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On Outage and Error Rate Analysis of the Ordered V-BLAST
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Abstract— Outage and error rate performance of the ordered
BLAST with more than 2 transmit antennas is evaluated for
i.i.d. Rayleigh fading channels. A number of lower and upper
bounds on the 1st step outage probability at any SNR are derived,
which are further used to obtain accurate approximations to
average block and total error rates. For m Tx antennas, the
effect of the optimal ordering at the first step is an m-fold SNR
gain. As m increases to infinity, the BLER decreases to zero,
which is a manifestation of the space-time autocoding effect in
the V-BLAST. While the sub-optimal ordering (based on the
before-projection SNR) suffers a few dB SNR penalty compared
to the optimal one, it has a lower computational complexity
and a 3 dB SNR gain compared to the unordered V-BLAST
and can be an attractive solution for low-complexity/low-energy
systems. Uncoded D-BLAST exhibits the same outage and error
rate performance as that of the V-BLAST. An SNR penalty of
the linear receiver interfaces compared to the BLAST is also
analytically evaluated.

Index Terms— Multi-antenna (MIMO) system, V-BLAST, per-
formance analysis, autocoding effect

I. INTRODUCTION

IN recent years, the BLAST algorithm has gained significant
popularity as a receiver interface for a spatial multiplexing

system [1]-[2]. Its error rate performance has been initially
studied using Monte-Carlo simulations and prototyped sys-
tems, and later on analytical techniques have been developed
to attack the problem. Performance evaluation of the unordered
V-BLAST can be done analytically by adapting the techniques
developed for multiuser detection problems, resulting in exact
closed-form expressions for average error rates and outage
probabilities. This provides significant insight into algorithm’s
performance and its bottlenecks, and hence opening up op-
portunities for optimization [3]-[5][13]-[15]. However, the
optimally ordered V-BLAST presents a serious challenge for
the analytical analysis due to the ordering procedure, which
changes the channel statistics. For the system with 2 transmit
(Tx) antennas (m = 2), exact closed-form expressions for
outage and average error probabilities can be obtained for
i.i.d. Rayleigh fading channel [6], but for m ≥ 3 the problem
complexity increases significantly and no exact closed-form
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expressions have been found so far. A diversity-order-based
analysis of the V-BLAST was presented in [11][12]. In partic-
ular, it was demonstrated that the ordering procedure does not
affect the diversity order. While this is a significant insight into
the system performance, it does not give the complete picture
since (i) it holds only asymptotically (as SNR → ∞), and (ii)
it does not say anything about the SNR-independent constant
that may significantly affect the error rate performance, even
at high SNR.

In this paper, we address this problem by deriving a number
of bounds on the outage probability, which hold at any SNR,
for the ordered zero-forcing (ZF) V-BLAST with more than
2 Tx antennas in the i.i.d. Rayleigh fading channel using a
geometrically-based framework and a step-by-step analysis of
the outage probability. This extends the corresponding results
in [6] obtained for 2 Tx antennas. We demonstrate that one of
the upper bounds is tight and, based on this, derive accurate
closed-form approximations to the average block error rate
(BLER)1 and the total error rate (TBER)2. It is observed that
the effect of the optimal ordering is an m-fold increase in
1-st step after-processing SNR, or equivalently a 10 log m
[dB] gain, which further extends to the m-fold SNR gain in
terms of the average BLER3. Thus, while the optimal ordering
does not provide any advantage in terms of the diversity
gain, it does provide advantage in terms of the SNR gain,
which increases with the number of Tx antennas. Based on
these results, we conjecture that the ordered ZF V-BLAST
possesses the autocoding effect originally discovered in [8]
using information-theoretic arguments. A similar conjecture
has been made in [5] for the unordered ZF V-BLAST in terms
of the TBER (which does not hold in terms of the BLER in
that case).

Based on the results above, the sub-optimal ordering (maxi-
mizing the before-projection SNR) is compared to the optimal
ordering and also to the un-ordered V-BLAST. While the sub-
optimal ordering suffers a few dB SNR penalty compared
to the optimal ordering, it does provide a 3 dB SNR gain
compared to the un-ordered V-BLAST and, hence, can be a
low-complexity alternative to the optimally ordered V-BLAST.

The paper is organized as follows. Section II introduces
a basic system and V-BLAST model and briefly reviews the
relevant results in [3]-[6]. Section III generalizes the results
in [6] to the case of more than 2 Tx antennas, gives a number

1termed “frame error rate” in [9] and “joint error probability” in [3]. It is
defined as a probability to have at least one error in the detected transmit
symbol vector.

2termed “per-symbol error probability” in [3]. It is defined as the error rate
at the output stream to which all the individual sub-streams are merged after
the detection.

3While the diversity-order-based analysis in [9][11][12] does capture the
diversity gain, it is not able to capture this SNR gain.
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of bounds on the outage probability, which allow to compare
the optimally ordered V-BLAST to the unordered and sub-
optimally ordered one, and quantifies the SNR gain of opti-
mal and sub-optimal orderings. Sections IV gives high-SNR
approximations for the average BLER and TBER respectively.
Section V briefly discusses the error rate performance of
the D-BLAST, compares the BLAST to the linear receiver
interfaces and quantifies their SNR loss. Section VI concludes
the paper.

II. CHANNEL MODEL AND V-BLAST ALGORITHM

The standard baseband system model is given by

r = Hs + ξ (1)

where s and r are the Tx and Rx vectors correspondingly, H
is the n × m channel matrix, i.e. the matrix of the complex
channel gains between each Tx and each Rx antenna, n is
the number of Rx antennas, m is the number of Tx antennas,
n ≥ m, and ξ is the additive white Gaussian noise (AWGN),
which is assumed to be CN (0, σ2

0I), i.e. independent and
identically distributed (i.i.d.) in each branch. We assume i.i.d.
Rayleigh fading channel, i.e. the entries of H are i.i.d. complex
Gaussian with unit variance and zero mean.

The objective of the V-BLAST algorithm is to find s given
r and H in a computationally-efficient way. The V-BLAST
processing begins with the 1st Tx symbol and proceeds in
sequence to the m-th symbol. When the optimal ordering
procedure is employed, the Tx indexing is changed prior to
the processing. The main steps of the algorithm are as follows
[1][2]:

(1) The interference cancellation step: at the i-th processing
step (i.e., when the signal from the i-th transmitter is being
detected) the interference from the first (i-1) transmitters can
be subtracted based on the estimations of the Tx symbols and
the knowledge of the channel matrix H;

(2) The inter-stream interference nulling (zero-forcing) step:
based on the knowledge of the channel matrix, the interference
from yet-to-be-detected symbols (inter-stream interference,
ISI) can be nulled out using the orthogonal projection on
the sub-spaced orthogonal to that spanned by the yet-to-be-
detected symbols;

(3) The optimal ordering procedure: the order in which Tx
symbols are detected is optimized in such a way that symbols
with highest after-processing SNR are detected first.

A geometrically-based model of the algorithm, which is
used in the present study, has been described in details
in [6]. Assuming that the columns of the channel matrix
H = [h1,h1, ...hm] are re-ordered according to the opti-
mal ordering procedure, H′ = [h′

1,h′
1, ...h′

m], the after-
processing SNR at i-th step with optimum ZF weights is
γi = |h′

i⊥|2 /σ2
0 , where h′

i⊥ is the projection of h′
i on

the sub-space orthogonal to span {h′
i+1,h′

i+2, ...h′
m}. Fig.1

illustrates the problem geometry for m = 3 case. As an
example, the optimal ordering at 1st step consists in choosing
such h′

1 = hi so that its projection orthogonally to the
other two vectors is maximized. The instantaneous block
error rate (BLER), i.e. a probability to have at least one
error in the detected Tx symbol vector, can be expressed

1⊥h1h
2h

3h

1ϕ

{ }2 3,span h h

Fig. 1. Illustration of the problem geometry for m = 3.

as PB = 1 − ∏m
i=1 (1 − Pei) where Pei = Pe(γi) is the

instantaneous (for given channel realization) error rate at step i
conditioned on no errors at steps 1...(i−1) [3]-[6]. In the case
of un-ordered V-BLAST, the average (over the channel fading)
BLER PBcan be simply obtained by using the average step
error rate P ei in the instantaneous BLER expression (due to
the fact that γi ∼ χ2

2(n−m+i) are independent of each other in
i.i.d. Rayleigh fading channel), which is essentially the average
error rate of a maximum ratio combiner (MRC) with the
appropriate diversity order (n−m+i) [3]-[5]. For the ordered
V-BLAST, however, this does not work any more as γi are not
independent due to the ordering procedure. Furthermore, their
statistics is also affected by the optimal ordering. The solution
of this problem for the case of m = 2 has been given in [6]4.
Here we consider the case of m ≥ 3.

III. V-BLAST ALGORITHM ANALYSIS: NXM SYSTEM

In this section, we extend the analysis in [6] to the case
of n × m system, m > 2, in an i.i.d. Rayleigh fading
channel. This generalization is non-trivial and presents serious
mathematical difficulties, which we resolve using various
bounds and approximations.

A simple way to obtain a lower bound on the BLER (and
also on the outage probability) is to use a genie-assisted system
[9], where the genie gives the receiver the symbols of k last
transmitters, k = 1...m − 2,

P
(n×m)
B ≥ P

(n×(m−1))
B ≥ ... ≥ P

(n×2)
B (2)

Thus, the BLER of n × 2 V-BLAST P
(n×2)
B in [6] serves as

a lower bound on the BLER of n × m V-BLAST P
(n×m)
B .

Note that (2) also applies to the average BLER and holds for
arbitrary SNR. Unfortunately, for the average BLER at high
SNR, the lower bound P

(n×2)

B is not tight, since its diversity

order is (n − 1) and the diversity order of P
(n×m)

B , as it is
shown below, is (n − m + 1) < (n − 1) (for m > 2).

To overcome this problem, we use the same geometric
model as in [6] (for the m = 2 case), whose extension
to m > 2 results in a generalized form of 1st step outage

4The analysis in [6] was based on the ratio of total after-projection signal
and noise powers, which is not optimal and implicitly corresponds to the
non-coherent (i.e. power-wise) combining after the projection. The results in
[6], however, also apply to the optimum zero-forcing weights, with a minor
modification only: the step SNR = |h′

i⊥|2 /(n − m + i)σ2
0 in [6] should

be changed to |h′
i⊥|2 /σ2

0 as in [5].
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probability F1(x),

F1(x) =

π/2∫
0

...

π/2∫
0

fϕ(ϕ1, ...ϕm)
m∏

i=1

F
(n)
MRC

(
x

sin2 ϕi

)
dϕi

(3)
where x = γ/γ0 is the SNR normalized to the average one,
γ0 = 1/σ2

0 , fϕ(ϕ1, ...ϕm) is the joint pdf of {ϕ1, ...ϕm}, ϕi

being the angle between hi and the sub-space spanned all the
other column vectors, fϕ(ϕ) = 2(m−1)Cm−1

n−1 sin2(n−m)+1 ϕ·
cos2m−3 ϕ is the marginal PDF, which can be derived using
the same technique as in the m = 2 case [6], Cm

n =
n!

m!(n−m)! is the binomial coefficient, and F
(n)
MRC(x) =

1 − e−x
∑n−1

i=0 xi/i! is the outage probability of n-th order
MRC. Note that fϕ(ϕ1, ...ϕm) is symmetric with respect to
{ϕ1, ...ϕm} (i.e., any two angles can be exchanged without
affecting the pdf) due to the problem symmetry. The angles are
neither independent nor fully correlated, which makes it very
difficult to find the joint pdf required in (3). To this end, we
use the Holder inequality in combination with the induction
principle to obtain, after some manipulations, the following
bounds:

F1(x) ≤
π/2∫
0

fϕ(ϕ)
[
F

(n)
MRC

(
x

sin2 ϕ

)]m

dϕ (4)

≤
π/2∫
0

fϕ(ϕ)F (n)
MRC

(
x

sin2 ϕ

)
dϕ (5)

These inequalities have an intuitive interpretation: the bound
in (5) is the 1st step outage probability of unordered V-BLAST
(see [3]-[5] for detailed analysis of this system), and the bound
in (4) is the 1st step outage probability of V-BLAST with
before-projection ordering (based on |hi| rather than |hi⊥|),
which is clearly sub-optimal. However, the 1st bound is, as
we show later on, quite tight for all SNR. In fact, all the
three outage probabilities in (4) exhibit the same diversity
order (n − m + 1) and differ only by a constant, which is
a significant improvement over (2). Note also that for m = 2
the first bound is sharp, i.e. equals exactly to 1st step outage
probability (see eq. 29 in [6]). Additionally, since {ϕ1, ...ϕm}
are exchangeable random variables, which are known to have
non-negative correlation [7], the following lower bound holds
for arbitrary SNR,

(Fun
1 (x))m =

⎛⎜⎝ π/2∫
0

fϕ(ϕ)F (n)
MRC

(
x

sin2 ϕ

)
dϕ

⎞⎟⎠
m

≤ F1(x)

(6)
where Fun

1 (x) is the 1st step outage probability of the
unordered V-BLAST [5]. Additional lower bounds for F1(x)
can be obtained in the same way as in (2), i.e. F

(n×m)
1 ≥

F
(n×(m−1))
1 ≥ ... ≥ F

(n×2)
1 .

After some lengthy manipulations, the bound in (4) can be
presented as:

B1(x) = (−1)m−2(m − 1)Cm−1
n−1

×
{

m∑
l=0

αl (J3l + J4l) e−lx +
m∑

l=2

αlJ2le
−lx

}
(7)

where αl = (−1)lCl
m; J2l, J3l, J4l are polynomials,

J2l = (lx)n−m+1
l(n−1)−n+m−2∑

p=0
apl(lx)p,

J3l = (−1)n+1 (−lx)n−m+1
m−3∑
p=0

bp(−lx)p,

J4l =
n−2∑
p=0

dp(−lx)p,

and bp, apl, dp are numerical coefficients,

apl =
m−2∑

k=max[0,m−2−p]

(−1)kCk
m−2

(p+k−m+2)!

l(n−1)−n∑
i=max[0,p−m+2]

ci+n,l(k+i)!
li+n

bp =
p∑

k=0

(−1)kCk−p+m−2
m−2
k!

m−p−3∑
i=0

(k+i)!
(i+p+n−m+2)!

dp = (−1)p

p

min[m−2,n−2−p]∑
k=0

(−1)kCk
m−2

n−k−1

ci,l =
∑

i1+...+il=i
0≤i1,...il≤n−1

1
i1!...il!

Thus, the bound in (7) is a combination of exponents and
polynomials of finite order and hence allows efficient numeri-
cal evaluation, which is important, for example, in an iterative
optimization process. While the expression for apl, bp, dp may
appear complicated, they can be evaluated in advance (i.e., a
table of coefficients is built for a given order of the system)
and do not need to be changed during simulations. We also
note that for m = 2, (7) reduces to the exact 1st step outage
probability (see [[6], eq. 30]), i.e. the bound is sharp in this
case.

At high SNR, x � 1 and B1(x) can be approximated as

B1(x) ≈ 1
(n − m + 1)!

(x

2

)n−m+1

(8)

which indicates a 3 dB SNR gain in the sub-optimally ordered
V-BLAST compared to the unordered one and also at least
the same gain with the optimal ordering. To get some insight
and to evaluate the bound accuracy in other cases, we further
consider 3x3 and 4x4 systems.

A. Outage of 3x3 and 4x4 V-BLAST

The 1st step outage of 3x3 V-BLAST is bounded as

F1(x) ≤ B1(x) = 1 − 3e−x + e−2x

(
3 +

15
8

x +
3
8
x2

)
− e−3x

(
1 +

110
81

x +
7
9
x2 +

2
9
x3 +

1
36

x4

)
(9)

The asymptotic behavior of the bound is B1(x) ≈ x/2, x →
0, which is the same as the asymptotic outage probability
of the 2x2 system [6]. 1-st order diversity and 3 dB gain
due to the ordering are apparent (this 3 dB gain transforms
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asymptotically into 3 dB SNR gain in terms of the average
BLER).

The 2nd step outage of 3x3 V-BLAST cannot be easily
evaluated since the ordering procedure at the 1st step affects
the channel statistics at the 2nd step. We evaluate the condi-
tional outage probability at the 2nd step (i.e., conditioned on
no detection error at the 1st step – this is what we need to
evaluate the BLER). As an approximation, we assume that the
channel statistics at the 2nd step are not affected by the optimal
ordering at the 1st step (i.e., the channel coefficients are still
i.i.d. complex Gaussian). Under this assumption, the 2nd step
outage probability is the same as that of a 3x2 system at the 1st

step (since the first bit stream has been detected and eliminated
at the 1st step), whose outage probability is [[6], eq. 21],
F2(x) = 1 − 2e−x (1 + x) + e−2x

(
1 + 2x + 9x2/8 + x3/4

)
.

Its asymptotic behavior is F2(x) ≈ x2/8, x → 0, which
clearly indicates a second-order diversity.

The 3rd step conditional outage probability can be eval-
uated in a similar way. Assuming no change in the chan-
nel statistics due to the ordering in the first two steps, it
is the same as that of a 3x2 system at the second step,
F3(x) = F

(3)
MRC(x)

(
2 − F

(3)
MRC(x)

)
. Its asymptotic behavior

is F3(x) ≈ 2F
(3)
MRC(x) ≈ x3/3, which indicates the 3rd order

diversity.

Extensive Monte-Carlo simulations have been carried out
to evaluate the accuracy of the bound and approximations
involved. Some of the representative results are shown in Fig.
2-4. Clearly, the 1st step bound is quite accurate (given its
simple nature) and it underestimates the performance by 2
dB. The actual asymptotic behavior of the outage probability
is F1(x) ≈ x/3, x → 0. The 2nd step performance is
overestimated by 3 dB. However, as Fig. 2 demonstrates, it
is predicted extremely well by the 2nd order MRC outage
curve. We attribute this to the joint effect of two opposite
factors: 1) performance loss at the 2nd step due to optimal
ordering at the 1st one (the same as for nx2 system), and
2) performance improvement due to the 2nd step optimal
ordering. Apparently, this two effects compensate each other
and the resulting outage is the same as that of 2nd order MRC.
The 3rd step performance is estimated quite accurately by the
approximate expression F3(x) ≈ 2F

(3)
MRC(x) ≈ x3/3 (within

1 dB). MRC outage curve would provide worse approximation
in that case.

The validity of the approximations above is not limited to a
3x3 system. As an example, we use the same approximations
to analyze 4x4 system. Fig. 3 shows the outage probability at
first 3 steps. The 1st step bound is obtained using (6), and
the asymptotic behavior of the outage probability, based on
Monte-Carlo simulations, is F1(x) ≈ x/4, x → 0 (see (10)
for m=4). The 2nd step outage has been analytically estimated
using the 1st step outage of a 4x3 system, which is within 1.5
dB of the actual performance. Note that it is not the same as
MRC anymore. However, the 3rd step performance is virtually
the same as that of 3rd order MRC. The analytic estimation
of the performance (using 1st step outage of a 4x2 system)
overestimates it by approximately 3 dB. We attribute this to
the effect of the optimal ordering at the 1st and 2nd steps.
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Fig. 2. Outage probabilities of 3x3 optimally-ordered V-BLAST. 5*106 trials
have been used for Monte-Carlo simulations.
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Fig. 3. Outage probabilities of 4x4 optimally-ordered V-BLAST. 5*106 trials
have been used for Monte-Carlo simulations.

B. Outage of n × m V-BLAST

Extensive numerical experiments (Monte-Carlo simulations)
indicate that the bound in (8) captures accurately the diversity
order (= n − m + 1), but underestimates the SNR gain of
the optimal ordering: instead of 2, the SNR gain observed
in numerical experiments for systems of various sizes is m
and the outage probability is accurately approximated, at high
SNR, by

F1(x) ≈ 1
(n − m + 1)!

( x

m

)n−m+1

, x → 0 (10)

Some of the representative results shown in Fig. 4 demonstrate
that (10) is indeed accurate for systems of various sizes. When
compared to the (n − m + 1)-order MRC outage probability,
F

(n−m+1)
MRC (x) ≈ xn−m+1/(n−m+1)!, which is also the 1st

step outage of the un-ordered V-BLAST [3]-[5], it is clear
that the effect of the optimal ordering is an m-fold SNR
gain at the 1st step. This was rigorously proved for n × 2
system in [6]. Fig. 5 shows additional representative results in
terms of the average BLER with BPSK modulation evaluated
via (10) (see also (12) and (13)). Clearly, this approximation
captures accurately not only the diversity order, but also the
SNR gain of the optimal ordering, at high SNR. Another
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Fig. 4. 1st step outage probabilities of optimally-ordered V-BLAST of
various sizes evaluated via (8), (10) and via Monte-Carlo simulations. While
the bound in (8) captures correctly the diversity order, it gets less and less
tight as m increases and thus unable to capture accurately the SNR gain
of ordering. The approximation in (10) captures accurately both the diversity
order and the SNR gain of the ordering, at high SNR. It also allows estimating
accurately the BLER (see Fig. 5 and 6).

related approximation, also supported by extensive numerical
evidence, gives the joint distribution F (x1, x2, ..., xm) of{
|h1⊥|2 , |h2⊥|2 , ..., |hm⊥|2

}
[17],

F (x1, x2, ..., xm) ≈
(∑m

i=1 x−1
i

)−n+m−1

(n − m + 1)!
, xi → 0 (11)

where hi⊥ denotes here the component of hi orthogonal
to span {h1...hi−1,hi+1...hm}. Note that (10) follows from
(11), since F1 (x) = F (x, x, ..., x).

Comparing (10) to (8), we conclude that the sub-optimal
ordering (based on |hi|) incurs 10 log10(m/2) [dB] SNR
penalty compared to the optimal ordering (based on |hi⊥|).
This SNR gap is zero for m = 2 and it widens as m increases.
However, the sub-optimal ordering does provide a 3 dB SNR
gain compared to the unordered V-BLAST. Given a lower
computational complexity of the sub-optimally ordered V-
BLAST5, it may be an attractive solution for low-complexity
or energy-limited systems.

IV. AVERAGE BLER AND TBER

Using the analytical approximations for the outage proba-
bilities given above, the average BLER can be evaluated in
a straightforward way. Since, in large SNR regime, P e,1 �
P e,2 � ... � P e,m (due to increasing diversity order), the
average BLER is dominated by the 1st step average error rate.
Using (10), this can be presented as

PB ≈ P e,1 ≈ P
(n−m+1)

MRC (mγ0) (12)

where P
(k)

MRC(γ0) is the k-th order MRC average BER for
a given modulation format. Specifically, for non-coherent or-
thogonal BFSK and coherent BPSK respectively one obtains,

5for example, one projection is required at 1st step instead of m for the
optimal ordering; given that the projections carry most of the V-BLAST
computational load, the reduction in complexity can be significant.
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Fig. 5. Average BER/BLER of 3x3 and 4x3 optimally-ordered V-BLAST
with BPSK modulation: approximations and MC simulations. The approxi-
mations become accurate at about SNR ≥ 5dB.
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Fig. 6. Average BLER of mxm optimally-ordered V-BLAST with BPSK
modulation using the high-SNR approximations in (12) and (13), and MC
simulations for m = 2, 3, 4, 5 and 10. The approximation becomes very
accurate at about SNR ≥ 10dB.

PB,BFSK ≈ 1
2

(
2

mγ0

)n−m+1

PB,BPSK ≈
Cn−m+1

2(n−m)+1

(4mγ0)
n−m+1 (13)

To evaluate the validity and accuracy of the approximations
in (12), (13) extensive Monte-Carlo simulations have been
carried out. Some of the representative results are shown in
Fig. 5, 66. While the overall accuracy of these approximations
is good, we note that the large-SNR approximation in (13) is
less accurate at smaller SNR (especially when applied to P e,1)
compared to the general expression in (12) (which is not a
surprise as (13) follows from (12), which is itself a large-SNR
approximation). We have noticed that a better approximation
for the average BLER is

PB ≈ P
(n−m+1)

MRC (mγ0) + P
(n−m+2)

MRC (γ0) (14)

6106 channel realizations with 100 noise/symbol realization per channel
realization have been used for the MC simulations. The rationale behind this
choice can be found in [16].
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where the 2nd term approximates the contribution of the 2nd

and higher steps, whose contribution to the average BLER is
visible at lower SNR. For large average SNR, γ0 ≥ 10dB, all
these approximations are almost identical, which also confirms
our earlier conclusion that the 1st step has dominant effect
on the average BLER. No diversity for 3x3 and 2nd order
diversity for 4x3 system is also obvious (both, in terms of
BLER and 1st step BER). For m×m system, (12) simplifies
to

PB ≈ a

mγ0
(15)

where the constant a is independent of m, from which one
may conclude that

lim
m→∞PB = 0 (16)

While we lack a rigorous proof of this result (recall that it is
based on the conjecture (10)), there is an extensive numerical
evidence to support it. As Fig. 6 demonstrates for BPSK
modulation, the average BLER decreases with m in complete
agreement with (15). Note also that the approximation in (15)
becomes quite accurate for high SNR, γ0 > 10dB. As a side
remark, we also note that this approximation under-estimates
the average BLER at low to moderate SNR. From (16), one
may conclude that the V-BLAST is a practical example of
a system with the space-time autocoding effect discovered
in [8] using information-theoretic arguments. Together with
the capacity-achieving property of the V-BLAST [1], this
demonstrates the optimality of its processing strategy.

Another performance measure of the BLAST used in the
current literature is the total error rate (TBER). It is defined
as the error rate at the output stream to which all the individual
sub-streams are merged after the detection. Thus, contrary to
the BLER, it takes into account the actual number of errors
at the transmitted symbol vector and not only the fact of
their presence. The two measures are related via the following
inequalities [5]: 1

mPB ≤ PT ≤ PB , where PT is the average
TBER. The lower bound is tight at high SNR, so it can be used
as an accurate approximation of the average TBER [5], PT ≈
1
mPB , i.e. single errors within the Tx symbol vector dominate
the performance at high SNR. Using this approximation and
(12), the average TBER of the ordered V-BLAST in the i.i.d.
Rayleigh fading channel can be approximated as

PT ≈ 1
m

P
(n−m+1)

MRC (mγ0) (17)

Thus, increasing m for fixed n results in two opposing effects
on the average TBER: (i) decreasing diversity order, and
(ii) increasing SNR gain due to the ordering and dominance
of single-error events. Unfortunately, at high SNR, the 1st

(negative) effect is dominant. However, when m and n in-
crease simultaneously, so that (n − m) is fixed, the 1st

effect disappears, and the second (positive) effect dominates
the performance. This observation corroborates the common
wisdom that an increase in the number of Tx antennas should
be followed by an appropriate increase in the number of Rx
antennas, if the error rate performance must not degrade. It
also demonstrates that, for m = n, an increase in m is
beneficial in terms of the average TBER. For example, when

n = m, (17) reduces to

PT ≈ a

m2γ0
(18)

Comparing (18) to (15), one concludes that the auto-coding
effect is even more pronounced in terms of the average TBER.
In a similar way, one may express the average TBER for BFSK
and BPSK using (17) and (13).

V. D-BLAST AND COMPARISON TO LINEAR INTERFACES

The error rate performance, either instantaneous or average,
of the uncoded D-BLAST (ordered or not) is the same as that
of the V-BLAST [5], since antenna cycling in D-BLAST is
equivalent to symbol cycling at the baseband model, so if
the same constellation is used for each transmitter, the total
error rate is not affected. In the case of the BLER, the error
probability is not affected by cycling either. Thus, the results
above can also be applied to the D-BLAST algorithm. In
this case the step index i in Section II is associated with
the antenna, not the transmitter. The identical performance,
however, does not hold for horizontally-coded BLAST, in
which case there is a significant difference, with D-BLAST
outperforming V-BLAST [9].

The BLAST algorithm performs essentially successive
interference constellation (SIC). Another option would
be to use purely linear processing, i.e. either ZF or
MMSE filtering applied to r to form decision variables
as follows [[10], sec. 10.3]: r′ZF = (H+H)−1 H+r,
r′MMSE =

(
H+H + σ2

0I
)−1

H+r, and the demodulation is
done component-wise, x̂i = D−1 {r′i}, where D−1 denotes a
demodulator for a constellation in use. Clearly, each stream
will experience in this case the same error rate (due to the
same distribution of the after-processing SNR) equal to the 1st

step error rate of unordered V-BLAST with ZF and MMSE
processing respectively. Thus, the average BLER of the linear
interface can be expressed as,

P
L

B = 1 −
m∏

i=1

(1 − P
u

e1) ≈ mP
u

e1 (19)

where P
u

e1 is the 1st step error average rate of the unordered
V-BLAST (for ZF processing, corresponding expressions were
given in [5]; for MMSE processing, it seems to be an open
problem), and the approximate equality holds at large SNR,
when P

u

e1 � 1. Comparing this to the average BLER of
unordered V-BLAST at high SNR, P

u

B ≈ P
u

e1, one concludes
that the linear interface suffers m-fold increase in the average
BLER compared to the SIC, which is equivalent to m

1
n−m+1 -

fold SNR penalty. For the ordered ZF V-BLAST, the average
BLER is given by (12), and P

u

e1 ≈ P
(n−m+1)

MRC (γ0) [5], so this
difference is even more pronounced since

P
L

B ≈ mP
(n−m+1)

MRC (γ0)

> P
u

B ≈ P
(n−m+1)

MRC (γ0)

> PB ≈ P
(n−m+1)

MRC (mγ0) (20)

For the m × m system at high SNR, P
(1)

MRC(γ0) ≈ c1/γ0,
where c1 is a modulation-depend constant, so that (20) reduces
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to

P
L

B ≈ mc1/γ0 > P
u

B ≈ c1/γ0 > PB ≈ c1/(mγ0) (21)

i.e. the linear interface suffers m2-fold SNR penalty compared
to the ordered V-BLAST. For the n×m system, this becomes
m

n−m+2
n−m+1 -fold SNR penalty. This simplified analysis agrees

reasonably well with the numerical results in [[10], sec.10.3].

VI. CONCLUSIONS

Geometrically-based analytical performance evaluation of
the ordered ZF V-BLAST for more than 2 Tx antennas
is presented. The use of the Holder inequality allows one
to derive lower and upper bounds on the 1st step outage
probability at arbitrary SNR, and also compact closed-form
approximations for higher-steps outage probabilities at high
SNR. Since the average BLER and TBER are dominated
by the 1st step BER at that mode, approximate closed-form
expressions are obtained in a straightforward way. Based on
the upper bound to the outage probability and on extensive
numerical evidence, we conclude that the effect of optimal
ordering at 1st step is m-fold SNR gain. Thus, the average
BLER → 0 (and also the TBER) as m → ∞, which is a
manifestation of the space-time autocoding effect [8] in a
practical system, which also confirms the optimality of the V-
BLAST processing strategy. Contrary to the optimally-ordered
V-BLAST, the sub-optimally ordered one and un-ordered one
possess the autocoding effect in terms of the TBER but not
the BLER. Uncoded D-BLAST error rate performance is the
same as that of the V-BLAST. The linear receiver interface
(without successive interference cancellation) suffers SNR
penalty compared to the BLAST, which is quantified in this
paper.
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