variables.
The average number of output signals exceeding the threshold in the interval dz  is

/ ( ) ( )m
out z indN K f d dNn= z z z , where indN  is the average number of input signals exceeding the

threshold in the same interval. Finally, the total average number of output signals exceeding the
threshold 0P  is

/out inN N Q= ,
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è ø
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z z z (45)

where inN  is the average number of input signals, Q is the average statistical filter gain, which repre-
sents its ability to reduce the average number of visible (i.e. exceeding the threshold) interfering sig-
nals, and Dz  is the range of filtering variables. This gain further transforms into reduction in the inter-
fering signals’ dynamic range (see (24), (28)) or in the outage probability,
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and also improves the network density-outage probability tradeoff (i.e. (41), (42)),

( )
( )1/
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! k

in outV r D
N dV Q k= r £ò P (47)

( ) ( )1/ /1
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m out tQc k P P a n-
nr £ P (48)
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i.e. the network density r  can be increased by a factor of Q  at the same performance compared to the
case of no filtering. Clearly, using directional antennas with highly-directive pattern, for example, re-
sults in large Q (similarly to the antenna’s gain) and thus the network density can be increased by a
large factor Q, as expected intuitively.

VII. Conclusion

In this paper, we introduced a statistical physical-layer model of interference in wireless net-
works based on standard propagation channel models and a model of random distribution of nodes
over a large area of the whole network, which results in a new type of fading, which we termed "net-
work-scale fading" and which is complimentary to the large-scale (shadowing) and small-scale (multi-
path) fading and is independent of them. The network-scale fading affects the "average" path loss,
which becomes a random variable on the network scale. The probability density function of the aver-
age power has been derived and used to obtain the distribution of dynamic range of interfering signals
and of the outage probability. This analysis culminated in formulation of network density/outage prob-
ability tradeoff, which is a result of the interplay between random distribution of the nodes in the net-
work, the propagation path loss and the interference effects at the receiver. The impact of linear filter-
ing (e.g. by the antenna directional pattern) at the received has also been characterized via the average
statistical filter gain Q: it allows increasing the network density by a factor of Q  at the same outage
probability. Possible applications of these results can be in cellular, WiFi/WiMAX and sensor net-
works. Following the standard approach to the analysis of interference effects on the link performance
[10, 11, 13], the combined effect of small-scale, large-scale and network-scale fading is of interest to
analyze.
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